STAR-CCM+离心泵旋转机械解决方案CentrifugalPumpSolutions_CD-adapco

合集下载

基于STAR-CCM+的发动机曲轴箱通风系统CFD分析

基于STAR-CCM+的发动机曲轴箱通风系统CFD分析

基于STAR-CCM+的发动机曲轴箱通风系统CFD分析李军;向璐;王翀【摘要】为详细了解发动机曲轴箱通风系统内部的气体流动规律,采用STAR-CCM+模拟具有通风功能和无通风功能的两种曲轴箱通风系统它们各自内部的气体流动过程.计算结果表明,稳态情况下,曲轴箱通风系统内部除油气分离器外其它部分气体流速均较低;活塞漏气主要通过曲轴箱、前罩盖进入凸轮轴室,只有小部分气体通过回油道进入凸轮轴室;新鲜空气从通风管进入凸轮轴室后,大部分在凸轮轴室内流动,小部分通过回油道进入曲轴箱内,并与活塞漏气一起流向油气分离器;引入新鲜空气进入曲轴箱通风系统后,提高了曲轴箱通风系统整体的气体流动速度.【期刊名称】《机械设计与制造》【年(卷),期】2016(000)004【总页数】3页(P88-90)【关键词】发动机;曲轴箱;通风系统;STAR-CCM+【作者】李军;向璐;王翀【作者单位】重庆交通大学机电与汽车工程学院,重庆400074;重庆交通大学机电与汽车工程学院,重庆400074;重庆长安汽车股份有限公司动力研究院,重庆401120【正文语种】中文【中图分类】TH16;TK413.3发动机曲轴箱通风系统的作用是防止发动机曲轴箱内压力过高,延长机油使用期限,减少零件磨损和腐蚀,防止发动机漏油。

曲轴箱通风系统是发动机的重要组成部分,它是一个极其复杂的流体系统。

其复杂性不仅是流场形状十分复杂,还在于整个系统包含了曲柄连杆机构等复杂运动部件,更有活塞漏气、润滑油的喷射、飞溅、雾化、凝结和水蒸气的凝结以及上述物理过程之间的交互影响等物理现象。

曲轴箱通风系统是一个尚未模型化的系统。

当前还没有完善的模型和评价体系,只有文献[1-2]发表了较深入的研究成果,但仅限于气动与泵气损失和机油隔板的设计方面。

因此,需要对曲轴箱通风系统进行CFD分析,达到了解曲轴箱通风系统内部气体流动规律,合理设计曲轴箱通风系统目的。

针对某车用4缸汽油发动机的曲轴箱通风系统,运用STAR-CCM+进行稳态CFD分析,研究了稳态情况下曲轴箱通风系统内的气体流动规律。

单级离心泵的工作原理,组成部分以及常见故障如何处理

单级离心泵的工作原理,组成部分以及常见故障如何处理

单级离心泵的工作原理,组成部分以及常见故障如何处理Centrifugal pumps are dynamic machines that work by utilizing centrifugal force to move liquids. They consist of a rotating impeller within a casing, which creates a low-pressure area at the center of the impeller. The liquid is then drawn into the pump through the suction inlet and accelerated by the spinning impeller.离心泵是通过利用离心力来移动液体的动力机器。

它们由壳体内的旋转叶轮组成,叶轮在中心创造出一个低压区。

液体随后通过吸入口被吸入泵内,并被旋转的叶轮加速。

As the liquid exits the impeller, it is directed towards the casing's discharge outlet, where it is released at a higher pressure. The impeller's high-speed rotation imparts kinetic energy to the liquid, converting it into pressure energy as it exits the pump.当液体离开叶轮时,它被引导到壳体的排出口,从而以更高的压力释放出来。

叶轮的高速旋转向液体传递了动能,将其转化为压力能量,当液体离开泵时。

Common components of a centrifugal pump include the impeller, casing, shaft, bearings, and motor. The impeller is the rotatingcomponent that accelerates the liquid, while the casing houses the impeller and directs the flow of liquid. The shaft connects the impeller to the motor, enabling the transfer of rotational energy. Bearings support the shaft and reduce friction, allowing smooth operation of the pump.其他常见的离心泵部件包括叶轮、壳体、轴、轴承和电机。

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案篇一:浅谈离心泵的结构、原理及振动的原因及处理浅谈离心泵的结构、原理及振动的原因及处理【摘要】目前,油田注水所用的注水泵机组分为离心泵和往复泵机组,其中离心泵使用广泛,流量在5-30000立方米每小时,扬程在8-4000米的范围内。

离心泵液体是连续流动的,所以离心泵排量均匀,压力平稳。

维修工作量少,特别是离心泵的排量可用出口闸门来调节,比往复泵相比方便很多,正是由于这些优点,所以离心泵在油田开发生产中得到广泛发展和应用。

为了确保生产任务的顺利完成,延长设备的使用寿命,我们注水泵工必须了解离心泵的结构、原理及出现故障的处理方法,以便更好的服务生产。

【关键词】离心泵振动处理1 多级离心泵的工作原理泵内灌满液体后,在原动机的带动下,叶轮高速的旋转,叶轮带动液体高速旋转。

产生离心力,液体受离心力的作用高速甩出,高速甩出的液体经过泵壳流道,增大压力,降低速度,最后进入排出管,当液体甩出的同时,中轮的中心形成低压或真空,与外界形成夺差,在大罐液柱压力的作用下,液体被压入叶轮的进口,于是旋转着的叶轮就连续不断地吸入和排出液体。

