2020届哈尔滨市道外区中考数学二模试卷(有答案)(已审阅)

合集下载

【2020精品中考数学提分卷】哈尔滨道外区初四二模数学试卷+答案

【2020精品中考数学提分卷】哈尔滨道外区初四二模数学试卷+答案

【2020精品中考数学提分卷】哈尔滨道外区初四二模数学试卷+答案2020年哈尔滨道外区初四二模数学试卷一、选择题:(1—10题,每小题3分,共30分,每题只有一个答案)1.地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1042.下列计算正确的是()A.x+x=x 2B.x 3·x 3=2x 3C.(x 3)2=x 6D.x 3÷x=x 33.下列图案属于轴对称图形的是()A .B .C .D .4.反比例函数xk y 的图象经过点(-2,3),则k 的值为(). A . -3 B. 3 C.-6 D. 65.下列四个几何体中,俯视图为正方形的是().A.球B.圆柱C.圆锥D.正方形6.在Rt △ABC 中,∠C =90°,∠B =25°,AB =5,则BC 的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°7.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=3008.如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,若AB=4,BC=8,则折痕EF 的长是()A.3B.32C.52D.59.如图,在△ABC 中,D 是AB 边上一点,DE ∥BC ,DF ∥AC ,下列结论正确的是( C )AC AE BD AD A =. AC AE BF DE B =. AC AE AB AD C =. ACDF BD AE D =. 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下。

2020年中考数学模拟试卷(哈尔滨市考卷)(二)(答案、评分标准)

2020年中考数学模拟试卷(哈尔滨市考卷)(二)(答案、评分标准)

2020年中考数学全真模拟试卷二(哈尔滨考卷)答案及评分标准题号答案及评分标准一、选择题〔共10小题,每题3分,共30分〕1.B 2.C 3C 4.B 5.A6.D7.A8.B9.A 10.D每小题3分二、填空题〔共10小题,每题3分,共30分。

请将结果直接填入答题纸相应位置上〕11. y(x﹣2y)(x+2y).12. 1.18×106.13. x≠14. 515.816. 617. 418. 419. .20. y=(x﹣4)2.每空3分三、解答题(其中21、22题各7分,23、24题各8分,25、26、27题各10分,共计60分)21.根据分式的混合运算法则,化简后代入计算即可.﹣÷=﹣×=﹣=﹣∵x=﹣2,∴原式=﹣.4分3分22. 本题考查尺规作图,等腰三角形的性质;熟练掌握等腰三角形和直角三角形的尺规作图方法是解题的关键.(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D。

3分4分23. (1)这次学校抽查的学生人数是12÷30%=40(人),故答案为:40人;(2)C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图补充为:(3)估计全校报名军事竞技的学生有1000×=100(人).2分2分2分2分24. (1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,3分1分∵DA=DB=2,DE=AD,∴AD=BD=DE=2,∴∠ABE=90°,AE=4,∵cos A=,∴AB=1,∴BE==.1分1分2分25. (1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.3分2分3分2分26. (1)如图1,∵AB⊥OE于点D,CH⊥MN于点K∴∠ODB=∠OKC=90°∵∠ODB+∠DFK+∠OKC+∠EON=360°3分∴∠DFK+∠EON=180°∵∠DFK+∠HFB=180°∴∠HFB=∠EON∵∠EON=2∠EHN∴∠HFB=2∠EHN(2)根据同圆中,相等的圆心角所对的弦相等,先证AB=MB,再根据“等角对等边”,证明MP=ME。

哈尔滨市2020年中考数学模拟试题(II)卷

哈尔滨市2020年中考数学模拟试题(II)卷

哈尔滨市2020年中考数学模拟试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图所示,AB∥CD,∠A=∠B,那么下列结论中不成立的是()A.∠A=∠3B.∠B=∠1C.∠1=∠3D.∠2+∠B=180°2 . 下面计算正确的是()A.=B.=C.=D.=3 . 下列计算正确的是()A.C.D.B.4 . 如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为()A.1B.C.2D.25 . 如图,由6个小正方体搭建而成的几何体的俯视图是()D.A.B.C.6 . “直角”在初中几何学习中无处不在.问题:如图①,已知,判断是否为直角(仅限用直尺和圆规).方法:如图②,在OA,OB上分别取点C,D,以C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若,则.其中判断的依据为()A.同圆的半径相等B.等腰三角形“三线合一”C.线段垂直平分线的性质D.角平分线的性质二、填空题7 . 化简:_________,_________,_________8 . 不等式的解集为__________.9 . 列式表示“a的3倍与2b的差”:.10 . 某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为xm/s,火车的长度为ym,根据题意得方程组为________________.11 . 如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.12 . 如图,在Rt△ABC中,∠ACB=90°,点F是AB的中点,CF="8" cm,则中位线DE=______cm.13 . 据统计,2015年中国高端装备制造业销售收入6万亿元,其中6万亿用科学记数法可表示为.14 . 用因式分解法解方程x2﹣kx﹣16=0时,得到的两根均整数,则k的值可以是______ (只写出一个即可)三、解答题15 . 图①、图②都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形顶点叫做格点,点A、B、C都在格点上,按要求完成下列画图.(1)请在图①中找到格点D,使四边形ABCD只是中心对称图形,并画出这个四边形;(2)请在图②中找到格点E,使以A、B、C、E为顶点的四边形既是轴对称图形又是中心对称图形,并画出这个四边形.16 . 如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDA.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求⊙O的半径.17 . 如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.18 . 如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:(1)在离A站多少km处?(2)判定三角形DEC的形状.19 . 如图所示,直线l1 经过A,B两点,直线l2的表达式为,且与x轴交于点D,两直线相交于点A.(1)求直线l1的表达式;(2)求△ADC的面积;(3)在直线l1上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.20 . 为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计,统计结果如图所示.根据上面提供的信息,回答下列问题:(1)本次抽查了多少名学生的体育成绩;(2)补全条形统计图,求扇形统计图中中D分数段所占的百分比;(3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数.21 . 有四张质地大小均相同的卡片,正面分别标有数字,,1,2,把卡片背面朝上洗匀,小明随机抽取一张卡片,小芳再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字之和为0的概率.22 . 利用乘法公式计算:(1)(2x﹣3y)2+2(y+3x)(3x﹣y);(2)(m+2n)2(m﹣2n)2;(3)(a﹣2b+3)(a+2b+3).23 . 有这样一个问题,如图1,在等边中,,为的中点,,分别是边,上的动点,且,若,试求的长.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法来解决这个问题,下面是他的探究思路,请帮他补充完整.(1)注意到为等边三角形,且,可得,于是可证,进而可得,注意到为中点,,因此和满足的等量关系为______.(2)设,,则的取值范围是______.结合(1)中的关系求与的函数关系.(3)在平面直角坐标系中,根据已有的经验画出与的函数图象,请在图2中完成画图.(4)回到原问题,要使,即为,利用(3)中的图象,通过测量,可以得到原问题的近似解为______(精确到0.1)24 . 已知,在Rt△ABC中,D,E,F分别是AB,AC,BC的中点,连接DE,DF(1)如图1,若AC=BC,求证:四边形DECF为正方形;(2)如图2,过点C作CG∥AB交DE的延长线于点G,连接EF,AG,在不添加任何辅助线的情况下,写出图中所有与△ADG面积相等的平行四边形.25 . 跳跳一家外出自驾游,出发时油箱里还剩有汽油30升,已知跳跳家的汽车每百千米的平均油耗为12升,设油箱里剩下的油量为y(单位:升),汽车行驶的路程为x(单位:千米).(1)求y关于x的函数表达式;(2)若跳跳家的汽车油箱中的油量低于5升时,仪表盘会亮起黄灯警报. 要使邮箱中的存油量不低于5升,跳跳爸爸至多能够行驶多少千米就要进加油站加油?26 . 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数的图象在第二象限交于点C,CE⊥x轴,垂足为点E,,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F连接OD、BF,如果,求点D的坐标.。

