SDH数字微波通信关键技术及应用
SDH数字微波技术的特点及其应用

1 S DH 数 字 微 波 通 信 系 统 的 组 成
数字 微波 中继通 信线 路 示意 图 如 图 1 示 ,其 中直 线 表 示数 所 字微 波 中继 通信 线 路的 主干 线 , 其长 可 以达 到几 千 公里 ; 划 线表 短 示 中继 线路 的支 线 , 在一 条 主干 线 上会 出现 若干 条 支线 , 一 条数 而 字微 波 中继 通信 线路 就 是 由主干 线 、若 干支 线 、线 路两 端 的 终端 站 、 量 中继 站和 分路 站 构成 。 大 数字 微波 传 输线 路 的组成 形 式也 可 以是 一个 微波 枢 纽站 向若 干方 向分支 。微 波 站可 分 为数 字 微波 终 端站 、 字微 波 中继 站 、 字微 波 分 路 站 , 若微 波 站 具 有 2个 以 数 数 但
P 微 波 DH
1 0Mb t s 4 i /
30 2 QAM 4 0 60 4 QAM
30 2 QAM (c c) 60 4 QAM (c c)
52 1QAM
1 QA 6 M
@
2 8
~
3 O
18 2 QAM 26 5 QAM
18 2 QAM (o c) 26 5 QAM ( c
绍了 S H数字微波通信 系统的组成及其采用 的主要技术, D 同时 探 讨 了现 代通 信 中 数 字 微 波 的应 用 。
关 键 词 :DH 数 字 微 波 ; 代通 信 : 码 调 制 ; 叉 极 化 S 现 编 交
在 S H 数 字微 波 通 信 中 , 波 只是 作 为 一 种 载 体 , 主 要 任 不 同 , 他 大致 相 同 , D 微 其 其 以下 是 S H所 采用 的主 要 技术 : D 务就是 传 送数 字信 息到 终 端站 , 因其具 有直 线 空 间传输 的特 点 , 因 2 1 编 码 调 制 技 术 . 此 ,D S H微 波 通信 又称 为 视距 数字 微 波 中继通 信 。 微波 是 一种 传 输 媒质 , 频 带 是受 到 限 制 的 。根据 I U R建 其 T — 议 ,我 国 存 4 1 G z频段 大 都 采 用 的波 道 问 隔 为 2 ~3 z ~ 1 H 8 0 MH 及 4 z I U R相 关 的 频率 配 置 建 议) 只有 采 用 更 高状 态 的 0MH ( — T 。 调制 技 术 , 能使 S H 信 号在 有 限 的频 带 内传 输 。表 1 反 映的 才 D 所 是在 相 同 的波 道 间 隔 下 S H 微 波 与 P H微 波 所 需 调 制 状 态 数 D D
SDH数字微波传输系统原理及应用

步字节复用 , 从而形成 了速率为 6200k i 2 8 b ̄s的 S M- T 4和
一
图 1 通 信 网 中 的数 字 传 输 系 统 框 图
速率为24830ki 的 S M一1, 2 b 8  ̄s T 6 以及更高速率的 S M— T N。
S M设备除了可作为复用器 和线路终端设备外 , 可以组成 T 还 分插 复用设 备 和数 字 交叉 连 接设 备 。以它们 为基 础 构成 S H传送 网。 D
平具有一定意义。
关键词 :D S H数 字微波传输 系统 ;编码 ;解码 ;多进制 正交幅度调整 ;分复接
中 图分 类 号 :N 1.3 T 9432 文 献标 识 码 : A
1 数 字微 波传输 系统原 理
信号 复用或适配为 15Mb ̄s在 15Mb 5 i , 5 i  ̄s信号帧 中预留 了相 当多 的比特开销 , 15Mb 从 5 i  ̄s往上 , 则完全 采用 了同
图2 D S H复用原理框图
S H采 用的信 息结构 等级称 为 同步传送 模块 S M —N D T
( yc rnu rnp a, Snh osTaso N=1 4 1 ,4) 最 基 本 的模 块 为 o , ,6 6 , S M一14个 S M —l同步复用构成 S M一4 1 T , T T ,6个 S M 一1 T 或 4个 S M一 T 4同步复用 构成 S M 一1 ;T 同步 传送模 T 6 S M( 块 ) S H系统 的基本 设备 。它 的第一 级称 为 S M 一1 实 是 D T , 际上是一个带 有线 路终 端功 能的 准同步 数字 复 用器 , 将 它 6 3个 2Mb ̄s i 信号或 3个 3 i 信 号或 1个 10 M i 4Mb  ̄s 4 b ̄s