2 多级离心泵的组成离心泵的结构形式很多,作用原理都是相同的,所以主要零部件的形状是相近的,离心泵有六大部分组成:转动部分、泵壳部分、密封部分、轴承部分、传动部分、平衡部分。

下面对各部分的作用、构造及材质作一简单介绍。

转动部分包括:叶轮,叶轮是离心泵的最重要的零件,由前盖板、后盖板,轮鼓叶片组成。

它是把泵轴的机械能传给液体使其变成液体的压能和动能,泵的流量、扬程、效率都和叶轮的形状、尺寸的大小及表面粗糙度有着直接密切的关系,一般叶轮的外径越大,流道越窄产生的压力就越高,流道越粗糙流经叶轮时产生的水力损失就越大,所以对叶轮要进行流道加工,清除表面残渣。

轴套:一般是圆柱形。

是用来保护泵轴的,使泵轴不致于应腐蚀和磨损而影响其机械强度,它主要是与密封件配合使用,工作时,密封件静止,轴套旋转,防止泵同介质外漏,所以轴套是易磨损件。

在STAR-CCM+中风扇的三种不同分析方法

在STAR-CCM+中风扇的三种不同分析方法

在STAR-CCM+中风扇的三种不同分析方法王国强;邢超;赵玉军【摘要】文章通过三种不同的方法对风扇进行了模拟,并用流量和压降对分析结果进行评价.分析结果表明:三种方法均能较准确的模拟风扇,但在流场和压力分布上有一定的差别.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)006【总页数】3页(P81-83)【关键词】风扇;流场;压降【作者】王国强;邢超;赵玉军【作者单位】陕西重型汽车有限公司,陕西西安710200;陕西重型汽车有限公司,陕西西安710200;陕西重型汽车有限公司,陕西西安710200【正文语种】中文【中图分类】U467.3CLC NO.:U467.3Document Code:AArticle ID:1671-7988 (2017)06-81-03风扇模型在计算分析中的运用,可使分析结果更贴合实际,但代价就是模型的前处理、计算模型的复杂性增加、计算资源和时间的增加。

fan interface的提出,可以避免实际风扇模型给计算带来的诸多不便,可以使计算的收敛更快,但fan interface也有其自身的不足。

fan interface 是对fan momentum source的一种简单替代,它通过计算流过轴流风扇的流量或速度模拟风扇的压降,然而却不能像 fan momentum source那样增加旋转。

究竟这两者在计算结果上有啥差异,本文将通过对比分析进行探讨。

1.1 “fan momentum source”介绍为了更好地模拟轴流风扇的性能,在STAR-CCM+中,使用了源项“fan momentum source”,“fan momentum source”使用了“actuator disk”理论来理论近似风扇的工作过程,在做计算分析的过程中,可以不需要风扇的实际模型。

其理论分析过程如下:为了得到风扇作用到流动介质上的力,本文先从风扇前后介质流动情况的速度三角形来陈述,如下图所示:符号列表:Vin:介质进口速度Vaxial:介质轴向速度ε:叶片安装角β:叶片弦线与轴向的夹角ω:风扇旋转角速度r:叶片半径Vout,absolute:介质出口绝对速度Vout,relativ:介质出口相对速度介质以Vin进入风扇,并假设Vin= Vaxial,风扇在θ方向上以ω的角速度进行旋转,且风扇叶片本身不扭转。

STAR-CCM+新一代CFD软件

STAR-CCM+新一代CFD软件

STAR-CCM+——新一代CFD集成化平台STAR-CCM+简介 (1)STAR-CCM+的主要功能与特点 (1)STAR-CCM+的网格方案 (7)STAR-CCM+的专业模块 (12)STAR-CCM+在工业中的应用 (14)STAR-CCM+简介STAR-CCM+是CD-adapco集团推出的新一代CFD集成化平台。

采用最先进的连续介质力学算法(computational continuum mechanics algorithms),并同卓越的现代软件工程技术相结合,拥有出色的性能和高度的可靠性,是热流体工程师强有力的分析工具。

在完全不连续网格、滑移网格和网格修复等关键技术上,STAR-CCM+经过来自全球10多个国家,超过200名知名学者的不断补充和完善,已成为同类软件中网格适应性、计算稳定性和收敛性方面的佼佼者。

近年来,STAR-CCM+一直是计算流体动力学模拟的通用平台,并获得了良好的声誉。

如今,STAR-CCM+本身已经不仅仅是计算流体动力学软件,其最新发布的版本基于领先的计算流体动力学求解器引入了结构分析计算的求解能力,同时还添加了噪声求解功能。

一个流动、传热、应力和噪声模拟一体化的通用软件首次呈现在用户面前。

STAR-CCM+强大的网格生成工具,完备的物理模型和先进的CFD技术使得其被广泛应用于所有流体计算领域,涉及的行业有航空航天、汽车、生物医疗、建筑、化学、电子器件、能源、石油天然气、环境、船舶和旋转机械等。