2020年黑龙江省哈尔滨中考数学二模试卷

2020年黑龙江省哈尔滨中考数学二模试卷

中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. ±2B. 2C. -2D. ±2.下列运算中,正确的是()A. 7a+a=7a2B. a2•a3=a6C. a3÷a=a2D. (ab)2=ab23.下面是几何体中,主视图是矩形的()A. B. C. D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B. 2 C. 6 D.86.二函数=x2+2x-3的开口方向、顶点坐标分别是()A. 开口向上,顶点坐标为(-1,-4)B. 开口向下,顶点坐标为(1,4)C. 开口向上,顶点坐标为(1,4)D. 开口向下,顶点坐标为(-1,-4)7.方程=的解为()A. x=0B. x=20C. x=70D. x=508.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B. 2C. 5D. 109.反比例函数y=的图象过点(2,1),则k值为()A. 2B. 3C. -2D. -110.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路A. 小亮骑自行车的平均速度是12km/hB. 妈妈比小亮提前0.5小时到达姥姥家C. 妈妈在距家12km处追上小亮D. 9:30妈妈追上小亮二、填空题(本大题共10小题,共30.0分)11.将550000用科学记数法表示是______.12.函数y=中x的取值范围是______.13.分解因式:a3-9a=______.14.不等式组的解集为______.15.计算-= ______ .16.抛物线y=7x2+3向下平移2个单位得到y=7x2+c,则c的值为______.17.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是______.18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是______cm2.19.正方形ABCD的边长为3,点E为射线AD上一点连接CE,设直线CE与BD交于点F,若AD=2DE,则BF的长为______.20.如图,四边形ABCD中,∠BAD=90°,∠ABC+2∠BCD=180°,分别连接AC、BD,且∠BCD=2∠ADB,若AD=3,BC=5,则AC的长度为______.三、解答题(本大题共7小题,共56.0分)21.先化简,再求值:(-)÷,其中x=2+tan60°,y=4sin30°.(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形.23.哈十七中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有500名学生,请你估计九年级学生中体能测试结果为D等级的学生有多少名?24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?26.已知锐角△ABC内接于圆O,D为弧AC上一点,分别连接AD、BD、CD,且∠ACB=90°-∠BAD.(1)如图1,求证:AB=AD;(2)如图2,在CD延长线上取点E,连接AE,使AE=AD,过E作EF垂直BD 的延长线于点F,过C作CG⊥EC交EF延长线于点G,设圆O半径为r,求证:EG=2r;(3)如图3,在(2)的条件下,连接DG,若AC=BC,DE=4CD,当△ACD的面积为10时,求DG的长度.27.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t 的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ-OP),求此时直线PQ的解析式.答案和解析1.【答案】B【解析】解:∵22=4,∴4算术平方根为2.故选B如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.2.【答案】C【解析】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.3.【答案】A【解析】解:A、圆柱的主视图为矩形,符合题意;B、球体的主视图为圆,不合题意;C、圆锥的主视图为三角形,不合题意;D、圆台的主视图为等腰梯形,不合题意.故选:A.先得到相应的几何体,找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】B【解析】【分析】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OA-AE=4-1=3,CE=ED==,CD=2CE=2.故选B.6.【答案】A【解析】解:∵二次y=x2+2x-3的一次项系数为a>0,∴函数图象开口向上,∵y=x2+2x-3=(x+1)2-4,选A.根据a>0算出二函数开口向上,再将函数解析式理成顶点形式,然后写出顶点坐标.本题考查了二次函的性质主要是开方向顶坐标解,熟性质是解题的关键.7.【答案】C【解析】解:去分母得:700x-14000=500x,移项合并得:200x=14000,解得:x=70,经检验x=70是分式方程的解,故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.【答案】A【解析】解:∵反比例函数y=的图象过点(2,1),∴2k-2=2×1,解得k=2,故选:A.把点的坐标代入函数表达式计算即可得解.本题考查了待定系数法求反比例函数解析式,把已知点的坐标代入解析式进行计算即可得解,是基础题,比较简单.10.【答案】D【解析】解:A、根据函数图象小亮去姥姥家所用时间为10-8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10-9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9-8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.根据函数图象可知根据函数图象小亮去姥姥家所用时间为10-8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.11.【答案】5.5×105【解析】解:将550000用科学记数法表示是5.5×105.故答案为:5.5×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠0【解析】解:由题意,得x≠0.故答案为:x≠0.根据分母不能为零,列出不等式x≠0可得答案.本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.13.【答案】a(a+3)(a-3)【解析】解:a3-9a=a(a2-32)=a(a+3)(a-3).本题应先提出公因式a,再运用平方差公式分解.本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】x>3【解析】解:,解①得:x>2,解②得:x>3,故不等式组的解集为:x>3.故答案为:x>3.分别解不等式,进而得出不等式组的解集.此题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题关键.15.【答案】-2【解析】解:原式=2-4=-2.故答案为:-2.先把各根式化为最简二次根式,再合并同类项即可.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.16.【答案】1【解析】解:抛物线y=7x2+3向下平移2个单位,得到的抛物线解析式为抛物线y=7x2+1.当x=0时,y=1,故答案为1.抛物线y=7x2+3向下平移2个单位,则它的顶点的纵坐标为1,从而得到平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【答案】【解析】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故答案为由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】6π【解析】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,所以此扇形的面积为=6π(cm2),故答案为:6π.先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.【答案】6或2【解析】解:①如图1,当DE在AD的延长线上时,∵四边形ABCD是正方形,∴AB=AD=BC=3,∴BD=AB=3,∵AD=2DE,∴DE=BC,∵DE∥BC,∴△FED∽△FCB,∴==,∴BF=2DF=2BD=6;②如图2,当DE在线段AD上时,∵四边形ABCD是正方形,∴AB=AD=BC=3,∴BD=AB=3,∵AD=2DE,∴DE=BC,∵DE∥BC,∴△FED∽△FCB,∴==,∴BF=2DF=BD=2,分两种情况:如图1,当DE在AD的延长线上时,②如图2,当DE在线段AD上时,根据正方形的性质和相似三角形的判定和性质定理即可得到结论.本题主要考查相似形的判定与性质及正方形的性质,分类讨论是解题的关键.20.【答案】【解析】解:如图,延长CD,交BA的延长线于点E,分别过B,A作DE的垂线,垂足分别为F,H,∵∠ABC+2∠BCD=180°,∠ABC+∠BCD+∠E=180°,∴∠BCD=∠E,∴BC=BE=5,设∠ADB=α,则∠BCD=∠E=2α,在Rt△BAD中,∠ABD=90°-α,∴在△BDE中,∠BDE=180°-∠ABD-∠E=180°-(90°-α)-2α=90°-α,∴∠ABD=∠BDE,∴EB=ED=5,∴在Rt△EDA中,AE===4,∵sin∠E====,∴AH=,BF=3,在Rt△BEF中,EF===4,∴CF=EF=4,EC=8,在Rt△EHA中,EH===,∴CH=EC-EH=,在Rt△ACH中,AC===,故答案为:.延长CD,交BA的延长线于点E,分别过B,A作DE的垂线,垂足分别为F,H,推出BC=BE=5,设∠ADB=α,则∠BCD=∠E=2α,推出△EDB为等腰三角形,则DE=BE=5,△ADE为“345”直角三角形,通过∠E的正弦函数可分别把AH,BF的长求出来,再利用勾股定理把EH,EF的长度求出来,推出AH的长,在Rt△ACH中利用勾股定理即可求出AC的长.本题考查了相似三角形的判定与性质,三角形内角和定理,等腰三角形的性质,勾股定理等,解题关键是由已知条件中的2倍角作辅助线构造等腰三角形等.21.【答案】解:原式=[-]×==,当x=2+tan60°=2+,y=4sin30°=2时,原式==+1.【解析】根据分式的混合运算法则把分式化简,根据特殊角的三角函数值把x、y化简,代入化简后的分式,根据二次根式的混合运算法则计算即可.本题考查的是分式的化简求值、二次根式的计算以及特殊角的三角函数值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.【答案】解:(1)如图a所示:△ABC即为所求;(2)如图b所示:△ABC即为所求.【解析】(1)直接利用等腰三角形的性质得出一个符合题意的答案;(2)直接利用等腰直角三角形的性质得出一个符合题意的答案.此题主要考查了应用设计与作图,正确应用网格是解题关键.23.【答案】解:(1)10÷20%=50(名),即本次抽样调查共抽取了50名学生;(2)C等级的人数为:50-10-20-4=16,补全的条形统计图如右图所示;(3)500×=40(名),答:九年级学生中体能测试结果为D等级的学生有40名.【解析】(1)根据A等级的人数和所占的百分比可以求得本次抽取的学生数;(2)根据(1)中的结果可以求得C等级的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得九年级学生中体能测试结果为D等级的学生有多少名.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形;(2)∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=5,答:MD长为5.【解析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.此题主要考查了菱形的判定,以及勾股定理的应用和矩形的性质,关键是掌握对角线互相垂直的平行四边形是菱形.25.【答案】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得:,解得:;答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元;(2)设购进A型计算器a台,则购进B型计算器:(70-a)台,则30a+40(70-a)≤2500,解得:a≥30,答:最少需要购进A型号的计算器30台.【解析】(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出总的进货费用是解题关键.26.【答案】(1)证明:如图1中,∵∠∠ADB=∠ACB,∠ACB=90°-∠BAD,∴∠ADB=90°-BAD,∵∠ABD=180°-∠BAD-(90°-∠BAD)=90°-∠BAD,∴∠ABD=∠ADB,∴AB=AD.(2)证明:如图2中,连接BE交AC于L,连接AO,延长AO交BD于J,交BE于T,连接CO,延长CO交⊙O于K,连接BK.∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠ADC=180°,∠ADC+∠ABC=180°,∴∠ADE=∠ABC=∠AED,∵AB=AD,∴=,∴∠ACB=∠ACE,AJ⊥BD,∵AC=AC,∴△ACB≌△ACE(AAS),∴CB=CE,∵AB=AE,∴AC⊥BE,∴∠ALB=∠AJB=90°,∵∠ATL=∠BTJ,∴∠TAL=∠TBJ,∵AB=AD=AE,∴∠BED=∠BAD=∠BAJ,∵∠EDF=∠DBE+∠DEB,∴∠EDF=∠BAC,∵∠K=∠BAC,∴∠K=∠EDF,∵CG⊥CE.EG⊥BF,∴∠DFE=∠GCG=90°,∵∠DEF+∠EDF=90°,∠DEF+∠G=90°,∴∠G=∠EDF=∠K,∵∠CBK=∠GCE=90°,∴△CBK≌△ECG(AAS),∴EG=CK=2r,(3)解:如图3中,在图2的基础上作AH⊥DE于H.∵DE=4CD,∴可以假设CD=k,DE=4k,则CE=CB=CA=5k,∵AE=AD,AH⊥DE,∴DH=EH=2k,CH=CD+DH=3k,∴AH===4k,AD===2k,∵S△ACD=•CD•AH=•k•4k=10,∴k=(负根已经舍弃),∴CD=,AC=BC=EC=5,AD=AB=10,设CK交AB于J,OA=OC=r,则BJ=AJ=5,CJ===10,在Rt△AOJ中,则有r2=52+(10-r)2,解得r=,∴EG=2r=,∴CG===,∴DG===.【解析】(1)欲证明AB=AD,只要证明∠ABD=∠ADB即可.(2)如图2中,连接BE交AC于L,连接AO,延长AO交BD于J,交BE于T,连接CO,延长CO交⊙O于K,连接BK.想办法证明△CBK≌△ECG(AAS)可得结论.(3)如图3中,在图2的基础上作AH⊥DE于H.假设CD=k,DE=4k,则CE=CB=CA=5k,利用勾股定理求出AH,再利用三角形的面积公式求出K的值,再求出EG,CG即可解决问题.本题属于圆综合题,考查了圆周角定理,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.27.【答案】解:(1)对于直线y=kx+k,令y=0,可得x=-1,∴A(-1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1-2t)•t=-t2+t.当t>时,S=OQ•P y=(2t-1)•t=t2-t.(3)∵OQ+AB=(BQ-OP),∴2t-1+2=(-),∴2t+1=•,∴4t2+4t+1=7t2-7t+7,∴3t2-11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=-x+.【解析】(1)求出点B的坐标即可解决问题.(2)分两种情形①当0<t<时,②当t>时,根据S=OQ•P y,分别求解即可.(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2020年哈尔滨市道外区中考数学二模试题有答案精析