SDH数字微波系统中的几个关键技术

当系统 采 用多 状 态 Q M 调 制 方 式 时 ,要 达 到 A IU—R所 规定 的性 能 指 标 ,对 多径 衰 落 必 须 采 取 T 相应 的对抗 措施 。考 虑 到 IU—R的新 建议 将 不 再 T
由于采用多状态调制技术 ,对传输通道,特别
的冗余度 比 T M低,编码器和解码器所需 的电路 C 规模 也 比 四 维 T M 要 小 ,因 为 大 多 数 级 不 编 码 , C
结 构也 比较 简单 。
8— 3
维普资讯
3 自适 应 时域均 衡技 术
X I 对干扰的抑制能力可达到 1d PC 8B左右。
l I ×SM—l 5 Q M,1Q M或 12 Q M 26 A 52 A 04 A
2 ,92 .53 l I 8 2 ,9 6 ,o ×SM—l 4 A 18 A 6 Q M,2 Q M或 26 A 5Q M
2 ,92 .53 2 I —l 18 A C )26 A C ) 8 2 ,9 6 ,o ×SM 2 Q M( C ,5 Q M(C 4 0 l I —l 3Q M,4 A ×SM 2 A 6 Q M
号相对应 ,这样 ,编码器 的运算 速度可 比符 号率 低。在解码时 ,也会有同样的效果。M C L M数字流
表 l IU—R推荐采 用 的调制方 式 ,表 中 为 T (O C )表 示采 用交叉 极 化 干扰 抵 消技 术 ( PC x I)实
现的交叉极化同波道传送方式。
麦卓平 :S H数 字微 波系统中的几个关键技 术 D
2 编码 调 制技术
微波是一种频 带频率配置内传输 S H信号,必须 D 采用更高状态 的调制技术 。例如 ,要 在 3M z 0 H 左 右波道间隔的系统 中传输 SM—l ,可选用 的调 T 时
SDH技术

MSTP关键技术:PoS (1)
POS(Packet over SDH/SONET)
POS技术实际上就是通过把数据包经过PPP包封、GFP、LAPS 或HDLC包封,然后映射到SDH的VC虚容器中进行传输的过程 POS技术目前已经广泛应用于IP over SDH、Ethernet over SDH等项目上 POS技术主要的难点
SDH技术
清华大学微波与数字通信国家重点实验室
内容
SDH概念及关键技术 MSTP概念及关键技术 MAN概念及关键技术
数字传输系统
时钟 定时 同 步 调 支 路 整 复 接 合路 去 调 整 分 接 支 路 定时
数字传输系统简图
PDH技术
地区性的标准 北美:1.544M, 6.312M, 44.736M, Nx44.736M 欧洲:2.048M, 8.448M, 34.368M, 139.264M 日本:1.544M, 6.312M, 32M, 100M, 400M 没有世界性的标准光接口 异步复用方式:码速调整 OAM通道缺乏 基于点对点传输 没有业务的兼容性
1 3 4 5 9
RSOH
1 2 STM-N Payload
270 1
PTR
MSOH
3 传输 N 顺序
单位:字节
9 10 1 字节间插、列间插
SDH同步复用与映射方法
SDH复用方法(1)
字节间插
AUG --> STM-N TUG3 --> VC-4 TU3 --> TUG-3 TUG2 --> TUG-3 TU2 --> TUG-2 TU12 --> TUG-2
线路抖动:随机噪声,滤波器失谐,码间干扰等 复用器抖动:主要由指针调整引起 SDH/非SDH边界抖动:映射抖动,指针调整抖动
SDH数字微波通信技术特点及应用

SDH数字微波通信技术特点及应用
SDH(Synchronous Digital Hierarchy)数字微波通信技术是
一种高速、可靠、安全、灵活的通信技术。
它采用同步时隙复用技术,通过将多路低速数字信号进行同步、逐时隙复用,形成高速数
字信号,实现了基于光纤、微波、卫星等传输介质的大容量、高质
量数字通信。
SDH技术具有以下特点:
1. 高速可靠:SDH技术能够提供高速传输和高质量服务,最高
传输速率可达到155Mbps、622Mbps、2.5Gbps等级,传输速度和质
量十分稳定可靠,可满足各种应用场景的需求。
2. 灵活性强:SDH技术支持多种接口和拓扑结构,非常灵活,
满足不同应用需求。
SDH技术可与其他技术相结合,如ATM、IP等,形成更为完善的通信网络。
3. 安全性高:SDH技术具有较高的数据安全性,可提供多种加