最新发布的STAR-CCM+版本在网格生成技术、物理模型、连续介质数值算法、大规模并行计算能力、集成的用户界面等方面都取得了重大进展,进一步巩固了STAR-CCM+在通用计算流体力学方面的领导地位。

STAR-CCM+的主要功能与特点友好的用户界面z集成的图形用户界面—将前后处理与计算分析集成在同一个环境中;z跨平台的用户界面—界面采用JA V A语言编写,可实现通过C-S模式进行跨操作系统的工作,并行计算可多个操作系统进行;z可采用C/C++/FORTRAN语言编写用户子程序,并可使用Java语法编辑场函数;z丰富的图片系统。

STAR-CCM+离心泵旋转机械解决方案CentrifugalPumpSolutions_CD-adapco

STAR-CCM+离心泵旋转机械解决方案CentrifugalPumpSolutions_CD-adapco

Discovering Better DesignsFaster for Centrifugal PumpsWhy work with CD-adapco?Pump Companies’Technical ChallengesCD-adapco’s Simulation Solutions•Over-dependence on physical testingàtoo long and expensive•Not enough performance insight across wide operating rangePredicting pump flow performance virtuallyas “a numerical test rig”(flow rates & patterns, pressure changes, NPSH, etc.)•Simulation is only used as a trouble-shooting tool,not to ensure desired performance of new pumpsSimulation-driven design•Not enough time to consider many alternative pump designs;forced to accept “good enough”Automated design space exploration •Preparing to simulate = bottleneck;•Not enough time to optimize designsRobust, streamlined modeling &meshing•Too many simplifying assumptions,approximations; can’t tell howcomplete pump will truly operateSimulating with full-fidelity CAD geometry•Complex flow phenomena (e.g., turbulence, recirculation, cavitation, vibration)Fast, accurate, memory-efficient solvers for complex, unsteady flow phenomena•Can’t afford software licenses needed to do fast design space exploration Fewer products; Affordably scalable licensing;Parallel processing•Motor cooling Flow and Heat Transfer together •Noise & vibration Acoustics•Fluid/gas separation Multiphase Flows§Feed water / Supply pumps(e.g., for boilers, steam generators,reactors)§Make-up pumps§Condensate Extraction pumps§Cooling water pumps(reactors, cooling towers)§Residual Heat Removal pumps§Containment Spray pumps§Circulating water pumps§Booster pumpsEtc.Many Uses for Water Pumps, Hydro TurbinesNeeded: Increased Energy EfficiencyIt has been estimated that 20% of the total energy consumed worldwide is used to run a pump of one sort or another.1In addition, of those pumps, two thirds use 60% more energy than is required.2“Pumps that are not inherently efficient in their peer group across all companies that manufacture the same types of equipment will either be removed from the market or will require redesign in order to meet higher efficiency levels. Someestimates put this at up to 20% of the pumps on the market today.”--Empowering Pumps, 11-Sept-2015“The Newly Proposed Pump Regulation by the Department of Energy”1IEA (2007): Tracking Industrial Energy Efficiency and CO2 Emissions, Paris: International Energy Agency (IEA).“Operating conditions that were not mentioned in the [centrifugal] pump’s order document and were not considered in pump design have been responsible for more than 60% of all unscheduled shutdowns.”Needed: Explore Different Operating Conditions“Operating conditions that were not mentioned in the [centrifugal] pump’sorder document and were not considered in pump design have been responsible for more than 60% of all unscheduled shutdowns .”--Turbomachinery International, July/August 2015, page 14“Alternative operating points and transient operating situations have always been important in this regard.”“The flow rates, required heads, liquid details, and net positive suction head (NPSH)available in different scenarios should be accurately indicated for all possible operating situations.”Gov’t Regulations for Pump Energy EfficiencyWhy Simulate Water Pumps, Hydro Turbines?§Maximum Efficiency §Optimal Performance(at Design Point, BEP)§Robust Performance(Off-Design)§Reliability / Durability §Comply with StandardsDiscover Better Designs FasterPredicting pump flow performance virtually•Faster, cheaper than physical testing•More performance insight across wider operating rangePump Company Technical ChallengesCD-adapco Simulation Solutions•Over-dependence on physical testingàtoo long and expensive•Not enough performance insight across wide operating range Predicting pump flow performance virtually as “a numerical test rig”(flow rates & patterns, pressure changes,NPSH, etc.)Technical Challenges vs. Simulation SolutionsHead vs. Flow Rate Performance Curve for Circulating Water PumpPerformance Curve for Boiler Feedwater PumpB estE fficiency P ointBEPBEPPredicting pump flow performance virtually11H e a dFlow RateExperiment STAR-CCM+Low flow rate High flow rate1212359 GPM1100 GPMQ-H Curve131314InletAtmospheric pressure @ outletBlades rotating at 2900 RPMGoal: Produce pump Performance Curves via simulation(Flow vs. Delta Pressure)15•Flow patterns•Flow rates•Pressures•Vibrations•Head•Torque•Power•Efficiency•Temperature•etc.•Operatingconditions•Working fluid•Flow solver•Steady orunsteady•Turbulencemodel•y+ walltreatmentSolve &Visualize ImportGeometry MeshSet UpPhysics16Low Flow RateHigh Flow RateStreamlines in an axial pumpCavitation breakdownCavitation inceptionCritical cavitationTypical radial inlet MSI radial inletTypical axial inducer 3700 GPM2700 GPM“STAR-CCM+ gave us confidence that our design of a low-pressure industrial pump would retain the required performance and durability.”–Travis Jonas, MSINo recirculation§Challenge:Improve a low-pressure pump with radial inlet and axial inducer to meet performance specifications §Solution:Used STAR-CCM+ on 132-node cluster for rapid A-to-Bcomparisons: complex 360o geometry;unsteady turbulent flow; and 2 very different design points (2700 vs. 3700 GPM)àre-designed the inlet and inducer §Impact:•Reduced recirculation, avoidedcavitation despite low flow coefficients •Achieved head target (10 ft.)at both design flow ratesSimulation-driven Design•Simulation used proactively to predict performance of new pumps (versus just for troubleshooting),and to make decisions & changes that help optimize the designPump Company Technical ChallengesCD-adapco Simulation Solutions•Simulation is only used as a trouble-shooting tool, not to ensure desired performance of new pumps Simulation-driven designTechnical Challenges vs. Simulation Solutions20A Maturity Model for Engineering Simulations Validate (results)Troubleshoot (design)PredictAutomate(exploration)OptimizeExplore digitally,Confirm physicallyUltimate Goal:Discover