2020年哈尔滨市道外区中考数学二模试题有答案精析

2020年黑龙江省哈尔滨市道外区中考数学二模试卷一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×1032.下列运算中,正确的是()A. +2=3 B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x33.如图中几何体的主视图是()A. B. C. D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.46.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. B. C. D.7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=3608.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB. C.2πD.3π10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个二、填空题:每小题3分,共30分11.计算:|﹣2|=.12.函数的自变量x的取值范围是.13.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,若∠EOD=58°,则∠AOC的度数为度.14.计算:=.15.不等式组的解集是.16.把多项式3a2﹣27分解因式的结果是.17.如图,在▱ABCD中,点E在BC上,AE交BD于点F,如果=,那么=.18.在一个不透明的袋子中,装有五个除数字外其它完全相同的小球,球面上分别标有1、2、3、4、5这5个数字,搅匀后,在看不到球的条件下,从中任摸一个球,球面数字是偶数的概率是.19.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.20.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD 交于点E,若CE=2AE=4,则DC的长为.三、解答题:共计60分21.先化简,再求代数式的值,其中a=6tan30°﹣2.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);(2)在图2中画出△DEF,使它的三边长分别为、2、5(画一个即可).并且直接写出此时三角形DEF的面积.23.植树节期间,某校全体师生组成400个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为5至8棵,活动结束后,校方随机抽查了部分小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)求扇形统计图中,植树量为“7棵树”的圆心角的度数是多少度?(2)求抽样调查的小组中植树量为“6棵树”的小组数,并补全条形图;(3)通过计算,请你估计全校师生此次活动共种树多少棵?24.在正方形ABCD中,点E在CD边上,AE的垂直平分线分别交AD、CB于F、G两点,垂足为点H.(1)如图1,求证:AE=FG;(2)如图2,若AB=9,DE=3,求HG的长.25.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).阶梯一户居民每月用电量x电费价格(单位:元/度)(单位:度)一档0<x≤180a二档180<x≤280b三档x>2800.82(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?26.已知,AB为⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB,垂足为点D,过点C作⊙O的切线交AB的延长线于点E.(1)如图1,求证:CB平分∠DCE;(2)如图2,点F在⊙O上,连接OC,∠ECF=2∠OCB,求证:CF=2CD;(3)如图3,在(2)的条件下,连接AF,若AF=3,CD=3,求BE的长.27.如图,抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A左B右),交y轴于点C,过点B的直线y=x+b交y轴于点D.(1)求点D的坐标;(2)把直线BD沿x轴翻折,交抛物线第二象限图象上一点E,过点E作x轴垂线,垂足为点F,求AF的长;(3)在(2)的条件下,点P为抛物线上一点,若四边形BDEP为平行四边形,求m的值及点P的坐标.2020年黑龙江省哈尔滨市道外区中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:28600=2.86×104,故选:B.2.下列运算中,正确的是()A. +2=3 B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;二次根式的加减法.【分析】根据二次根式的加减法的法则,除法法则,积的乘方、运算法则,同底数的幂的运算法则计算即可.【解答】解:A、+2,不是同类二次根式不能合并,故错误;B、15x3﹣7x3=8x3,故正确;C、(﹣xy)2=x2y2,故错误;D、x6÷x2=x4,故错误.故选B.3.如图中几何体的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:如图中几何体的主视图是.故选:D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】直接把各点坐标代入反比例函数的解析式,再求出其差即可.【解答】解:∵反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),∴y1=﹣=4,y2=﹣=1,∴y1﹣y2=4﹣1=3.故选A.5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.4【考点】旋转对称图形.【分析】根据旋转对称图形的定义对四个图形进行分析即可.【解答】解:旋转对称图形是从左起第(1),(2),(4);不是旋转对称图形的是(3).故选:C.6.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. B. C. D.【考点】等腰三角形的性质;解直角三角形.【分析】作出辅助线AD⊥BC,构造出直角三角形,用面积求出AD,最后用三角函数的定义即可.【解答】解:如图,作AD⊥BC,=20,∵BC=8,S△ABC=×BC×AD=×8×AD=20,∴S△ABC∴AD=5,∵AB=AC,AD⊥BC,∴∠ADB=90°,BD=BC=4,∴tanB==,故选A7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=360【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是640(1﹣x),第二次后的价格是640(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:640(1﹣x)2=360,故选:B.8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°【考点】翻折变换(折叠问题).【分析】根据折叠前后对应角相等可知.【解答】解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选B.9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB. C.2πD.3π【考点】弧长的计算.【分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【解答】解:如图,连接OA、OB.∵∠ACB=30°,∴∠AOB=60°,∵OA=9,∴的长是:=3π.故选:D.10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个【考点】一次函数的应用.【分析】①运用乙工程队4天修的长度除以时间就可以求出乙工程队每天修的米数;②运用甲工程队4天修的长度除以时间就可以求出甲工程队每天修的米数;③根据图象得出甲比乙多工作的天数;④根据甲和乙的修路总米数得出A、B两地之间的公路总长即可.【解答】解:①乙工程队每天修公路=240米,错误;②甲工程队每天修公路=120米,正确;③甲比乙多工作10﹣4=6天,正确;④A、B两地之间的公路总长是960+120×10=2160米,错误;故选C二、填空题:每小题3分,共30分11.计算:|﹣2|=2.【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.12.函数的自变量x的取值范围是x≤6.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方式不能是负数.据此求解.【解答】解:根据题意得6﹣x≥0,解得x≤6.13.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,若∠EOD=58°,则∠AOC的度数为32度.【考点】垂线;对顶角、邻补角.【分析】先根据垂线求得∠AOE的度数,再根据∠AOC=180°﹣∠AOE﹣∠EOD,进行计算即可.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠EOD=58°,∴∠AOC=180°﹣∠AOE﹣∠EOD=180°﹣90°﹣58°=32°.故答案为:3214.计算:=.【考点】分母有理化.【分析】运用二次根式的乘法法则,将分子的二次根式化为积的形式,约分,比较简便.【解答】解:原式==.故答案为:.15.不等式组的解集是x≥2.【考点】解一元一次不等式组.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.【解答】解:解不等式①,得x>1,解不等式②,得x≥2,由不等式①②,得原不等式组的解集是x≥2,故答案为:x≥2.16.把多项式3a2﹣27分解因式的结果是a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】先提出公因式3,再利用平方差公式进行因式分解.【解答】解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).17.如图,在▱ABCD中,点E在BC上,AE交BD于点F,如果=,那么=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由在▱ABCD中,且BE:EC=3:2,易得BE:AD=3:5,△ADF∽△EBF,然后根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵BE:EC=3:2,∴BE:BC=3:5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE:AD=3:5,△ADF∽△EBF,∴.故答案为:.18.在一个不透明的袋子中,装有五个除数字外其它完全相同的小球,球面上分别标有1、2、3、4、5这5个数字,搅匀后,在看不到球的条件下,从中任摸一个球,球面数字是偶数的概率是.【考点】概率公式.【分析】让袋中偶数的个数除以数的总个数即为所求的概率.【解答】解:∵共有5个数字,这5个数字中是偶数的有:2、4共2个,∴从中任摸一个球,球面数字是偶数的概率是.故答案为.19.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为10或90.【考点】勾股定理;等腰三角形的性质.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图.如图1,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=1.∴BC2=12+32=10.如图2,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=9,∴BC2=92+32=90.故答案是:10或90.20.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD 交于点E,若CE=2AE=4,则DC的长为6.【考点】相似三角形的判定与性质;等腰直角三角形.【分析】过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据相似三角形的性质和含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE 中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.【解答】解:过A点作A⊥BD于F,∵∠DBC=90°,∴AF∥BC,∵CE=2AE,∴AF=BC,∵∠ABD=30°,∴AF=AB,∴BC=AB,∵∠ABD=30°,∠ADB=75°,∴∠BAD=75°,∠ACB=30°,∴∠ADB=∠BAD,∴BD=AB,∴BC=BD,∵CE=4,在Rt△CBE中,BC=CE=6,在Rt△CBD中,CD=BC=6.故答案为:6.三、解答题:共计60分21.先化简,再求代数式的值,其中a=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出a的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=6×﹣2=2﹣2时,原式===.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);(2)在图2中画出△DEF,使它的三边长分别为、2、5(画一个即可).并且直接写出此时三角形DEF的面积.【考点】勾股定理.【分析】(1)根据三角形的面积公式,画出长3高4的钝角△ABC即可求解;(2)的线段是两直角边为1,2的直角三角形的斜边;2的线段是两直角边为2,4的直角三角形的斜边;依此画出三边长分别为、2、5的三角形DEF,再根据三角形的面积公式计算即可求解.【解答】解:(1)如图所示:(2)如图所示:三角形DEF的面积:×2÷2=5答:三角形DEF的面积是5.23.植树节期间,某校全体师生组成400个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为5至8棵,活动结束后,校方随机抽查了部分小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)求扇形统计图中,植树量为“7棵树”的圆心角的度数是多少度?(2)求抽样调查的小组中植树量为“6棵树”的小组数,并补全条形图;(3)通过计算,请你估计全校师生此次活动共种树多少棵?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其余三类别百分比求得植树量为“7棵树”的组数所占百分比,再乘以360°可得答案;(2)用植树量为“5棵树”的组数÷其所占百分比可得被调查组数,用被调查组数乘以植树量为“6棵树”的百分比可得;(3)计算出被调查的50个小组的植树平均数,再乘以总组数400可得.【解答】解:(1)(1﹣16%﹣36%﹣28%)×360°=72°答:植树量为“7棵树”圆心角的度数是72°;(2)抽样调查的小组中植树量为“6棵树”的小组数为:16%×=8(组),补全条形图如图:(3)×400=2560(棵)答:估计全校师生此次活动共种植2560棵树.24.在正方形ABCD中,点E在CD边上,AE的垂直平分线分别交AD、CB于F、G两点,垂足为点H.(1)如图1,求证:AE=FG;(2)如图2,若AB=9,DE=3,求HG的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)过D点作DN∥FG交BC于点N,交AE于点M,证出四边形FGND 是平行四边形,得出DN=FG,由ASA证明△DNC≌△AED,得出DN=AE,即可得出结论;(2)在Rt△ADE中,由勾股定理求出AE=3,由三角函数得出tan∠DAE==,再由三角函数求出FH=AH=,即可得出结果.【解答】(1)证明:过D点作DN∥FG交BC于点N,交AE于点M在正方形ABCD中,AD∥BC,AD=DC,∠ADC=∠C=90°,则四边形FGND是平行四边形,∴DN=FG,∵FG垂直平分AE,∴∠FHA=90°∵DN∥FG,∴∠DMA=∠FHA=90°,∴∠NDE+∠AED=90°,又∵∠DAE+∠AED=90°,∴∠NDE=∠DAE,在△DNC和△AED中,,∴△DNC≌△AED(ASA),∴DN=AE,∴AE=FG;(2)解:在正方形ABCD中,∠D=90°,AD=9,DE=3在Rt△ADE中,AE===3,tan∠DAE===,∴在Rt△AHF中,tan∠FAH==,点H为AE中点,AH=HE=AE=,∴FH=AH=,∴HG=FG﹣FH=3﹣=.25.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).阶梯一户居民每月用电量x电费价格(单位:元/度)(单位:度)一档0<x≤180a二档180<x≤280b三档x>2800.82(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据各档的电费价格和所用的电数以及所缴纳电费,列出方程组,进行求解即可;(2)根据题意先判断出小华家所用的电所在的档,再设小华家六月份用电量为m度,根据价格表列出不等式,求出m的值即可.【解答】解:(1)由题意得:,解得:,答:a的值是0.52,b的值是0.57;(2)∵当小华家用电量x=280时,180×0.52+×0.57=150.6<208,∴小华家用电量超过280度.设小华家六月份用电量为m度,根据题意得:0.52×180+×0.57+(m﹣280)×0.82≤208,解得:m≤350答:小华家六月份最多可用电350度.26.已知,AB为⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB,垂足为点D,过点C作⊙O的切线交AB的延长线于点E.(1)如图1,求证:CB平分∠DCE;(2)如图2,点F在⊙O上,连接OC,∠ECF=2∠OCB,求证:CF=2CD;(3)如图3,在(2)的条件下,连接AF,若AF=3,CD=3,求BE的长.【考点】圆的综合题.【分析】(1)先判断出∠OCB+∠BCE=90°,再判断出∠OCB=∠OBC,即可;(2)先判断出CF=2CH,然后证明△CHO≌△CDO,最后得到CB平分∠DCE,即可;(3)先依次判定△CMA≌△CNA,Rt△CMF≌Rt△CNG,再根据勾股定理(2a+3)2﹣(a+3)2=(6)2﹣a2,求出a,最后用(6﹣r)2+(3)2=r2,求出r.【解答】(1)证明:如图(1),连接OC,∵CE与⊙O相切,OC是半径,∴OC⊥CE,∴∠OCE=90°,∴∠OCB+∠BCE=90°,∵CD⊥AB,∴∠CDB=90°∴∠DCB+∠DBC=90°,∵OC=OB,∴∠OCB=∠OBC∴∠DCB=∠BCE,∴CB平分∠DCE,(2)证明:如图(2),过O作OH⊥CF于H,∵OH过圆心,∴CF=2CH由(1)可知:CB平分∠DCE,∴∠DCE=2∠DCB,∵∠ECF=2∠OCB,∴∠FCD=2∠OCD,∴∠FCO=∠OCD,∵∠CDO=∠CHO=90° OC=OC,∴△CHO≌△CDO∴CH=CD,∴CF=2CD,(3)如图(3),延长CD交⊙O于G,分别连接AG、AC,过C作CM⊥AF于M,过C作CN⊥AG 于N.∵CD⊥AB AB是直径,∴CG=2CD由(2)可知CF=2CD,∴CG=CF∴∠CAG=∠CAF;∴AC平分∠FAG∵M⊥AF CN⊥AG,∴CM=CN,∠CMA=∠CNA=90°∴△CMA≌△CNA,∴AM=AN,∵CM=CN CF=CG,∴Rt△CMF≌Rt△CNG,∴MF=NG,设MF=a 则NG=a,∵AF=3,∴MA=a+3,∴AN=a+3,∴AG=2a+3,∵CD⊥AB CD=GD∴AD垂直平分CG,∴CA=GA=2a+3在Rt△CMA中,CM2=CA2﹣AM2=(2a+3)2﹣(a+3)2在Rt△CMF中,CM2=CF2﹣MF2=(6)2﹣a2∴(2a+3)2﹣(a+3)2=(6)2﹣a2∴a1=﹣(舍),a2=6∴AM=9,AC=AG=15,∴AD==6设⊙O的半径为r,在Rt△CDO中,(6﹣r)2+(3)2=r2,∴r=,∴OD=,∴cos∠COD==,在Rt△COE中cos∠COD==,∴OE=,∴BE=.27.如图,抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A左B右),交y轴于点C,过点B的直线y=x+b交y轴于点D.(1)求点D的坐标;(2)把直线BD沿x轴翻折,交抛物线第二象限图象上一点E,过点E作x轴垂线,垂足为点F,求AF的长;(3)在(2)的条件下,点P为抛物线上一点,若四边形BDEP为平行四边形,求m的值及点P的坐标.【考点】二次函数综合题.【分析】(1)由点的直线上,点的坐标符合函数解析式,代入即可;(2)先求出OB,OD再利用锐角三角函数求出BF=2EF,由它建立方程4﹣t=2×[﹣(t+m)(t﹣4)],求解即可;(3)先判断出△PEQ≌△DBO,表示出点P(t+4,﹣(t+m)(t﹣4))+2),再利用它在抛物线y=﹣(t+m)(t﹣4)上求解.【解答】解:(1)∵抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A 左B右)当y=0时,0=﹣(x+m)(x﹣4),∴x1=﹣m,x2=4∴A(﹣m,0),B(4,0)∵点B在直线y=x+b上,∴4×+b=0,b=﹣2∴直线y=x﹣2,当x=0时y=﹣2∴D(0,﹣2),(2)设E(t,﹣(t+m)(t﹣4)),∵EF⊥x轴,∴∠EFO=90°EF∥y轴,∴F(t,0),由(1)可知D(0,﹣2)B(4,0),∴OD=2 OB=4,∴在Rt△BDO中,tan∠DBO==,∵直线BD沿x轴翻折得到BE,∴∠DBO=∠EBF,∴tan∠DBO=tan∠EBF,∴tan∠EBF=,∴=,∴BF=2EF,∴EF=﹣(t+m)(t﹣4)BF=4﹣t∴4﹣t=2×[﹣(t+m)(t﹣4)]∴t+m=1,∴AF=t﹣(﹣m)=t+m=1,∴AF=1,(3)如图,过点E作x轴的平行线,过点P作y轴的平行线交于点Q 设EP交y轴于点M∵四边形BDEP是平行四边形∴EP∥DB EP=DB∵EP∥DB PQ∥y轴,∴∠EMD=∠ODB∠EMD=∠EPQ,∴∠ODB=∠EPQ,∵∠PQE=∠DOB=90° EP=BD,∴△PEQ≌△DBO,∴PQ=OD=2 EQ=OB=4,∵E(t,﹣(t+m)(t﹣4)),∴P(t+4,﹣(t+m)(t﹣4)+2),∵P(t+4,﹣(t+m)(t﹣4))+2)在抛物线y=﹣(t+m)(t﹣4)上∴﹣(t+4+m)(t+4﹣4)=﹣(t+m)(t﹣4)+2∵t+m=1,∴t=﹣2,∵t+m=1,∴m=3,∴﹣(t+m)(t﹣4)+2=5,∴P(2,5)2020年3月8日。