密和保护机制,确保数据传输的安全性和完整性。
4. 维护管理方便:SDH技术具有完善的远程维护和管理功能,
操作简单,可随时监测网络运行状况,及时发现和处理故障和问题,提高网络的可靠性和稳定性。
SDH技术广泛应用于各种通信场景,如城市通信网、传输网、
接入网、移动通信网络、广播电视网等。
在提升传输带宽和质量、
增强网络安全性、提高网络的可靠性和维护管理效率方面,都发挥
着重要作用。
SDH数字微波通信技术是一种高速、可靠、安全、灵活的通信技术,有着广泛的应用前景和发展空间。
分析SDH数字微波技术的特点及其应用

在S D H数字微 波传 播当 中, 微 波作为一种传输媒质 , 其 频带存在 着一定的局限性 。为避免这种传 播局限性,要采用 高状态 的调制技术 , 对频 带内的 S D H传输信 号进行处理。中 国对 于 4~ 1 1 G Hz频段会采用 2 8~ 3 0 MHz或者是 2 8~ 4 0 MH z的 频 道 间 隔 。
注 :C C 表示交叉极 化同波道传输方式是采用交叉极化干 扰抵消技术来 实现 的。
2 . 2 交叉 极化 干扰 抵 消( X P I C ) 技 术
在数字微波 系统当中, 一般会采用双 极化频率复用技术 , 可 以使系统 的容量 进一步地增加 。单波道 的数据传输技 术呈 现出快速增长 的趋 势,频谱 的利 用率也相应地得到提高 。然 而, 此 时却很容易出现交叉极化干扰 的现 象, 即为交叉极化鉴 别率 由于多径衰落而有所降低 。 此时, 就需要采取抗干扰措施。 干扰主要来 自于正交集 化信号 。安装 自适应交叉极化干 扰抵消器 , 可 以将干扰程度 降低 。其工作原 理是, 采用信 号累 加 的方式 ,将干扰信号抵消 。取 出干 扰信 号经过技术处理之 后, 为 了叠加在 有用信号之上 , 起 到抵消信号干扰 的作用 。
备上面 。 其作为上、 下话路的中继站, 主要的任务是完成信号 的 转发于双向接收工作。安装有调制与解调设备的中继站, 被称 为是“ 再生中继站” 。再生 中继站要具备遥控、 遥测等能力, 承担 着配置管理工作, 诸如线路运行质量 、 网管系统的运行状况等等。
2 S DH 数字 微 波采 用 的主 要技术
缩压缩处理之后 , 就可 以进入到容器 , 最 终形成广播 电视节 目 的视频和音频信号 , 在微波发射 的作用下 , 或者是通过 网线 网 络的传 输, 覆盖到指定 的范围内。 ’ S DH的传输速率 , 一般会选择 3 4 . 3 6 8 Mb i t / s 和1 3 9 . 2 6 4 Mb i t / s , 以使模拟广播电视信号传播效果更好。
SDH技术在湖北广电微波数字化改造中的应用

技术交流
杨
磊
吴ห้องสมุดไป่ตู้
谦
钱
程
杨
林
湖北省广播电视微波总站
摘要: 本文简要地阐述了 S D H 系统及数字微波 设备的组成, 在此基础上对湖北省微波数字化改造 情况做了基本 介绍�同时对数字微波技术在湖北省微波干线的应用, 做了概括的说明� 关键词: SDH 微波设备 数字化改造 数字微波技术
1
S D H 概述
2 湖北微波数字化改造
湖北省广播电视微波干线网始建于 1 985年, 全
长15 5 2 ,以武汉为中心形成了覆盖全省的微波传 D H 传输网是由网络单元 (N E) 组成的, 其基本 输网, 目前干线上所用的均为老式的模拟设备 �按照 单元有终端复用器 ( M) , 分插复用器 (AD M ) , 再生中 � 原信息产业部 �关于调整 1 �30G H 数字微波接力通 继器 ( EG) 和同步数字交叉连接设备 (D C) 等, 它的 特点是在信息传输, 复用, 分插和交叉连接时保持同 信系统容量系列及射频波道配置的通知� 和广电总局 �广播电视模拟微波数字化改造指导意见� (广发技字 步 �它有全世界统一的网络节点和接口, 从而简化了 2003 1 060 号) 的文件指示精神, 从 201 2 年开始将逐 信号的互通以及信号的传输, 复用, 分插和交叉连接 � 步淘汰模拟设备,采用先进的 DH 技术对我省的微 过程� 它有一套标准化的信息结构等级, 在它的块状
使用国家无委指定的 � 7 7 25 8 27 5M H 的 L8 频段, 该 (5 ) 对于信号的接收, 设备将预留 I 接口, 各站 频段共有 8 个波道, 16 个频点 �根据湖北广播电视发 展的实际情况, 本次改造分两个阶段进行, 在 2012 年