Better Designs FasterCritical inversion point(from reactive to proactive engineering)Simulation-driven DesignCAE 1.0CAE 2.0CAE 3.0Discover Better Designs FasterValidateTroubleshoot PredictExplore Optimize= Feasible= InfeasibleObjective 1O b j e c t i v e 2Automated Design Space Exploration •More ability to consider alternative pump designs–to discover better designs faster•Go beyond designs that are just “good enough”Pump Company Technical ChallengesCD-adapco Simulation Solutions•Not enough time to consider many alternative pump designs; forced to accept “good enough”Automated design space explorationTechnical Challenges vs. Simulation SolutionsSolve &VisualizeImport GeometryMeshSet Up Physics Change Design(geometry and physics)# of DesignsTime Design #N+1Design #NSTAR-CCM+CFturbo SHERPA High Power Required Optimal Design Pareto Front Baseline Design ViolatesConstraintBaseline DesignFlow rate = 400 m 3/hPressure head = 30 mPower required = 38.4 kW Optimized DesignFlow rate = 400 m 3/hPressure head = 30 mPower required = 36.0 kWSTAR-CCM+CFturbo SHERPA“I can now obtain better pump designs fasterby spending more time on engineeringdecision-making, and less time on model setup& data transfer.”–Ed Bennett, VP of Fluids Engineering, Mechanical Solutions Inc. (MSI)§Impact:•Power reduced by 6%•Found 33 improved designs;not just 1 that is “good enough”•Scalable platform for optimization and multi-disciplinary simulations§Solution:•Optimization (HEEDS/SHERPA)•Parametric blade design (3rd -party)•Flow simulation (STAR-CCM+)•Process automation (HEEDS)§Challenge:1)Modify impeller to increase pump efficiency; minimize power required2)Obtain set of lowest-power pump designs for set of outlet pressures SHERPARequirementsPerformanceOptimizationSTAR-CCM+CFturboAccurate Simulation of Complex, Unsteady Flows•Improve prediction of actual pump performance•Reduce the risk of recirculation, cavitation, and/or vibrationPump Company Technical ChallengesCD-adapco Simulation Solutions•Complex flow phenomena (e.g., turbulence, recirculation, cavitation, vibration)Fast, accurate, memory-efficient solvers for complex,unsteady flow phenomenaTechnical Challenges vs. Simulation SolutionsPredicting pump flow performance virtually8506506757007257507758008250.200.100.050.15A m p l i t u d e (R S 796, 0.132Overall level P UX Overall level P UY Overall level P UZVibration Limit (0.2)9006757007257507758008258508750.500.000.100.200.300.400.050.150.250.350.45M )i n /s776, 0.384Vibration LimitOverall level P UXOverall level P UY Overall level P UZVibrationLimit (0.2)Extracted Flow RegionOriginal ~14m/sModified ~9m/s§Solution:CFD simulation to predict flow velocities,vibrations in Original design versus Modified design (withvolute changed to increase B-gap)§Challenge:In newly installed centrifugal pump,reduce vibration below acceptance limits Reduced velocityat cutwaterOriginal2.9% B-gapModified 7.0% B-gap §Impact:•Velocity at cutwater reduced 36%•Vibrations reduced 66%,to far below acceptance limits•B-gap width kept in 6-10% range to avoid excessive vane pass vibrationpresented atbySimulation of Complex, Unsteady FlowsCavitation inside a double-suction pumpSuctionInlet VoluteImpellerInlet Total Pressure –175 kPa Inlet Total Pressure –80 kPaInlet Total Pressure –40 kPa Inlet Total Pressure –27 kPaInlet Plane of symmetry§Impact:•Clear understanding of pump performance across wide operating range•Confidence in pump design through simulation •Unsteady solution with cavitation•Poly meshed (~5M cells)•CAD geometry; half-model with splitter; 1 blade passage cyclically patterned §Solution:§Challenge:Accurately predict pump performance at BEP (+/-)as well cavitation occurrence Simulation of Complex, Unsteady FlowsEnergy & Power“STAR-CCM+ has all of the featuresrequired to solve extremely complex problems in hydraulic turbomachinery”–Edward Bennett, Ph.D., VP of Fluids EngineeringRobust, streamlined modeling & meshing•Fewer modules = fewer data transfers, less error, less training •Tight geometry connection to 3rd-party CAD software •Less manual, tedious model cleanup required•Modeling-and-simulation process can truly be automated •Enables faster design space explorationPump Company Technical ChallengesCD-adapco Simulation Solutions•Preparing to simulate = bottleneck;•Not enough time to optimize designs Robust, streamlined modeling &meshingTechnical Challenges vs. Simulation SolutionsRobust, streamlined modeling & meshinggeometrysolids meshfluids meshphysicssetupflow visualizationheat visualizationAll-in-one Simulation EnvironmentBring geometry from CAD into STAR-CCM+NXSTAR-CCM+Options:1)neutral files(.igs, .stp,.x_t, .x_b)2)native CADpart files (.prt)3)STAR CAD Client[Good][Better][Best]NXSTAR-CCM+3) using STAR-NX CAD ClientDrive Design changes in CAD and STAR-CCM+ will updateSTAR-CCM+NX3) using STAR-NX CAD ClientDrive design changes in STAR-CCM+ and the CAD will updateRobust, streamlined modeling & meshing700,000 polyhedral cells including2 prism layers for better flow accuracyRobust, streamlined modeling & meshing2 prism layersRobust, streamlined modeling & meshingenables rapid Design Space ExplorationSolve &VisualizeImport Geometry Mesh Set Up PhysicsGeometry ChangeRobust, streamlined modeling & meshingBaselineImprovedSTAR-CCM+CFturboSHERPARobust, streamlined modeling & meshingenables automated Design Space ExplorationSimulating with full-fidelity CAD geometry •Remove simplifying assumptions and approximationsthat reduce accuracy•Understand how the entire pump machinery will operatePump Company Technical ChallengesCD-adapco Simulation Solutions•Too many simplifying assumptions,approximations; can’t tell how machine will truly operate Simulating with full-fidelity CAD geometryTechnical Challenges vs. Simulation SolutionsSimulating with full-fidelity CAD geometry§ A large axial pump designed to provide durable performance under severe conditions§Flow Physics•Complex, transient flow through 360 degrees•Stationary and rotating domains•Unsteady forced response§Relevant STAR-CCM+ features to facilitate a solution•Unsteady flow solver•Unsteady cavitation model•Unsteady stationary/rotating interfaces•Advanced unstructured CFD meshing from CAD geometry•Parallel capability for large size and economical time to solutionVertical Pump Flow Domain。