2020年中考数学模拟试卷(哈尔滨)(二)(原卷版)

2020年中考数学模拟试卷(哈尔滨)(二)(原卷版)

2020年中考数学全真模拟试卷(哈尔滨专用)(二)第I卷选择题(共30分)一、选择题〔共10小题,每题3分,共30分。

下列选项中有且只有一个选项是正确的,选择正确选项的代号并填涂在答题纸的相应位置上〕1.9的平方根是()A.3 B.±3 C.﹣3 D.92.如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.3.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>04. 如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°.5.若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y26.在函数y=﹣中,自变量x的取值范围是()A.x>﹣1 B.x≥﹣1 C.x>﹣1且x≠2 D.x≥﹣1且x≠27.不等式组的解集是()A .x≥2B .﹣1<x≤2C .x≤2D .﹣1<x≤18.将抛物线22x y =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A .3)2(22++=x yB .3)2(22+-=x y C .3)2(22--=x y D .3)2(22-+=x y9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A . =B .C .D .10.如图,正方形ABCD 中,点E 是AD 边中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG=4GE ;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是( )A . 1B . 2C . 3D . 4第Ⅱ卷非选择题(共90分)二、填空题〔共10小题,每题3分,共30分。

2020届黑龙江省哈尔滨市道外区中考数学二模试卷(有解析)

2020届黑龙江省哈尔滨市道外区中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.已知12与a的积为−48,则a比4小()A. 1B. 2C. 4D. 82.当a>0时,下列关于幂的运算正确的是()A. a0=1B. a−1=−aC. (−a)2=−a2D. (a2)3=a53.下图形中,是中心对称图形的是()A. B. C. D.4.如果将抛物线y=x2−4x−1平移,使它与抛物线y=x2−1重合,那么平移的方式可以是()A. 向左平移2个单位,向上平移4个单位B. 向左平移2个单位,向下平移4个单位C. 向右平移2个单位,向上平移4个单位D. 向右平移2个单位,向下平移4个单位5.如图是一个由相同的小正方体组成的立体图形,从左面看到的图形是()A.B.C.D.6.已知反比例函数y=k,当x>0时,y随x的增大而增大,则k的取值范围是()xA. k>0B. k<0C. k≥1D. k≤17.如图,已知A、B、C为⊙O上三点,过C的切线MN//弦AB,AB=2,AC=√5,则⊙O的半径为()A. 52B. 54C. 2D. √528.某工队抢修一段240米的铁路,施工队实际每天比原计划多修6米,结果提前4天结束了维修工作,则原计划每天修多少米?设原计划每天修x米,所列方程正确的是()A. 240x+6−240x=4 B. 240x−240x+6=4C. 240x−6−240x=4 D. 240x−240x−6=49.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有()A. 2对B. 4对C. 6对D. 8对10.笔直的海岸线上依次有A、B、C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港的距离y(km)与甲船行驶时间x(ℎ)之间的函数关系如图所示,下列说法:①A、B港口相距400km;②甲船的速度为100km/ℎ;③B、C港口相距200km;④乙出发4h时两船相距220km.其中正确的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共10小题,共30.0分)11.2019年的10月1日是新中国成立70周年华诞,国庆大阅兵激荡了中华,震撼了世界.这次阅兵编59个方(梯)队和联合军乐团,总规模约15000人,将“15000”用科学记数法表示为______.12. 函数y =x−5√x−1自变量的取值范围是______.13. 分解因式:2a 2b −a 3−ab 2=______.14. 若不等式组{x −2<2xa+2x 4<1的所有整数解的和为5,则实数a 的取值范围是 .15. 计算:√20⋅√15=______.16. 在平面直角坐标系中,点A 的坐标为(2,0),P 是第一象限内任意一点,连接PO ,PA ,若∠POA =m°,∠PAO =n°,若点P 到x 轴的距离为1,则m +n 的最小值为______. 17. 120°的圆心角对的弧长是6π,则此弧所在圆的半径是______.18. 班级联欢会上举行抽奖活动,把写有每位同学名字的小纸条投入抽奖箱,其中男生23人,女生22人,老师闭上眼睛从摇匀的小纸条中随机抽出1张,恰好抽到女同学名字的概率为______ . 19. 如图,△ABC 的周长为28cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE = 4cm ,则△ABD 的周长是 cm .20. 如图,矩形ABCD 中,点E ,F 分别在边AD ,CD 上,且EF ⊥BE ,EF =BE ,△DEF 的外接圆⊙O 恰好切BC 于点G ,BF 交⊙O 于点H ,连结DH.若AB =8,则DH =______. 三、解答题(本大题共7小题,共60.0分) 21. 计算:|−2|+(π+2019)0−2tan45°.22. △ABC 中,AB =BC ,∠ABC =90°,将线段AB 绕点A 逆时针旋转α(0°<α<90°)得到线段AD.作射线BD ,点C 关于射线BD 的对称点为点E.连接AE ,CE . (1)依题意补全图形;(2)若α=20°,直接写出∠AEC 的度数;(3)写出一个α的值,使AE =√2时,线段CE 的长为√3−1,并证明.23.某中学组织七、八年级学生参加“第六届生态文明”知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞賽成绩(百分制)进行整理、描述和分析(成绩均为整数,成绩得分用x表示,共分成四组:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,下面给出了部分信息:七年级10名学生的竞賽成绩是:69,78,96,77,68,95,86,100,85,86.八年级10名学生的竞赛成绩在C组中的数据分别是:86,87,87.平均数中位数众数七年级8485.5b八年级84c92根据以上信息,解答下列问题:(1)补全条形统计图;(2)直接写出a、b、c的值;(3)小明将平均分、中位数、众数依次按50%、35%、15%的比例计算各年级的成绩,那么哪个年级的成绩高?24. 如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2−12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.25. 全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.(1)若2014年社区购买健身器材的费用不超过总投入的2,问2014年最低投入多少万元购买药品?3(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少7,但社16区在这两方面的总投入仍与2014年相同.①求2014年社区购买药品的总费用;②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的1,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与4平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的1,求2015年该社区健身家庭的户数.726. 如图,在△ABF中,以AB为直径的圆分别交边AF、BF于E、C两点,CD⊥AF.AC是∠DAB的平分线,(1)求证:直线CD是⊙O的切线.(2)求证:△FEC是等腰三角形.的抛物线经过点A(6,0)和B(0,4).27. 如图,对称轴为直线x=72(1)求抛物线表达式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)条件下,是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:本题考查了有理数的乘法有关知识,根据有理数的乘法,有理数的减法,可得答案.解:由题意,得12a=−48,解得a=−4,4−a=4−(−4)=8.故选D.2.答案:A解析:此题主要考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键,直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.解:A、a0=1,正确;B、a−1=1,故此选项错误;aC、(−a)2=a2,故此选项错误;D、(a2)3=a6,故此选项错误;故选:A.3.答案:B解析:解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形的定义,关键是正确确定对称中心的位置.4.答案:A解析:解:∵抛物线y=x2−4x−1=(x−2)2−5的顶点坐标为(2,−5),抛物线y=x2−1的顶点坐标为(0,−1),∴顶点由(2,−5)到(0,−1)需要向左平移2个单位再向上平移4个单位.故选:A.根据平移前后的抛物线的顶点坐标确定平移方法即可得解.本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.5.答案:B解析:本题主要考查简单几何体的三视图,A. 是主视图,故A错误;B. 是左视图,故B正确;C. 是俯视图,故C错误;D.是右视图,故D错误;故选B.6.答案:B中,当x>0时,y随x的增大而增大,解析:解:∵反比例函数y=kx∴k<0,故选:B.根据当x>0时,y随x的增大而减小得出k的取值范围即可.(k≠0)中,当k>0时,双曲线的两支分别本题考查的是反比例函数的性质,熟知反比例函数y=kx位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.7.答案:B解析:解:连接CO并延长交AB于D,连接OA,∵MN是⊙O的切线,∴MN⊥CD,∵MN//AB,∴CD⊥AB,∴AD =12AB =12×2=1, 在Rt △ACD 中,AC =√5,由勾股定理得:CD =√(√5)2−12=2, 设⊙O 的半径为r ,则OD =2−r ,OA =r , 在Rt △AOD 中,r 2=12+(2−r)2, r =54,则⊙O 的半径为54; 故选:B .延长CO 交AB 于D ,根据切线的性质得到OC ⊥MN ,根据平行线的性质、勾股定理求出CD ,设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出r 即可.本题考查的是切线的性质、勾股定理的应用、平行线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.8.答案:B解析:解:设原计划每天修x 米,原来所用的时间为:240x,实际所用的时间为:240x+6.所列方程为:240x−240x+6=4.故选:B .要求的未知量是工作效率,有工作路程,一定是根据时间来列等量关系的.关键描述语是:“提前4天结束了维修工作”;等量关系为:原来所用的时间−实际所用的时间=4.本题考查了由实际问题抽象出分式方程.题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.9.答案:C解析:解:∵四边形ABCD 为平行四边形,其平行四边形的对角线相互平分, ∴AB =CD ,AD =BC ,AO =CO ,BO =DO ,EO =FO ,∠DAO =∠BCO , 又∠AOB =∠COD ,∠AOD =∠COB ,∠AOE =∠COF ,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△AOE≌△COF(ASA),△DOE≌△BOF(ASA),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS). 故图中的全等三角形共有6对. 故选C .根据已知及全等三角形的判定方法进行分析,从而得到答案.此题主要考查全等三角形的判定方法,常用的判定方法有AAS,SAS,SSS,ASA等.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.10.答案:B解析:解:由题意和图象可知,A、B港口相距400km,故①正确;甲船4个小时行驶了400km,故甲船的速度为:400÷4=100km/ℎ,故②正确;乙船的速度为:100÷1.25=80km/ℎ,则400÷80=(400+s BC)÷100−1,得s BC=200km,故③正确;乙出发4h时两船相距的距离是:4×80+(4+1−4)×100=420km,故④错误;由上可得,正确的个数为3个.故选B.根据右图的图象可知A、B港口相距400km,从而可以判断①;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断②;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A 港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.11.答案:1.5×104解析:解:将15000用科学记数法表示为:1.5×104.故答案为:1.5×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.答案:x>1解析:解:由题意,得x−1>0,解得x>1,故答案为:x>1.根据被开方数是非负数且分母不能为零,可得答案.本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.13.答案:−a(a−b)2解析:解:2a2b−a3−ab2=−a(a−b)2,故答案为:−a(a−b)2.先提公因式a,然后利用完全平方公式因式分解即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.14.答案:−4≤a<−2解析:试题分析:先得出不等式组的解集,根据所有整数解的和为5,可得出关于a的不等式组,解出即可.,不等式组的解集为:−2<x<4−a2∵所有整数解的和为5,∴不等式组的整数解有:−1,0,1,2,3,≤4,∴3<4−a2解得:−4≤a<−2.故答案为:−4≤a<−2.15.答案:2=2.解析:解:原式=√20×15故答案为:2.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.16.答案:90解析:解:如图,在平面直角坐标系中作出以OA为直径的⊙M,设直线y=1与⊙M相切于点P,则MP垂直于直线y=1,根据三角形内角和定理可知,要使得m+n取得最小值,则需∠OPA取得最大值.∵点P到x轴的距离为1,而PM为半径,∴PM=1,∵点A的坐标为(2,0),∴OM=1,∴∠OPA为以OA为直径的圆的一个圆周角,∴∠OPA=90°.在直线y=1上任取一点不同于点P的一点P′,连接OP′,交⊙M于点Q,连接AQ,则∠AQO=90°>∠AP′O,∴∠OPA>∠AP′O,∴∠OPA的最大值为90°,∴m+n的最小值为90.故答案为:90.由题意可作出以OA为直径的⊙M,根据已知条件及圆的相关知识可得答案.本题考查了坐标与图形的相关性质,明确圆的相关性质、三角形的内角和及外角性质等知识点是解题的关键.17.答案:9,解析:解:根据弧长的公式l=nπr180,得到:6π=120πr180解得r=9.故答案:9.,将n及l的值代入即可得出半径r的值.根据弧长的计算公式l=nπr180此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.18.答案:2245解析:解:老师闭上眼睛从摇匀的小纸条中随机抽出1张,恰好抽到女同学名字的概率为2223+22=2245,故答案为:2245.用女生人数除以学生总数即为所求的概率.本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19.答案:20cm解析:首先根据折叠方法可得AE=CE,AD=CD,再根据AE的长可以计算出AB+CB,进而可得△ABD的周长.根据折叠方法可得AE=CE,AD=CD,∵AE=4cm,∴CE=4cm,∵△ABC的周长为28cm,∴AB+CB=28−8=20(cm),△ABD的周长是:AB+BD+AD=AB+BC=20cm.20.答案:7√2解析:解:∵四边形ABCD为矩形,∵∠A=∠EDF=90°,AD//BC,∵EF⊥BE,∴∠AEB+∠DEF=90°,又∵∠ABE+∠AEB=90°,∴∠ABE=∠DEF,又∵EF=BE,∴△ABE≌△DEF(AAS),∴DE=AB=8,如图,连接GO并延长,交ED于点M,∵⊙O与BC切于点G,∴GM⊥BC,∵AD//BC,∴GM⊥ED,则四边形ABGM为矩形,∴AB=MG=8,EM=DM=12ED=4,设⊙O半径为r,在Rt△OEM中,OM2+EM2=OE2,∴(8−r)2+42=r2,解得,r=5,∵∠EDF=90°,∴EF为⊙O的直径,∠EHF=90°,∴EF=2r=10,∵EF⊥BE,EF=BE,∴△BEF为等腰直角三角形,∴∠EFH=45°,∴EH=√22EF=5√2,过点E作EN⊥HD于点N,∵ED⏜=ED⏜,∴∠EHN=∠EFD,又∵∠ENH=∠EDF,∴△ENH∽△EDF,∴ENED =EHEF,即EN8=5√210,∴EN=4√2,在Rt△EHN中,HN=√EH2−EN2=3√2,∵∠EDN=∠EFH=45°,∴在等腰Rt△END中,ED=4√2,ND=√22∴DH=DN+HN=7√2,故答案为:7√2.先证△BAE与△EDF全等,求出ED=8,连接GO并延长,交ED于点M,求出半径,进一步求出直径,再连接EH,过点E作EN⊥HD于点N,分别在Rt△END及Rt△ENH中求出DN与HN的长度,最后相加即可.本题考查了矩形的性质,三角形相似的判定与性质,等腰直角三角形的性质,切线的性质等,解题的关键是作辅助线利用特殊角构造直角三角形来求相关线段的长度.21.答案:解:原式=2+1−2=1.解析:直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.答案:解:(1)如图1,(2)∠AEC=135°,证明:过A作AG⊥CE于G.连接AC、BE,如图2,由题意,BC=BE=BA,∴∠BCE=∠BEC,∠BAE=∠BEA,∵∠BCE+∠BEC+∠BAE+∠BEA+∠ABC=360°∵∠ABC=90°,∴2(∠BEC+∠BEA)=270°,∴∠BEC+∠BEA=135°,即∠AEC=135°,(3)α=30°,证明:∵∠AEC=135°,∴∠AEG=45°,∵AE=√2,∴AG=GE=1,当α=30°时,∴∠EBC=30°,∵BC=BE,∴∠BCG=75°,∵∠BCA=45°,∴∠ACG=30°,∴CG=√3,∴CE=√3−1.解析:(1)作CF⊥BD并延长CF到E使EF=CF,如图1,(2)连结BE,如图2,利用对称的性质得BE=BC,则BC=BE=BA,则根据等腰三角形的性质得出∠BCE=∠BEC,∠BAE=∠BEA,由四边形的内角和可计算出∠BCE+∠BEC+∠BAE+∠BEA+∠ABC=360°,进而得到2(∠BEC+∠BEA)=270°,即可证得∠BEC+∠BEA=135°,即∠AEC=135°;(3)如图2,先证明△AGE为等腰直角三角形,则AG=GE=1,当α=30°时,则∠EBC=30°,进而求得∠ACG=30°,解直角三角形求得CG=√3,即可证得CE=CG−EG=√3−1.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,也考查了对称的性质和解直角三角形等.23.答案:解:(1)八年级A组学生有:10−2−3−4=1(人),补全的条形统计图如右图所示;(2)a°=360°×110=36°,b=86,c=(87+87)÷2=87,即a的值是36,b的值是86,c的值是87;(3)七年级的成绩为:84×50%+85.5×35%+86×15%=84.825(分),八年级的成绩为:84×50%+87×35%+92×15%=86.25(分),∵84.825<86.25,∴八年级成绩高.解析:(1)根据条形统计图中的数据,可以计算出A组的人数,从而可以将条形统计图补充完整;(2)根据题意和统计图中的数据,可以得到a、b、c的值;(3)根据题意,可以分别计算出七年级和八年级的成绩,然后比较大小即可解答本题.本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.24.答案:解:(1)解方程x2−12x+32=0得,x1=8,x2=4,∵OA>OC,∴OA=8,OC=4;(2)∵四边形ABCO是矩形,∴AB=OC,∠ABC=∠AOC=90°,∵把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,∴AD=AB,∠ADE=∠ABC=90°,∴AD=OC,∠ADE=∠COE,在△ADE与△COE中,{∠ADE=∠COE ∠AED=∠CEO AD=OC,∴△ADE≌△COE;∵CE2=OE2+OC2,即(8−OE)2=OE2+42,∴OE=3;(3)过D作DM⊥x轴于M,则OE//DM,∴△OCE∽△MCD,∴OCCM =OEDM=CECD=58,∴CM=325,DM=245,∴OM=125,∴D(−125,245);(4)存在;∵OE=3,OC=4,∴CE=5,过P1作P1H⊥AO于H,∵四边形P1ECF1是菱形,∴P1E=CE=5,P1E//AC,∴∠P1EH=∠OAC,∴P1HEH =OCAO=12,∴设P1H=k,HE=2k,∴P1E=√5k=5,∴P1H=√5,HE=2√5,∴OH=2√5+3,∴P1(−√5,2√5+3),同理P3(√5,3−2√5),当A与F重合时,四边形F2ECP2是菱形,∴EF2//CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4//AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P 4N =OG ,P 4G =ON ,EP 4//AC ,∴P 4N EN =12, 设P 4N =x ,EN =2x ,∴P 4E =CP 4=√5x ,∴P 4G =ON =3−2x ,CG =4−x ,∴(3−2x)2+(4−x)2=(√5x)2,∴x =54,∴3−2x =12, ∴P 4(54,12), 综上所述:存在以点E ,C ,P ,F 为顶点的四边形是菱形,P(−√5,2√5+3),(√5,3−2√5),(4,5),(54,12). 解析:(1)解方程即可得到结论;(2)由四边形ABCO 是矩形,得到AB =OC ,∠ABC =∠AOC =90°,根据折叠的性质得到AD =AB ,∠ADE =∠ABC =90°,根据全等三角形的判定得到△ADE≌△COE ;根据勾股定理得到OE =3;(3)过D 作DM ⊥x 轴于M ,则OE//DM ,根据相似三角形的性质得到CM =325,DM =245,于是得到结论.(4)过P 1作P 1H ⊥AO 于H ,根据菱形的性质得到P 1E =CE =5,P 1E//AC ,设P 1H =k ,HE =2k ,根据勾股定理得到P 1E =√5k =5,于是得到P 1(−√5,2√5+3),同理P 3(√5,3−2√5),当A 与F 重合时,得到P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,得到EP 4=5,EP 4//AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,根据勾股定理即可得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,折叠的性质,菱形的判定和性质,正确的作出辅助线是解题的关键. 25.答案:解:(1)设2014年购买药品的费用为x 万元,根据题意得:30−x ≤23×30,解得:x ≥10,则2014年最低投入10万元购买药品;(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30−y)万元,2015年购买健身器材的费用为(1+50%)(30−y)万元,购买药品的费用为(1−716)y万元,根据题意得:(1+50%)(30−y)+(1−716)y=30,解得:y=16,30−y=14,则2014年购买药品的总费用为16万元;②设这个相同的百分数为m,则2015年健身家庭的户数为200(1+m),2015年平均每户健身家庭的药品费用为16×1 4200(1−m)万元,依题意得:200(1+m)⋅16×1 4200(1−m)=(1+50%)×14×17,解得:m=±12,∵m>0,∴m=12=50%,∴200(1+m)=300(户),则2015年该社区健身家庭的户数为300户.解析:(1)设2014年购买药品的费用为x万元,根据购买健身器材的费用不超过总投入的23,列出不等式,求出不等式的解集即可得到结果;(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30−y)万元,2015年购买健身器材的费用为(1+50%)(30−y)万元,购买药品的费用为(1−716)y万元,根据题意列出方程,求出方程的解得到y的值,即可得到结果;②设这个相同的百分数为m,则2015年健身家庭的户数为200(1+m),根据2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的17,列出方程,求出方程的解即可得到结果.此题考查了一元二次方程的应用,以及一元一次不等式的应用,熟练掌握运算法则是解本题的关键.26.答案:解:(1)连接OC,则∠CAO=∠ACO,又∠FAC=∠CAO∴∠FAC=∠ACO,∴AF//CO,而CD⊥AF,∴CO⊥CD,即直线CD是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°又∠FAC=∠CAO∴AF=AB(三线合一),∴∠F=∠B,∵四边形EABC是⊙O的内接四边形,∵∠FEC+∠AEC=180°,∠B+∠AEC=180°∴∠FEC=∠B∴∠F=∠FEC,即EC=FC所以△FEC是等腰三角形.解析:(1)先判断出∠FAC=∠ACO,进而得出AF//CO,即可得出结论;(2)先用等腰三角形的三线合一得出AF=AB.再用同角的补角相等得出∠FEC=∠B即可得出结论.此题考查了切线的性质,圆的内接四边形,等腰三角形的性质,圆的性质,解本题的关键是得出∠FEC=∠B.27.答案:解:(1)∵抛物线对称轴为直线x=72,∴可设抛物线解析式为y=a(x−72)2+k,把A(6,0),B(0,4)代入可得{a(6−72)2+k=0a(0−72)2+k=4,解得{a=23k=−256,∴抛物线解析式为y=23(x−72)2−256,∴顶点坐标为(72,−256);(2)∵点E(x,y)在第四象限,∴y<0,∴−y表示点E到OA的距离,∵OA是平行四边形OEAF的对角线,∴S=2S△OAE=2×12×OA⋅|y|=−6y=−4(x−72)2+25,其中1<x<6;(3)当OA⊥EF且OA=EF时,四边形OEAF是正方形,此时E点坐标为(3,−3),而坐标为(3,−3)的点不在抛物线上,故不存在这样的点E,使平行四这形OEAF为正方形.解析:(1)可设顶点式,由A、B坐标则可求得抛物线解析式,进一步可求得顶点坐标;(2)由E点坐标可表示出△OAE的面积,利用平行四边形的对称性质可表示出四边形OEAF的面积,可求得S与x的关系式;(3)当四边形OEAF为正方形时,则E点坐标为(3,−3),而该点不在抛物线,则可知不存在满足条件的点E.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、正方形的性质等知识.在(1)中注意顶点式的应用,在(2)中用E点坐标表示出△OAE的面积是解题的关键,在(3)中注意正方形性质的应用.本题考查知识点较多,综合性较强,难度适中.。