SDH技术在微波通信中的应用

SDH技术在微波通信中的应用摘要:SDH微波通信是新一代的数字微波传输体制。
数字微波通信是用微波作为载体传送数字信息的一种通信手段。
它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。
本文主要介绍SDH数字微波通信技术的组成、特点及应用。
一、SDH数字微波通信系统的组成(1)数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。
如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。
组成此通信线路设备的连接方框图如图2所示。
它分为以下几个部分:(2)用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。
(3) 交换机。
这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。
这种交换可以是模拟交换,也可以是数字交换。
(4) 数字电话终端复用设备(即数字终端机)。
其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。
(5) 微波站。
按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。
SDH微波终端站的发送端完成主信号的发信基带处理、调制、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收、解调、收信基带处理。
终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。
(6) 数字微波中继站。
主要完成信号的双向接收和转发。
有调制、解调设备的中继站,称再生中继站。
需要上、下话路的中继站称微波分路站,它必须与SDH 的分插复用设备连接。
再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨SDH数字微波通信的关键技术及应用摘要:本文主要介绍了sdh 数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
关键词:现代通信sdh数字微波关键技术
一.引言
sdh微波通信是新一代的数字微波传输体制。
在sdh数字微波通信中,微波只是作为一种载体,其主要任务就是传送数字信息到终端站,因其具有直线空间传输的特点,因此,sdh微波通信又称为视距数字微波中继通信。
本文主要介绍了sdh数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
二.sdh数字微波通信系统的组成
数字微波中继通信线路示意图如图1所示,其中直线表示数字微波中继通信线路的主干线,其长可以达到几千公里;短划线表示中继线路的支线,在一条主干线上会出现若干条支线,而一条数字微波中继通信线路就是由主干线、若干支线、线路两端的终端站、大量中继站和分路站构成。
数字微波传输线路的组成形式也可以是一个微波枢纽站向若干方向分支。
微波站可分为数字微波终端站、数字微波中继站、数字微波分路站,但若微波站具有2个以上方向的上、下话路,则可称为数字微波枢纽站,这些都是由其工作性质的不同而分类的。
sdh 数字微波终端站具有相当多的功能,具体有:公务联络方
面所具有的全线公务和选站公务2种能力;网络管理方面的网管系统配置管理及遥控、遥测指令,这个功能是通过软件将终端站设定为网管主站,然后将各站汇报过来的信息收集起来,再监视线路运行质量并执行,需要时还可通过q3接口与电信管理网(tmn)连接;另外还具有识别倒换基准、发送与接收倒换指令、启动与证实倒换动作等的备用倒换功能。
微波终端站的发送端与收信端的工作是不一致的,发送端的主要工作包括纠错编码、发信差分编码、扰码等调制工作,还包括提取旁路业务、插入微波帧开销、插入与提取sdh 开销以及变换cmi/nrz等主信号发送基带处理工作,以及放大发信混频与发信功率等。
而收信端的主要工作有含纠错译码、解扰码、收信差分译码、基带或中频时域均衡、中频频域均衡等的解调工作,完成主信号的低噪声接收(根据需要可含分集接收与分集合成),包含变换nrz/cmi、插入或提取sdh开销、插入或提取微波帧开销、提取旁路业务等处理收信基带工作。