基于STAR-CCM +的高速动车组驱动齿轮箱内部流场分析

基于STAR-CCM +的高速动车组驱动齿轮箱内部流场分析

V o V 30 No. 1Maa 2021第30卷第1期2021年3月计算机辅助工程Computer Aided Engineering文章编号:1006 - 0871(2021)01-0008-04DOI : 10. 13340/j. cee. 2021.01.002基于STAR-CCM +的高速动车组驱动齿轮箱内部流场分析王庭楷,徐宏海(北方工业大学机械与材料工程学院,北京100144)摘要:为研究齿轮箱初始注油量、齿轮旋转方向等因素对齿轮箱内部润滑油瞬态分布、压力瞬态分布和各轴承进/回油孔润滑油质量流量的影响,基于齿轮箱内部不可压缩的气液两相流,采用STAR-CCM +软件的重叠网格技术对高速动车组驱动齿轮箱内部流场进行仿真。

结果表明:当大齿轮正转时,受螺旋方向的影响,车轮侧各轴承进油量大于电机侧轴承进油量;当大齿轮反转时,各轴承进油量受螺旋方向的影响较小;随着初始注油量增加,各轴承进油孔的质量流量也增加;齿轮 箱内部流场达到稳态时,内部压力总体上较为平均,仅啮合区存在局部高压区与负压区。