2020年黑龙江省哈尔滨市道外区中考二模数学试卷 解析版

27.如图,在平面直角坐标系中,点O为坐标原点,点C在第一象限内,CA⊥x轴,垂足为A(AC<OA),将△OAC绕点O逆时针旋转90°至△OBD,AB与CD相交于点E.
(1)求证:CE=DE;
(2)直线AB的解析式为y=﹣x+20,设线段AC的长为m,tan∠CDB的值为d,求d与m的函数关系式(不要求写出自变量的取值范围);
A. B. C. D.
4.下列几何体中,主视图与左视图面积不相等的是( )
A. B. C. D.
5.将抛物线y=x2﹣1向右平移3个单位,再向上平移3个单位,得到的抛物线解析式为( )
A.y=(x﹣3)2﹣4B.y=(x+3)2+2C.y=(x﹣3)2+2D.y=(x+3)2﹣4
6.如图,AB为⊙O的切线,切点为A,OB交⊙O于点C,点D在⊙O上,且OD∥AC,若∠B=38°,则∠ODC的度数为( )
2020年黑龙江省哈尔滨市道外区中考数学二模试卷
一、选择题:(1~10题,每小题3分,共30分,每题只有一个正确答案)
1.﹣7的相反数是( )
A.﹣7B.7C. D.﹣
2.下列算式中,正确的是( )
A.x+x2=x3B.3x+5x=8x2C.x8÷x2=x4D.(x3)2=x6
3.下列图形中,是中心对称图形但不是轴对称图形的是( )
20.如图,在△ABC中,AB=AC,点D在BA延长线上,点E在BC边上,∠CAE=2∠ACD,∠BAE=60°,若AD=3,△ABE的面积为10 ,则CD的长为.
三、解答题(其中21~22题各7分.23~24题各8分.25~27题各l0分,共计60分)
21.先化简,再求代数式 ÷(x﹣1﹣ )的值,其中x=2cos45°+tan45°.