当终端站基带接口与sdh复用设备连接时,可用于上、下低价支路信号。
微波分路站是指需要上、下话路的中继站,其必须与sdh 的分插复用设备连接。
信号的双向接收和转发是微波中继站所应完成的主要任务。
再生中继站是指有调制与解调设备的中继站,其具有汇报站信息、线路运行质量至网管系统,全线公务联络,执行网管系统的配置管理,进行遥控、遥测等能力。
三.sdh数字微波采用的关键技术
sdh微波传输设备所采用的基本技术除了传输方式的特点不同,
其他大致相同,以下是sdh所采用的关键技术:
(1)编码调制技术
微波是一种传输媒质,其频带是受到限制的。
根据itu-r建议,我国在4~11 ghz频段大都采用的波道间隔为28~30mhz及40mhz (itu-r相关的频率配置建议)。
只有采用更高状态的调制技术,才能使sdh信号在有限的频带内传输。
表1所反映的是在相同的波道间隔下sdh微波与pdh微波所需调制状态数的区别。
表1 sdh微波与pdh微波所需调制状态数的区别。
注:表中(cc)表示采用交叉极化干扰抵消技术实现交叉极化同波道传输方式。
(2)交叉极化干扰抵消(xpic)技术
交叉极化干扰是交叉极化鉴别率(xpd)在数字微波系统出现多径衰落时随之降低而产生的。
因此,为减少来自正交极化信号的干扰,我们需要一个交叉极化干扰抵消器。
交叉极化干扰抵消(xpic)技术是指适当处理取自所传输信号相正交的干扰信道中的部分信号,并与有用信号相加,以此来抵消叠加在有用信号上来自正交极化信号的干扰。
抵消干扰在射频、中频或基带上都可以进行,对干扰的抑制能力在使用xpic技术后可达15db左右。
(2)分集技术
分集技术是指合成或切换多个不同特性的收信信号,以对抗多径衰落和降雨衰落的影响,最终得到良好信号。
因此,对抗多径衰落、提高数字微波电路传输质量的重要手段即为分集接收。
路由分
集、角度分集、空间分集和频率分集是几种常用的分集技术。
在sdh 微波系统中,分集接收的应用比中小容量数字微波和模拟微波要来得更加广泛的原因是,它们对频率选择性衰落由于采用了多状态调制方式而显得更加敏感。
(4)自适应频域和时域均衡技术
当系统采用多状态qam调制方式的情况下,如果要达到itu-r
规定的指标,且额外的差错性能配额也不再提供给数字微波系统时,必须采取相应的且强有力的抗衰落措施。
而自适应均衡技术是除分集接收技术外最常用的抗衰落技术,其包括自适应频域均衡技术和自适应时域均衡技术。
若要减少频率选择性衰落的影响可使用频域均衡技术,而若要消除各种形式的码间干扰,可使用自适应时域均衡技术。
(5)2.5大规模专用集成电路(asic)设计技术
使用大量大规模专用集成电路(asic)设计技术可以帮助数字微波设备的体积大大减少,功能也相应地提高,且还可提高设备的安全性和稳定性,从而使设备的维护强度降低。
(6)高线性功率放大器和自动发射功率控制(atpc)
多状态调制技术对高功率放大器的线性等传输信道提出了严格的要求。
其对微波高功放采取输出回退措施及非线性补偿技术可满足系统总传输性能的要求。
高线性功率放大器和自动发射功率控制技术的特点是当接收端接收电频发生变化时,微波发信机的输出功率在atpc 的控制范围内也自动地随之发生变化。
而非线性失真、
电源消耗降低、多径衰落对系统影响的减少及同一路由相邻系统干扰的减少等是atpc所具有的独特优点。
四.在广播电视网中sdh微波的应用
在广播电视网络中,sdh微波起着相当重要的作用。
sdh微波网虽然在容量方面没有光纤传输网好,但其仍是光纤网中不可缺少的补充和保护手段。
在现有模拟和pdh微波网的基础设施建设中,sdh 微波网可以应用的方式有:自成链路或环路;可使光纤电信网形成闭合环路;保护sdh光纤网,解决整个通信网的安全保护问题;与sdh光线系统串接使用等。
五.结语
sdh数字微波通信具有大容量、灵活组网、传输质量好、低成本、建设速度快等特点,其灵活性、移动性、抗灾性都是光线通信无法比拟的,在通信领域占据着重要地位。
目前,数字微波通信已广泛应用于广播电视、电信部门,并且已逐渐进入公路管理系统、港航企业、海事管理部门、边远地区及一些大型企业中。
参考文献:
[1]房少军编著.数字微波通信.北京:电子工业出版社,2008
[2]范寿嗣,等编著.有线电视模拟- 数字光纤与微波传输技术.北京:中国广播电视出版社,2000
注:文章内所有公式及图表请以pdf形式查看。