研究结果对齿轮箱润滑流道结构设计具有指导意义。

关键词:齿轮箱;流场;注油量;气液两相流;瞬态分布;质量流量中图分类号:U260.3312; TB115.1文献标志码:BInternal flow field analysis of drive gearboxin high-speed EMU based on STAR-CCM +WANG Tingkei ,XU Honghai(School of Machineiy and Materials # North China University of Technologs # Beijing 100144 # China )Abstract : To study the infuenco of initiae oii injection and ger rotation direction and other factora on the transient distribution of oil and pressure and the mass flow of lubacating oii in the filling and return holesof each beang in the gc i S ox , based on the incompressible gas-liquid two-phae flow in the gc i S ox , the interna How fielO of the drive gecrbox in high-speed EMU is simulated using the o —yet gad technoloayof STAR-CCM + softwae. The results show that : while the big gesr rotates in the foryard direction , the oii intake of tae whet side besyng is laryer than taat of the motor side besyng due te the helio directionof the larae gear; whiie tae big gesf rotates in tae reverse direction , the influenco of the helic direction on tae berang oii intake is littie ; the mass flow rate of tae berang filling hoie can be incressed by incressing tae initiai oii injection ; whiie the gerrbox insige fuid field reaches steady state , the inteoai pressure isg —dliy average , but there are high p^osuo arers and nerative pressure areas in the locai meshingarer. The reserrch results can guiVe tae design of the lubacation channet stocture of the gerrbox.收稿日期:2020-10-16 修回日期:2020-11-05作者简介:王庭楷(1996—),男,北京人,硕士研究生,研究方向为高速动车组驱动齿轮箱流场分析,(E-mail )504296321 @ qq. com ;徐宏海(1967—),男,浙江萧山人,教授,博士,研究方向为机械传动、先进制造技术,(E-mail ) x.honghai@ 163. comhtp :z /////. coinacec. cn cae @ s hm t u. e du. cn ; smucae@ 163. com1王庭楷,等:基于STAR-CCM +的高速动车组驱动齿轮箱内部流场分析9Key worbs : geeTbox ; fow field % oil injection % ggs-Cquid two-phae tow ; transient distribution % masstow rati0引言高速动车组驱动齿轮箱是动 向架 键部一,行车安全 稳定 重要部件。

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法发表时间:2019-10-28T10:25:37.057Z 来源:《文化时代》2019年16期作者:陈国文[导读] 离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。

本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。

陈国文中国石油运输有限公司新疆塔里木运输分公司新疆阿克苏地区 842000摘要:离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。

本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。

关键词:离心泵;振动;原因;处理措施引言目前在工业生产领域离心泵的应用十分广泛,为工业生产做出了巨大的贡献,在面对离心泵故障的时候如果不能实现正确的处理,必然会导致影响离心泵的正常运行,因此必须要对离心泵的故障维修进行以及振动等进行精确分析。

1 机泵轴弯曲机泵轴的主要作用是带动叶轮以及转子进行旋转,由于离心泵的转子以及叶轮本身的重量比较重,如果在经历长时间的运行之后会导致机泵在开机运行的过程中产生一个较大的轴向力,这样就会导致机泵轴产生完全的现象,由此会进一步导致机泵在运行过程中出现严重的不平衡现象,进而会引发机泵与壳体之间的严重摩擦现象,这样就会导致机泵出现严重的振动现象。