备战2020中考【6套模拟】哈尔滨市中考第二次模拟考试数学试卷含答案

备战2020中考【6套模拟】哈尔滨市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是A.2B. -2C. 3D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3) 4.如图,在四边形ABCD 中,点E 在线段DC 直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠B=1800,(4)∠A+∠D=1800,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是 A.9cm B.12cm C.9cm 或12cm D. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是A.6cmB.24cmC. 27cmD. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个 8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是 图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0,b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是A.0,1B.0,1,2C. 1,2D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F 是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则 ⊙O 直径的长是 A. m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少A. 4cmB. 3cmC.23cmD.43cm12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少A. 1.5B. 2C. 2D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。

2020年黑龙江省哈尔滨市中考数学二模试卷

中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. B. 0 C. D. -12.下列运算正确的是()A. (a+b)2=a2+b2B. (-a)3=a3C. a6÷a2=a4D. (a2b)3=a5b33.下列中式元素的图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4.五个完全相同的正方体搭成的几何体如图所示,其主视图是()A. B. C. D.5.已知A(x l,y l)、B(x2,y2)均在反比例函数y=的图象上,若0<x l<x2,则y l、y2的大小关系为()A. y l<y2<0B. y2<y l<0C. 0<y l<y2D. 0<y2<y l6.某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A. 1200x=2000(22-x)B. 1200x=2×2000(22-x)C. 1200(22-x)=2000xD. 2×1200x=2000(22-x)7.关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,则实数m的取值范围为()A. m≥B. m<C. m=D. m<-8.如图,在△ABC中,DE∥BC,EF∥AB,则下列结论正确的是()A. =B. =C. =D. =9.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A. 1B. 2C.D. 310.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是lkm/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为______.12.函数y=中,则自变量x的取值范围为______.13.把多项式mn2-6mn+9m分解因式的结果是______.14.计算-3=______.15.某扇形的圆心角为120°,半径为3,则此扇形的弧长为______.16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.17.如图,在⊙O中,半径OC垂直弦AB,∠OBA=26°,D为⊙O上一点,则∠ADC的度数是______.18.在△ABC中,∠ABC=30°,AB=4,AD⊥AB,AD交直线BC于点D,CD=1,则BC=______.19.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同,从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片,两次抽取的卡片上数字之和为奇数的概率是______.20.如图,在矩形ABCD中,点E是BC上一点,连接AE,点F是AE上一点,连接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,则FC的长为______.三、解答题(本大题共7小题,共60.0分)21.先化简,再求代数式的值,其中x=4cos60°+3tan30°.22.如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中以AB为边画Rt△BAC,点C在小正方形的顶点上,使∠BAC=90°,tan∠ACB=;(2)在(1)的条件下,在图中画以EF为边且面积为3的△DEF,点D在小正方形的顶点上,连接CD、BD,使△BDC是锐角等腰三角形,直接写出∠DBC的正切值.23.某市卫生局为了了解该市社区医院对患者随访情况,随机抽查了部分社区医院一年来对患者随访的次数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)该市卫生局共抽查了社区医院的患者多少人?并补全条形统计图;(2)请直接写出在这次抽样调查中的众数是______,中位数是______;(3)如果该市社区医院患者有60000人,请你估计“随访的次数不少于7次”社区医院的患者有多少人.24.在四边形ABCD中,AD∥BC,AD=2BC,点E为AD的中点,连接BE、BD,∠ABD=90°.(1)如图l,求证:四边形BCDE为菱形;(2)如图2,连接AC交BD于点F,连接EF,若AC平分∠BAD,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ABC面积的.25.某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?26.已知:在△ABC中,AB=AC,点D是AB上一点,以BD为直径的⊙0与AC边相切于点E,交BC于点F,FG⊥AC于点G.(1)如图l,求证:GE=GF;(2)如图2,连接DE,∠GFC=2∠AED,求证:△ABC为等边三角形;(3)如图3,在(2)的条件下,点H、K、P分别在AB、BC、AC上,AK、BP 分别交CH于点M、N,AH=BK,∠PNC-∠BAK=60°,CN=6,CM=4,求BC的长.27.已知:在平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax-3a分别交x轴于A、B两点(点A在点B的侧),与y轴交于点C,连接AC,tan∠ACO=.(1)如图l,求a的值;(2)如图2,D是第一象限抛物线上的点,过点D作y轴的平行线交CB的延长线于点E,连接AE交BD于点F,AE=BD,求点D的坐标;(3)如图3,在(2)的条件下,连接AD,P是第一象限抛物线上的点(点P与点D不重合),过点P作AD的垂线,垂足为Q,交x轴于点N,点M在x轴上(点M在点N的左侧),点G在NP的延长线上,MP=OG,∠MPN-∠MOG=45°,MN=10.点S是△AQN内一点,连接AS、QS、NS,AS=AQ,QS=SN,求QS的长.答案和解析1.【答案】C【解析】解:∵-<-1<0<,∴最小的数是-,故选:C.根据负数都小于0,负数都小于正数,得出-和-1小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.实数的大小比较法则是:正数都大于0,负数都小于0,负数都小于正数,两个负数比较大小,其绝对值大的反而小.2.【答案】C【解析】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、(-a)3=-a3,故此选项错误;C、a6÷a2=a4,故此选项正确;D、(a2b)3=a6b3,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、完全平方公式分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念解答.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】A【解析】【分析】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A.5.【答案】D【解析】解:∵反比例函数y=中k=2>0,∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,∵0<x l<x2,∴点A(x1,y1),B(x2,y2)均在第一象限,∴0<y2<y l.故选:D.先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解答此题的关键.6.【答案】D【解析】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),故选:D.首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程此题主要考查了由实际问题抽象出一元一次方程,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.7.【答案】B【解析】解:∵方程有两个不相等的实数根,a=1,b=-3,c=m,∴△=b2-4ac=(-3)2-4×1×m>0,解得m<.故选:B.若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m的取值范围.本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.【答案】C【解析】解:如图所示:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴≠,∴答案A错舍去;又∵EF∥AB,∴∠CEF=∠A,∠CFE=∠B,∴△CEF∽△CAB,∴≠,∴答案D错舍去;又∵四边形BDEF是平行四边形,∴∴答案B舍去∠ADE=∠B,∠CFE=∠B,∴∠ADE=∠CFE,又∵∠AED=∠C,∴△ADE~△EFC,∴,故选:C.由两直线平行,得到两对同位角相等,证明△ADE∽△ABC,△CEF∽△CAB;由等代换可证明△ADE~△EFC,最后由相似三角形的性质判断四个答案的正误.本题考查了平行线的性质,相似三角形的判定与性质,平行四边形的判定与性质等知识点,重点掌握三角形相似的判定与性质,易错点学生不会找两个相似三角形对应边的比相等.9.【答案】A【解析】解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=BC=3,∵∠BAC=120°,AB=AC,∴∠B=30°,∴AB==2,由翻折变换的性质可知,DB=DA=,∴DE=BD•tan30°=1,故选:A.作AH⊥BC于H,根据等腰三角形的性质求出BH,根据翻折变换的性质求出BD,根据正切的定义解答即可.本题考查的是翻折变换的性质、勾股定理的应用,翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.【答案】C【解析】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60-20)=1km/min,故②正确,a=1×(35-20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40-15)÷0.5-(40-15)÷1=25分钟才能达到景点入口,故④错误,故选:C.根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】6.7×106【解析】解:6 700000=6.7×106,故答案为:6.7×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠-2【解析】解:根据题意,有x+2≠0,解可得x≠-2;故自变量x的取值范围是x≠-2.故答案为x≠-2.根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+2≠0,解可得自变量x的取值范围.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.【答案】m(n-3)2【解析】解:原式=m(n2-6n+9)=m(n-3)2,故答案为:m(n-3)2原式提取m,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】【解析】解:原式=2-3×=2-=.故答案为:.原式各项化为最简二次根式,合并即可得到结果.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.15.【答案】2π【解析】解:∵扇形的圆心角为120°,半径为3,∴扇形的弧长是:=2π.故答案为2π.直接利用弧长公式l=求解即可.本题主要考查了弧长公式的应用,熟练记忆弧长公式是解题关键.16.【答案】3【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB•sin∠BAC=6×=3,由题意得,∠C=45°,∴BC==3÷=3(千米),故答案为:3.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.17.【答案】32°【解析】解:∵OC⊥AB,∴=,∴∠ADC=∠BOC,∵∠B=26°,∴∠BOC=90°-26°=64°,∴∠ADC=×64°=32°,故答案为32°.由OC⊥AB,推出=,可得∠ADC=∠BOC,求出∠BOC即可解决问题.本题考查圆周角定理,垂径定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】7或9【解析】解:在Rt△ABD中,∠ABC=30°,∴BD=2AD,由勾股定理得,BD2=AD2+AB2,即BD2=(BD)2+(4)2,解得,BD=8,当点D在线段BC上时,BC=BD+CD=9,当点D在线段BC′的延长线上时,BC=BD-CD=7,故答案为:7或9.根据直角三角形的性质得到BD=2AD,根据勾股定理求出BD,分两种情况计算即可.本题考查的是直角三角形的性质、勾股定理,在直角三角形中,30°角所对的直角边等于斜边的一半.19.【答案】【解析】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为;故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】6【解析】解:∵四边形ABCD是矩形,∴AB=CD,∵CF=CD,∴AB=CF,过B作BG⊥AE于G,过C作CH⊥AE于H,∴∠AGB=∠FHC=90°,在△ABG与△FCH中,,∴△ABG≌△FCH(AAS),∴AG=FH,BG=CH,∴AF=GH=4,在△EBG与△ECH中,,∴△EBG≌△ECH(AAS),∴GE=HE=2,BE=CE,∵AB:BC=3:2,∴设AB=CF=3x,BC=2x,∴BE=CE=x,∴AE==x,∵∠ABC=90°,BG⊥AE,∴BE2=EG•AE,∴AE==,∴x=,∴x=2,x=0(不合题意舍去),∴CF=3x=6,故答案为:6.