主要的解决措施为针对离心泵的叶轮以及机泵的壳体进行8小时一次的盘机,按照相同的方向降泵轴旋转120度左右[1]。

2 轴承问题2.1轴承“跑外缘“轴承如果在装配的过程中出现安装质量差的问题,就会导致机泵在长时间的运行过程中产生轴承“跑外缘“的现象,进而使得轴承的温度进一步升高,甚至产生较大的杂音,并进一步引发离心泵的振动现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Discovering Better DesignsFaster for Centrifugal PumpsWhy work with CD-adapco?Pump Companies’Technical ChallengesCD-adapco’s Simulation Solutions•Over-dependence on physical testingàtoo long and expensive•Not enough performance insight across wide operating rangePredicting pump flow performance virtuallyas “a numerical test rig”(flow rates & patterns, pressure changes, NPSH, etc.)•Simulation is only used as a trouble-shooting tool,not to ensure desired performance of new pumpsSimulation-driven design•Not enough time to consider many alternative pump designs;forced to accept “good enough”Automated design space exploration •Preparing to simulate = bottleneck;•Not enough time to optimize designsRobust, streamlined modeling &meshing•Too many simplifying assumptions,approximations; can’t tell howcomplete pump will truly operateSimulating with full-fidelity CAD geometry•Complex flow phenomena (e.g., turbulence, recirculation, cavitation, vibration)Fast, accurate, memory-efficient solvers for complex, unsteady flow phenomena•Can’t afford software licenses needed to do fast design space exploration Fewer products; Affordably scalable licensing;Parallel processing•Motor cooling Flow and Heat Transfer together •Noise & vibration Acoustics•Fluid/gas separation Multiphase Flows§Feed water / Supply pumps(e.g., for boilers, steam generators,reactors)§Make-up pumps§Condensate Extraction pumps§Cooling water pumps(reactors, cooling towers)§Residual Heat Removal pumps§Containment Spray pumps§Circulating water pumps§Booster pumpsEtc.Many Uses for Water Pumps, Hydro TurbinesNeeded: Increased Energy EfficiencyIt has been estimated that 20% of the total energy consumed worldwide is used to run a pump of one sort or another.1In addition, of those pumps, two thirds use 60% more energy than is required.2“Pumps that are not inherently efficient in their peer group across all companies that manufacture the same types of equipment will either be removed from the market or will require redesign in order to meet higher efficiency levels. Someestimates put this at up to 20% of the pumps on the market today.”--Empowering Pumps, 11-Sept-2015“The Newly Proposed Pump Regulation by the Department of Energy”1IEA (2007): Tracking Industrial Energy Efficiency and CO2 Emissions, Paris: International Energy Agency (IEA).“Operating conditions that were not mentioned in the [centrifugal] pump’s order document and were not considered in pump design have been responsible for more than 60% of all unscheduled shutdowns.”Needed: Explore Different Operating Conditions“Operating conditions that were not mentioned in the [centrifugal] pump’sorder document and were not considered in pump design have been responsible for more than 60% of all unscheduled shutdowns .”--Turbomachinery International, July/August 2015, page 14“Alternative operating points and transient operating situations have always been important in this regard.”“The flow rates, required heads, liquid details, and net positive suction head (NPSH)available in different scenarios should be accurately indicated for all possible operating situations.”Gov’t Regulations for Pump Energy EfficiencyWhy Simulate Water Pumps, Hydro Turbines?§Maximum Efficiency §Optimal Performance(at Design Point, BEP)§Robust Performance(Off-Design)§Reliability / Durability §Comply with StandardsDiscover Better Designs FasterPredicting pump flow performance virtually•Faster, cheaper than physical testing•More performance insight across wider operating rangePump Company Technical ChallengesCD-adapco Simulation Solutions•Over-dependence on physical testingàtoo long and expensive•Not enough performance insight across wide operating range Predicting pump flow performance virtually as “a numerical test rig”(flow rates & patterns, pressure changes,NPSH, etc.)Technical Challenges vs. Simulation SolutionsHead vs. Flow Rate Performance Curve for Circulating Water PumpPerformance Curve for Boiler Feedwater PumpB estE fficiency P ointBEPBEPPredicting pump flow performance virtually11H e a dFlow RateExperiment STAR-CCM+Low flow rate High flow rate1212359 GPM1100 GPMQ-H Curve131314InletAtmospheric pressure @ outletBlades rotating at 2900 RPMGoal: Produce pump Performance Curves via simulation(Flow vs. Delta Pressure)15•Flow patterns•Flow rates•Pressures•Vibrations•Head•Torque•Power•Efficiency•Temperature•etc.•Operatingconditions•Working fluid•Flow solver•Steady orunsteady•Turbulencemodel•y+ walltreatmentSolve &Visualize ImportGeometry MeshSet UpPhysics16Low Flow RateHigh Flow RateStreamlines in an axial pumpCavitation breakdownCavitation inceptionCritical cavitationTypical radial inlet MSI radial inletTypical axial inducer 3700 GPM2700 GPM“STAR-CCM+ gave us confidence that our design of a low-pressure industrial pump would retain the required performance and durability.”–Travis Jonas, MSINo recirculation§Challenge:Improve a low-pressure pump with radial inlet and axial inducer to meet performance specifications §Solution:Used STAR-CCM+ on 132-node cluster for rapid A-to-Bcomparisons: complex 360o geometry;unsteady turbulent flow; and 2 very different design points (2700 vs. 3700 GPM)àre-designed the inlet and inducer §Impact:•Reduced recirculation, avoidedcavitation despite low flow coefficients •Achieved head target (10 ft.)at both design flow ratesSimulation-driven Design•Simulation used proactively to predict performance of new pumps (versus just for troubleshooting),and to make decisions & changes that help optimize the designPump Company Technical ChallengesCD-adapco Simulation Solutions•Simulation is only used as a trouble-shooting tool, not to ensure desired performance of new pumps Simulation-driven designTechnical Challenges vs. Simulation Solutions20A Maturity Model for Engineering Simulations Validate (results)Troubleshoot (design)PredictAutomate(exploration)OptimizeExplore digitally,Confirm physicallyUltimate Goal:Discover Better Designs FasterCritical inversion point(from reactive to proactive engineering)Simulation-driven DesignCAE 1.0CAE 2.0CAE 3.0Discover Better Designs FasterValidateTroubleshoot PredictExplore Optimize= Feasible= InfeasibleObjective 1O b j e c t i v e 2Automated Design Space Exploration •More ability to consider alternative pump designs–to discover better designs faster•Go beyond designs that are just “good enough”Pump Company Technical ChallengesCD-adapco Simulation Solutions•Not enough time to consider many alternative pump designs; forced to accept “good enough”Automated design space explorationTechnical Challenges vs. Simulation SolutionsSolve &VisualizeImport GeometryMeshSet Up Physics Change Design(geometry and physics)# of DesignsTime Design #N+1Design #NSTAR-CCM+CFturbo SHERPA High Power Required Optimal Design Pareto Front Baseline Design ViolatesConstraintBaseline DesignFlow rate = 400 m 3/hPressure head = 30 mPower required = 38.4 kW Optimized DesignFlow rate = 400 m 3/hPressure head = 30 mPower required = 36.0 kWSTAR-CCM+CFturbo SHERPA“I can now obtain better pump designs fasterby spending more time on engineeringdecision-making, and less time on model setup& data transfer.”–Ed Bennett, VP of Fluids Engineering, Mechanical Solutions Inc. (MSI)§Impact:•Power reduced by 6%•Found 33 improved designs;not just 1 that is “good enough”•Scalable platform for optimization and multi-disciplinary simulations§Solution:•Optimization (HEEDS/SHERPA)•Parametric blade design (3rd -party)•Flow simulation (STAR-CCM+)•Process automation (HEEDS)§Challenge:1)Modify impeller to increase pump efficiency; minimize power required2)Obtain set of lowest-power pump designs for set of outlet pressures SHERPARequirementsPerformanceOptimizationSTAR-CCM+CFturboAccurate Simulation of Complex, Unsteady Flows•Improve prediction of actual pump performance•Reduce the risk of recirculation, cavitation, and/or vibrationPump Company Technical ChallengesCD-adapco Simulation Solutions•Complex flow phenomena (e.g., turbulence, recirculation, cavitation, vibration)Fast, accurate, memory-efficient solvers for complex,unsteady flow phenomenaTechnical Challenges vs. Simulation SolutionsPredicting pump flow performance virtually8506506757007257507758008250.200.100.050.15A m p l i t u d e (R S 796, 0.132Overall level P UX Overall level P UY Overall level P UZVibration Limit (0.2)9006757007257507758008258508750.500.000.100.200.300.400.050.150.250.350.45M )i n /s776, 0.384Vibration LimitOverall level P UXOverall level P UY Overall level P UZVibrationLimit (0.2)Extracted Flow RegionOriginal ~14m/sModified ~9m/s§Solution:CFD simulation to predict flow velocities,vibrations in Original design versus Modified design (withvolute changed to increase B-gap)§Challenge:In newly installed centrifugal pump,reduce vibration below acceptance limits Reduced velocityat cutwaterOriginal2.9% B-gapModified 7.0% B-gap §Impact:•Velocity at cutwater reduced 36%•Vibrations reduced 66%,to far below acceptance limits•B-gap width kept in 6-10% range to avoid excessive vane pass vibrationpresented atbySimulation of Complex, Unsteady FlowsCavitation inside a double-suction pumpSuctionInlet VoluteImpellerInlet Total Pressure –175 kPa Inlet Total Pressure –80 kPaInlet Total Pressure –40 kPa Inlet Total Pressure –27 kPaInlet Plane of symmetry§Impact:•Clear understanding of pump performance across wide operating range•Confidence in pump design through simulation •Unsteady solution with cavitation•Poly meshed (~5M cells)•CAD geometry; half-model with splitter; 1 blade passage cyclically patterned §Solution:§Challenge:Accurately predict pump performance at BEP (+/-)as well cavitation occurrence Simulation of Complex, Unsteady FlowsEnergy & Power“STAR-CCM+ has all of the featuresrequired to solve extremely complex problems in hydraulic turbomachinery”–Edward Bennett, Ph.D., VP of Fluids EngineeringRobust, streamlined modeling & meshing•Fewer modules = fewer data transfers, less error, less training •Tight geometry connection to 3rd-party CAD software •Less manual, tedious model cleanup required•Modeling-and-simulation process can truly be automated •Enables faster design space explorationPump Company Technical ChallengesCD-adapco Simulation Solutions•Preparing to simulate = bottleneck;•Not enough time to optimize designs Robust, streamlined modeling &meshingTechnical Challenges vs. Simulation SolutionsRobust, streamlined modeling & meshinggeometrysolids meshfluids meshphysicssetupflow visualizationheat visualizationAll-in-one Simulation EnvironmentBring geometry from CAD into STAR-CCM+NXSTAR-CCM+Options:1)neutral files(.igs, .stp,.x_t, .x_b)2)native CADpart files (.prt)3)STAR CAD Client[Good][Better][Best]NXSTAR-CCM+3) using STAR-NX CAD ClientDrive Design changes in CAD and STAR-CCM+ will updateSTAR-CCM+NX3) using STAR-NX CAD ClientDrive design changes in STAR-CCM+ and the CAD will updateRobust, streamlined modeling & meshing700,000 polyhedral cells including2 prism layers for better flow accuracyRobust, streamlined modeling & meshing2 prism layersRobust, streamlined modeling & meshingenables rapid Design Space ExplorationSolve &VisualizeImport Geometry Mesh Set Up PhysicsGeometry ChangeRobust, streamlined modeling & meshingBaselineImprovedSTAR-CCM+CFturboSHERPARobust, streamlined modeling & meshingenables automated Design Space ExplorationSimulating with full-fidelity CAD geometry •Remove simplifying assumptions and approximationsthat reduce accuracy•Understand how the entire pump machinery will operatePump Company Technical ChallengesCD-adapco Simulation Solutions•Too many simplifying assumptions,approximations; can’t tell how machine will truly operate Simulating with full-fidelity CAD geometryTechnical Challenges vs. Simulation SolutionsSimulating with full-fidelity CAD geometry§ A large axial pump designed to provide durable performance under severe conditions§Flow Physics•Complex, transient flow through 360 degrees•Stationary and rotating domains•Unsteady forced response§Relevant STAR-CCM+ features to facilitate a solution•Unsteady flow solver•Unsteady cavitation model•Unsteady stationary/rotating interfaces•Advanced unstructured CFD meshing from CAD geometry•Parallel capability for large size and economical time to solutionVertical Pump Flow Domain。

相关文档
最新文档