根据矩形的性质得到AB=CD,过B作BG⊥AE于G,过C作CH⊥AE于H,根据全等三角形的性质得到AG=FH,BG=CH,求得AF=GH=4,根据全等三角形的性质得到GE=HE=2,BE=CE,设AB=CF=3x,BC=2x,根据勾股定理得到AE==x,列方程即可得到结论.本题考查了矩形的性质,全等三角形的判定和性质,射影定理,勾股定理,正确的作出辅助线是解题的关键.21.【答案】解:原式=÷===当x=4cos60°+3tan30°=4×+3×=2+时,原式===【解析】先化简分式,然后将x=4cos60°+3tan30°化简代入求值.本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.22.【答案】解:(1)如图所示,Rt△BAC即为所求;(2)如图所示,△DEF和△BDC即为所求;∠DBC的正切值=5.【解析】(1)根据题意作出图形即可;(2)根据题意作出图形即可本题是三角形的作图题,考查了等腰直角三角形的性质和判定及勾股定理及其逆定理的运用,并按条件作出三角形;本题的关键是熟练掌握勾股定理及其逆定理.23.【答案】(1)被抽查的社区医院的患者人数:240÷40%=600(人).所以该市卫生局共抽查了社区医院的患者600人.随访7次的人数:600-(240+120+150+30)=60(人),补全统计图如图所示:(2)4次,5次;(3)60000×=9000(人).答:估计“随访的次数不少于7次”社区医院的患者有9000人.【解析】解:(1)见答案;(2)社区医院一年来对患者随访的次数中4次的人数最多,所以众数是4次,600个数据中,按照随访的次数从少到多排列,第300和301个数据都是5次,所以中位数是5次;故答案为:4次,5次;(3)见答案.【分析】(1)根据随访4次的有240人,所占百分比为40%,可得共抽查了社区医院的患者人数;再用被抽查的患者人数减去其余4个组的人数求出随访7次的人数,补全条形统计图即可;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以“随访的次数不少于7次”的百分比,计算即可得解.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.24.【答案】证明(1)∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)△ABF,△AEF,△DEF,△DCF理由如下:∵BC∥AD∴△BFC∽△DFA∴=∴,FD=2BF∴S△ABF=S△ABC,∵FD=2BF∴S△AFD=2S△ABF,且点E是AD中点∴S△AEF=S△EFD=S△ABF=S△ABC,∵四边形BEDC是菱形,∴ED=CD,∠BDE=∠BDC,且DF=DF∴△DEF≌△DCF(SAS)∴S△DCF=S△DEF=S△ABF=S△ABC,【解析】(1)由题意可得DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)由题意可证△BFC∽△DFA,由相似三角形的性质可得,FD=2BF,由三角形的中线性质和菱形性质可求解.本题考查菱形的判定和性质、直角三角形斜边中线的性质,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.25.【答案】解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据题意,得=.解得x=10.经检验x =10是原方程的解.当x=10时,x+8=18.答:去年购买的文学书的单价是10元,科普书的单价是18元;(2)设这所学校今年要购买y本科普书,根据题意,得10×(1+20%)(200-y-y)+18y≤2088解得y≥52答:这所学校今年至少要购买52本科普书.【解析】(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用1800元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.26.【答案】解:(1)如图1,连接OE和OF∵AC是⊙O的切线∴OE⊥AC,∴∠OEG=90°∵FG⊥AC,∴∠FGE=90°∵AB=AC,∴∠ABC=∠ACB∵OB=OF,∴∠OBF=∠OFB∴∠OFB=∠ACB,∴OF∥AC∴∠OFG+∠FGE=180°,∴∠OFG=90°∴∠OFG=∠FGE=∠OEG=90°∴四边形OFGE为矩形∵OF=OE,∴四边形OFGE为正方形∴GE=GF(2)如图2,连接OE,BE∵BD是⊙O的直径,∴∠BED=90°∴∠OED+∠OEB=90°∵∠OEG=90°,∴∠AED+∠OED=90°∵∠OEG=90°,∴∠AED+∠OED=90°∴∠OEB=∠AED∵OB=OE,∴∠OBE=∠OEB∴∠OBE=∠AED∴∠AOE=2∠OEB=2∠AED∵∠GFC=2∠AED∴∠AOE=∠GFC∵∠C+∠GFC=90°,∠A+∠AOE=90°∴∠C=∠A∴BA=BC,∵AB=AC∴AB=AC=BC∴△ABC为等边三角形(3)∵△ABC为等边三角形∴∠CAH=∠ABK=60°∵AH=BK,AC=AB,∴△CAH≌△ABK(SAS)∴∠ACH=∠BAK∵∠KMC=∠KAC+∠ACM∴∠KMC=∠KAC+∠BAK=60°过点C作CQ⊥AK,垂足为Q,过点B作BT⊥CH,垂足为T ∴∠AQC=∠CTB=90°∵∠QAC=∠BAC-∠BAK=60°,∠TCB=∠ACB-∠ACH=60°-∠ACH ∴∠QAC=∠TCB,∵AC=BC∴△AQC≌△CTB(AAS)∴QC=BT在Rt△MQC中,∵CM=4,∠QMC=60°,sin∠QMC=∴QC=6设∠BAK=2α=∠ACH∵∠PNC-∠BAK=60°,∴∠PNC=60°+α=∠BNH∴∠BCH=∠ACB-∠ACH=60°-2α延长NH到点R,使RT=TN,连接BR∴BT使RN的垂直平分线∴BR=BN∴∠BNR=∠BRN=60°+α∴∠CBR=180°-∠BCR-∠CRB=60°+α∴∠CBR=∠CRB=60°+α∴BC=RC设TN=RT=a,∵CN=6∴CT=a+6,CR=CB=2a+6∵CQ=BT=6在Rt△BTC中BT2+TC2=BC2∴62+(a+6)2=(2a+6)2∴a1=-6(舍),a2=2∴TN=2∴BC=10【解析】(1)由切线的定义得到直角条件,由半径相等可证OFGE为正方形.(2)由圆周角定理可得直角条件,由2倍角关系可得60°条件,从而获得等百年三角形证明.(3)结合(2)的结论和条件中角的关系,需要设置角参数,标识图形从而发现BC=BR,用勾股定理建立方程关系,求解方程即可.本题考查了圆的基本性质和定理,等边三角形的性质,矩形和正方形的性质与判定,综合度较高,对图形的性质考查比较全面.27.【答案】解:(1)如图1,令y=0,则ax2-2ax-3a=0,解得:x1=-1,x2=3,∴A(-1,0),B(3,0),OA=1,∵tan∠ACO=,∴OC=3,即C(0,-3),令x=0,y=-3a=-3,∴a=1(2)如图2,延长DE交x轴于R,∵OC=OB=3,∴∠OCB=∠OBC=45°,∵DR∥y轴,∴∠DER=∠OCB=45°,∴∠RBE=∠REB=45°,∴RB=RE,∵AE=BD,∴Rt△ARE≌Rt△DRB,∴AR=DR,设D(t,t2-2t-3),AR=t+1,∴t+1=t2-2t-3DR=t2-2t-3,解得:t1=4,t2=-1(舍去),∴D(4,5).(3)如图3,过点G、P分别作x轴的垂线,垂足分别为K、H,∵AR=DR=5,∴∠RAD=45°,∵NG⊥AD,∴∠AQN=90°,∴∠QAN=∠QNA=45°,∵∠GKN=90°,∴∠KGN=∠KNG=45°,∴GK=KN,∵∠PHN=90°,∴∠HPN=∠HNP=45°,∴HP=HN,∵∠MPN-∠MOG=45°,∴∠MPH=∠MOG,∴∠MPH+∠HPN-∠MOG=45°,∵MP=OG,∠MHP=∠GKO=90°,∴△MHP≌△GKO,∴MH=GK,PH=KO,∵KN=GK,∴MH=KN,∴MK=HN=PH=KO,设点P(m,m2-2m-3),∵MN=MK+KO+OH+HN,∴=m2-2m-3+m2-2m-3+m+m2-2m-3,整理得:12m2-20m-77=0,解得:m1=,m2=(舍去),∴P(,),ON=OH+HN=,AN=AO+ON=,在等腰直角三角形AQN中,由勾股定理可得QA=QN=,过点A作AT⊥QS,垂足为T,过点N作NZ⊥QS,垂足为Z,∵∠QAT+∠AQT=90°,∠NQZ+∠AQT=90°,∴∠QAT=∠NQZ,∵∠ATQ=∠QZN=90°,AQ=NQ,∴△ATQ≌△QZN(AAS),∴QT=ZN,AT=QZ,∵AQ=AS,AT⊥QS,∴QT=ST,即QT=ZN=ST=QS,∵QS=SN,∴2NZ═SN,sin∠ZSN==,∴∠ZSN=∠ZNS=45°,∴ZN=ZS,∴ZN=ZS=TS=TQ=AT,在Rt△ATQ中,由勾股定理可得QT=∴QS=2QT=.【解析】(1)由ax2-2ax-3a=0,可得到A(-1,0),B(3,0),OA=1,再根据条件tan∠ACO=可求得C(0,-3),即可求出a的值;(2)构造全等三角形Rt△ARE≌Rt△DRB,∴AR=DR,建立方程求解;(3)过点G、P分别作x轴的垂线,垂足分别为K、H,构造全等三角形△MHP≌△GKO,利用特殊角45°构造等腰直角三角形,从而证得MK=HN=PH=KO,设点P(m,m2-2m-3),根据题目条件建立方程=m2-2m-3+m2-2m-3+m+m2-2m-3,可求得P(,);过点A作AT⊥QS,垂足为T,过点N作NZ⊥QS,垂足为Z,构造全等三角形△ATQ≌△QZN,运用勾股定理可求出QS.本题考查了待定系数法求抛物线解析式,运用三角函数解直角三角形及勾股定理,全等三角形性质与判定等,关键要善于利用题目中条件构造直角三角形,运用勾股定理和解直角三角形知识解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省哈尔滨市道外区中考数学二模试卷一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×1032.下列运算中,正确的是()A. +2=3B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x33.如图中几何体的主视图是()A. B.C. D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.46.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A.B.C.D.7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=360 8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB. C.2πD.3π10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B 地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个二、填空题:每小题3分,共30分11.计算:|﹣2|=.12.函数的自变量x的取值范围是.13.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,若∠EOD=58°,则∠AOC的度数为度.14.计算:=.15.不等式组的解集是.16.把多项式3a2﹣27分解因式的结果是.17.如图,在▱ABCD中,点E在BC上,AE交BD于点F,如果=,那么=.18.在一个不透明的袋子中,装有五个除数字外其它完全相同的小球,球面上分别标有1、2、3、4、5这5个数字,搅匀后,在看不到球的条件下,从中任摸一个球,球面数字是偶数的概率是.19.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.20.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为.三、解答题:共计60分21.先化简,再求代数式的值,其中a=6tan30°﹣2.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);(2)在图2中画出△DEF,使它的三边长分别为、2、5(画一个即可).并且直接写出此时三角形DEF的面积.23.植树节期间,某校全体师生组成400个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为5至8棵,活动结束后,校方随机抽查了部分小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)求扇形统计图中,植树量为“7棵树”的圆心角的度数是多少度?(2)求抽样调查的小组中植树量为“6棵树”的小组数,并补全条形图;(3)通过计算,请你估计全校师生此次活动共种树多少棵?24.在正方形ABCD中,点E在CD边上,AE的垂直平分线分别交AD、CB于F、G两点,垂足为点H.(1)如图1,求证:AE=FG;(2)如图2,若AB=9,DE=3,求HG的长.25.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).阶梯一户居民每月用电量x(单位:度)电费价格(单位:元/度)一档0<x≤180a二档180<x≤280b三档x>2800.82(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?26.已知,AB为⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB,垂足为点D,过点C作⊙O的切线交AB的延长线于点E.(1)如图1,求证:CB平分∠DCE;(2)如图2,点F在⊙O上,连接OC,∠ECF=2∠OCB,求证:CF=2CD;(3)如图3,在(2)的条件下,连接AF,若AF=3,CD=3,求BE的长.27.如图,抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A左B右),交y轴于点C,过点B的直线y=x+b交y轴于点D.(1)求点D的坐标;(2)把直线BD沿x轴翻折,交抛物线第二象限图象上一点E,过点E作x轴垂线,垂足为点F,求AF的长;(3)在(2)的条件下,点P为抛物线上一点,若四边形BDEP为平行四边形,求m的值及点P的坐标.黑龙江省哈尔滨市道外区中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28600=2.86×104,故选:B.2.下列运算中,正确的是()A. +2=3B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;二次根式的加减法.【分析】根据二次根式的加减法的法则,除法法则,积的乘方、运算法则,同底数的幂的运算法则计算即可.【解答】解:A、+2,不是同类二次根式不能合并,故错误;B、15x3﹣7x3=8x3,故正确;C、(﹣xy)2=x2y2,故错误;D、x6÷x2=x4,故错误.故选B.3.如图中几何体的主视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:如图中几何体的主视图是.故选:D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】直接把各点坐标代入反比例函数的解析式,再求出其差即可.【解答】解:∵反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),∴y1=﹣=4,y2=﹣=1,∴y1﹣y2=4﹣1=3.故选A.5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.4【考点】旋转对称图形.【分析】根据旋转对称图形的定义对四个图形进行分析即可.【解答】解:旋转对称图形是从左起第(1),(2),(4);不是旋转对称图形的是(3).故选:C.6.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A.B.C.D.【考点】等腰三角形的性质;解直角三角形.【分析】作出辅助线AD⊥BC,构造出直角三角形,用面积求出AD,最后用三角函数的定义即可.【解答】解:如图,作AD⊥BC,=20,∵BC=8,S△ABC=×BC×AD=×8×AD=20,∴S△ABC∴AD=5,∵AB=AC,AD⊥BC,∴∠ADB=90°,BD=BC=4,∴tanB==,故选A7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=360【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是640(1﹣x),第二次后的价格是640(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:640(1﹣x)2=360,故选:B.8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°【考点】翻折变换(折叠问题).【分析】根据折叠前后对应角相等可知.【解答】解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选B.9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB. C.2πD.3π【考点】弧长的计算.【分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【解答】解:如图,连接OA、OB.∵∠ACB=30°,∴∠AOB=60°,∵OA=9,∴的长是:=3π.故选:D.10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B 地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个【考点】一次函数的应用.【分析】①运用乙工程队4天修的长度除以时间就可以求出乙工程队每天修的米数;②运用甲工程队4天修的长度除以时间就可以求出甲工程队每天修的米数;③根据图象得出甲比乙多工作的天数;④根据甲和乙的修路总米数得出A、B两地之间的公路总长即可.【解答】解:①乙工程队每天修公路=240米,错误;②甲工程队每天修公路=120米,正确;③甲比乙多工作10﹣4=6天,正确;④A、B两地之间的公路总长是960+120×10=2160米,错误;故选C二、填空题:每小题3分,共30分11.计算:|﹣2|=2.【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.12.函数的自变量x的取值范围是x≤6.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方式不能是负数.据此求解.【解答】解:根据题意得6﹣x≥0,解得x≤6.13.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,若∠EOD=58°,则∠AOC的度数为32度.【考点】垂线;对顶角、邻补角.【分析】先根据垂线求得∠AOE的度数,再根据∠AOC=180°﹣∠AOE﹣∠EOD,进行计算即可.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠EOD=58°,∴∠AOC=180°﹣∠AOE﹣∠EOD=180°﹣90°﹣58°=32°.故答案为:3214.计算:=.【考点】分母有理化.【分析】运用二次根式的乘法法则,将分子的二次根式化为积的形式,约分,比较简便.【解答】解:原式==.故答案为:.15.不等式组的解集是x≥2.【考点】解一元一次不等式组.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.【解答】解:解不等式①,得x>1,解不等式②,得x≥2,由不等式①②,得原不等式组的解集是x≥2,故答案为:x≥2.16.把多项式3a2﹣27分解因式的结果是a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】先提出公因式3,再利用平方差公式进行因式分解.【解答】解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).17.如图,在▱ABCD中,点E在BC上,AE交BD于点F,如果=,那么=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由在▱ABCD中,且BE:EC=3:2,易得BE:AD=3:5,△ADF∽△EBF,然后根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵BE:EC=3:2,∴BE:BC=3:5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE:AD=3:5,△ADF∽△EBF,∴.故答案为:.18.在一个不透明的袋子中,装有五个除数字外其它完全相同的小球,球面上分别标有1、2、3、4、5这5个数字,搅匀后,在看不到球的条件下,从中任摸一个球,球面数字是偶数的概率是.【考点】概率公式.【分析】让袋中偶数的个数除以数的总个数即为所求的概率.【解答】解:∵共有5个数字,这5个数字中是偶数的有:2、4共2个,∴从中任摸一个球,球面数字是偶数的概率是.故答案为.19.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为10或90.【考点】勾股定理;等腰三角形的性质.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图.如图1,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=1.∴BC2=12+32=10.如图2,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=9,∴BC2=92+32=90.故答案是:10或90.20.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为6.【考点】相似三角形的判定与性质;等腰直角三角形.【分析】过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据相似三角形的性质和含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.【解答】解:过A点作A⊥BD于F,∵∠DBC=90°,∴AF∥BC,∵CE=2AE,∴AF=BC,∵∠ABD=30°,∴AF=AB,∴BC=AB,∵∠ABD=30°,∠ADB=75°,∴∠BAD=75°,∠ACB=30°,∴∠ADB=∠BAD,∴BD=AB,∴BC=BD,∵CE=4,在Rt△CBE中,BC=CE=6,在Rt△CBD中,CD=BC=6.故答案为:6.三、解答题:共计60分21.先化简,再求代数式的值,其中a=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出a的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=6×﹣2=2﹣2时,原式===.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);(2)在图2中画出△DEF,使它的三边长分别为、2、5(画一个即可).并且直接写出此时三角形DEF的面积.【考点】勾股定理.【分析】(1)根据三角形的面积公式,画出长3高4的钝角△ABC即可求解;(2)的线段是两直角边为1,2的直角三角形的斜边;2的线段是两直角边为2,4的直角三角形的斜边;依此画出三边长分别为、2、5的三角形DEF,再根据三角形的面积公式计算即可求解.【解答】解:(1)如图所示:(2)如图所示:三角形DEF的面积:×2÷2=5答:三角形DEF的面积是5.23.植树节期间,某校全体师生组成400个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为5至8棵,活动结束后,校方随机抽查了部分小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)求扇形统计图中,植树量为“7棵树”的圆心角的度数是多少度?(2)求抽样调查的小组中植树量为“6棵树”的小组数,并补全条形图;(3)通过计算,请你估计全校师生此次活动共种树多少棵?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其余三类别百分比求得植树量为“7棵树”的组数所占百分比,再乘以360°可得答案;(2)用植树量为“5棵树”的组数÷其所占百分比可得被调查组数,用被调查组数乘以植树量为“6棵树”的百分比可得;(3)计算出被调查的50个小组的植树平均数,再乘以总组数400可得.【解答】解:(1)(1﹣16%﹣36%﹣28%)×360°=72°答:植树量为“7棵树”圆心角的度数是72°;(2)抽样调查的小组中植树量为“6棵树”的小组数为:16%×=8(组),补全条形图如图:(3)×400=2560(棵)答:估计全校师生此次活动共种植2560棵树.24.在正方形ABCD中,点E在CD边上,AE的垂直平分线分别交AD、CB于F、G两点,垂足为点H.(1)如图1,求证:AE=FG;(2)如图2,若AB=9,DE=3,求HG的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)过D点作DN∥FG交BC于点N,交AE于点M,证出四边形FGND是平行四边形,得出DN=FG,由ASA证明△DNC≌△AED,得出DN=AE,即可得出结论;(2)在Rt△ADE中,由勾股定理求出AE=3,由三角函数得出tan∠DAE==,再由三角函数求出FH=AH=,即可得出结果.【解答】(1)证明:过D点作DN∥FG交BC于点N,交AE于点M在正方形ABCD中,AD∥BC,AD=DC,∠ADC=∠C=90°,则四边形FGND是平行四边形,∴DN=FG,∵FG 垂直平分AE,∴∠FHA=90°∵DN∥FG ,∴∠DMA=∠FHA=90°,∴∠NDE+∠AED=90°,又∵∠DAE+∠AED=90°,∴∠NDE=∠DAE,在△DNC和△AED中,,∴△DNC≌△AED(ASA),∴DN=AE,∴AE=FG;(2)解:在正方形ABCD中,∠D=90°,AD=9,DE=3在Rt△ADE中,AE===3,tan∠DAE===,∴在Rt△AHF中,tan∠FAH==,点H为AE中点,AH=HE=AE=,∴FH=AH=,∴HG=FG﹣FH=3﹣=.25.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).阶梯一户居民每月用电量x(单位:度)电费价格(单位:元/度)一档0<x≤180a二档180<x≤280b三档x>2800.82(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据各档的电费价格和所用的电数以及所缴纳电费,列出方程组,进行求解即可;(2)根据题意先判断出小华家所用的电所在的档,再设小华家六月份用电量为m度,根据价格表列出不等式,求出m的值即可.【解答】解:(1)由题意得:,解得:,答:a的值是0.52,b的值是0.57;(2)∵当小华家用电量x=280时,180×0.52+×0.57=150.6<208,∴小华家用电量超过280度.设小华家六月份用电量为m度,根据题意得:0.52×180+×0.57+(m﹣280)×0.82≤208,解得:m≤350答:小华家六月份最多可用电350度.26.已知,AB为⊙O的直径,点C为⊙O上一点,过点C作CD⊥AB,垂足为点D,过点C作⊙O的切线交AB的延长线于点E.(1)如图1,求证:CB平分∠DCE;(2)如图2,点F在⊙O上,连接OC,∠ECF=2∠OCB,求证:CF=2CD;(3)如图3,在(2)的条件下,连接AF,若AF=3,CD=3,求BE的长.【考点】圆的综合题.【分析】(1)先判断出∠OCB+∠BCE=90°,再判断出∠OCB=∠OBC,即可;(2)先判断出CF=2CH,然后证明△CHO≌△CDO,最后得到CB平分∠DCE,即可;(3)先依次判定△CMA≌△CNA,Rt△CMF≌Rt△CNG,再根据勾股定理(2a+3)2﹣(a+3)2=(6)2﹣a2,求出a,最后用(6﹣r)2+(3)2=r2,求出r.【解答】(1)证明:如图(1),连接OC,∵CE与⊙O相切,OC是半径,∴OC⊥CE,∴∠OCE=90°,∴∠OCB+∠BCE=90°,∵CD⊥AB,∴∠CDB=90°∴∠DCB+∠DBC=90°,∵OC=OB,∴∠OCB=∠OBC∴∠DCB=∠BCE,∴CB平分∠DCE,(2)证明:如图(2),过O作OH⊥CF于H,∵OH过圆心,∴CF=2CH由(1)可知:CB平分∠DCE,∴∠DCE=2∠DCB,∵∠ECF=2∠OCB,∴∠FCD=2∠OCD,∴∠FCO=∠OCD,∵∠CDO=∠CHO=90° OC=OC,∴△CHO≌△CDO∴CH=CD,∴CF=2CD,(3)如图(3),延长CD交⊙O于G,分别连接AG、AC,过C作CM⊥AF于M,过C作CN⊥AG于N.∵CD⊥AB AB是直径,∴CG=2CD由(2)可知CF=2CD,∴CG=CF∴∠CAG=∠CAF;∴AC平分∠FAG∵M⊥AF CN⊥AG,∴CM=CN,∠CMA=∠CNA=90°∴△CMA≌△CNA,∴AM=AN,∵CM=CN CF=CG,∴Rt△CMF≌Rt△CNG,∴MF=NG,设MF=a 则NG=a,∵AF=3,∴MA=a+3,∴AN=a+3,∴AG=2a+3,∵CD⊥AB CD=GD∴AD垂直平分CG,∴CA=GA=2a+3在Rt△CMA中,CM2=CA2﹣AM2=(2a+3)2﹣(a+3)2在Rt△CMF中,CM2=CF2﹣MF2=(6)2﹣a2∴(2a+3)2﹣(a+3)2=(6)2﹣a2∴a1=﹣(舍),a2=6∴AM=9,AC=AG=15,∴AD==6设⊙O的半径为r,在Rt△CDO中,(6﹣r)2+(3)2=r2,∴r=,∴OD=,∴cos∠COD==,在Rt△COE中cos∠COD==,∴OE=,∴BE=.27.如图,抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A左B右),交y轴于点C,过点B的直线y=x+b交y轴于点D.(1)求点D的坐标;(2)把直线BD沿x轴翻折,交抛物线第二象限图象上一点E,过点E作x轴垂线,垂足为点F,求AF的长;(3)在(2)的条件下,点P为抛物线上一点,若四边形BDEP为平行四边形,求m的值及点P的坐标.【考点】二次函数综合题.【分析】(1)由点的直线上,点的坐标符合函数解析式,代入即可;(2)先求出OB,OD再利用锐角三角函数求出BF=2EF,由它建立方程4﹣t=2×[﹣(t+m)(t﹣4)],求解即可;(3)先判断出△PEQ≌△DBO,表示出点P(t+4,﹣(t+m)(t﹣4))+2),再利用它在抛物线y=﹣(t+m)(t﹣4)上求解.【解答】解:(1)∵抛物线y=﹣(x+m)(x﹣4)(m>0)交x轴于点A、B(A左B右)当y=0时,0=﹣(x+m)(x﹣4),∴x1=﹣m,x2=4∴A(﹣m,0),B(4,0)∵点B在直线y=x+b上,∴4×+b=0,b=﹣2∴直线y=x﹣2,当x=0时y=﹣2∴D(0,﹣2),(2)设E(t,﹣(t+m)(t﹣4)),∵EF⊥x轴,∴∠EFO=90°EF∥y轴,∴F(t,0),由(1)可知D(0,﹣2)B(4,0),∴OD=2 OB=4,∴在Rt△BDO中,tan∠DBO==,∵直线BD沿x轴翻折得到BE,∴∠DBO=∠EBF,∴tan∠DBO=tan∠EBF,∴tan∠EBF=,∴=,∴BF=2EF,∴EF=﹣(t+m)(t﹣4)BF=4﹣t∴4﹣t=2×[﹣(t+m)(t﹣4)]∴t+m=1,∴AF=t﹣(﹣m)=t+m=1,∴AF=1,(3)如图,过点E作x轴的平行线,过点P作y轴的平行线交于点Q 设EP交y轴于点M∵四边形BDEP是平行四边形∴EP∥DB EP=DB∵EP∥DB PQ∥y轴,∴∠EMD=∠ODB∠EMD=∠EPQ,∴∠ODB=∠EPQ,∵∠PQE=∠DOB=90° EP=BD,∴△PEQ≌△DBO,∴PQ=OD=2 EQ=OB=4,∵E(t,﹣(t+m)(t﹣4)),∴P(t+4,﹣(t+m)(t﹣4)+2),∵P(t+4,﹣(t+m)(t﹣4))+2)在抛物线y=﹣(t+m)(t﹣4)上∴﹣(t+4+m)(t+4﹣4)=﹣(t+m)(t﹣4)+2∵t+m=1,∴t=﹣2,∵t+m=1,∴m=3,∴﹣(t+m)(t﹣4)+2=5,∴P(2,5)。

相关文档
最新文档