黑龙江省鸡西市中考数学试题及答案

合集下载

2020年黑龙江牡丹江、鸡西中考数学试卷及答案

2020年黑龙江牡丹江、鸡西中考数学试卷及答案

2020年黑龙江牡丹江、鸡西中考数学试卷及答案一、选择题(每小题 3分,共 36分。

)1、下列图形中,既是轴对称图形,又是中心对称图形的个数有 ( )2、下列运算正确的是( )A. (a +b )(a -2b )=a 2-2b 2B. 41)21(22-=-a aC. -2(3a -1)=-6a +1D. (a +3)(a -3)=a 2-93、如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是 ( )4、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 ( )A .31B .94 C.53 D.32 5、一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是 ( ) A .528 B .532或5 C .528或532 D .56、如图,在△ABC 中,sinB=31, tanC=2,AB=3,则AC 的长为 ( )A .2B .25 C .5D .27、如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则∠ASB 的度数是 ( ) A .22.5º B .30º C .45ºD .60ºA.1个B.2个C.3个D.4个1 2 11A B C DABC(第6题图)A BS(第7题图)8、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A. 3B .3,-3C .3D .3,-39、如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为 (2,23),将菱形绕点O 旋转,当点A 落在x 轴上时, 点C 的对应点的坐标为 ( ) A .(2,23)--或(23,2)- B .(2,23) C .(2,23)-D .(2,23)--或(2,23)10、若关于x 的分式方程xmx =-12有正整数解,则整数m 的值是( ) A. 3B. 5C. 3或5D. 3或411、如图,A ,B 是双曲线xky =上的两个点,过点A 作 AC ⊥x 轴,交OB 于点D ,垂足为C ,若△ODC 的面 积为1,D 为OB 的中点,则k 的值为 ( ) A.43 B .2 C .4 D .812、如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为12x =,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0; ④若15()2y -,,25()2y ,是抛物线上的两点,则y 1<y 2;⑤41b>m (am+b ) (其中m ≠21). 其中说法正确的是( ) A. ①②④⑤ B. ①②④ C. ①④⑤ D. ③④⑤二、选择题:(每小题3分,共24分。

鸡西市重点中学2024届中考联考数学试题含解析

鸡西市重点中学2024届中考联考数学试题含解析

鸡西市重点中学2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.(2011•黑河)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,现有下列结论:①b 2﹣4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是( )A 、2个B 、3个C 、4个D 、5个2.﹣2018的绝对值是( )A .±2018B .﹣2018C .﹣12018D .2018 3.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 4.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人6.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx -k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.48.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+319.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C .D .10.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣2二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:24xy x -=____12.分解因式:3x 2-6x+3=__.13.如图,在直角三角形ABC 中,∠ACB=90°,CA=4,点P 是半圆弧AC 的中点,连接BP ,线段即把图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.14.化简:18=_____. 15.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.16.已知二次函数f(x)=x 2-3x+1,那么f(2)=_________.三、解答题(共8题,共72分)17.(8分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?18.(8分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0). 求该抛物线的解析式;求梯形COBD 的面积.19.(8分)先化简,再求值:(1+211x -)÷2221x x x ++,其中x=2+1. 20.(8分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围. 21.(8分)如图,AC 是O 的直径,点B 是O 内一点,且BA BC =,连结BO 并延长线交O 于点D ,过点C 作O 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O 的直径长8,4sin BCE 5∠=,求BE 的长.22.(10分)如图,四边形AOBC 是正方形,点C 的坐标是(2,0).正方形AOBC 的边长为 ,点A 的坐标是 .将正方形AOBC 绕点O 顺时针旋转45°,点A ,B ,C 旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).23.(12分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.24.如图,已知AB是⊙O的弦,C是AB的中点,AB=8,AC= 25,求⊙O半径的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;=1,③又对称轴x=-b2a∴b<0,2a∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.2、D【解题分析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.-=.详解:﹣2018的绝对值是2018,即20182018故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.3、B【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.4、C【解题分析】 直接利用位似图形的性质得出对应点坐标乘以12得出即可. 【题目详解】解:∵线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点的坐标为:(2,2),(3,1).故选C .【题目点拨】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.5、C【解题分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【题目详解】 400×2201216102=+++人. 故选C .【题目点拨】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.6、B【解题分析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.7、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA 证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确.【题目详解】∵CE ⊥AB ,∠ACE=45°,∴△ACE 是等腰直角三角形,∵AF=CF ,∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形,∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC ,∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°,∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确,∵AB=AC ,AD ⊥BC ,∴BD=DC ,∴S △ABC =2S △ADC ,∵AF=FC ,∴S △ADC =2S △ADF ,∴S △ABC =4S △ADF .故选C .【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8、C【解题分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为1 2 n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【题目详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【题目点拨】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9、A【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10、C【解题分析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.二、填空题(本大题共6个小题,每小题3分,共18分)11、x(y+2)(y-2)【解题分析】原式提取x ,再利用平方差公式分解即可.【题目详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、3(x-1)2【解题分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【题目详解】()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【题目点拨】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、4【解题分析】连接OP OB 、,把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为BOP △的面积的2倍.【题目详解】解:连接OP 、OB ,∵图形BAP 的面积=△AOB 的面积+△BOP 的面积+扇形OAP 的面积,图形BCP 的面积=△BOC 的面积+扇形OCP 的面积−△BOP 的面积,又∵点P 是半圆弧AC 的中点,OA =OC ,∴扇形OAP 的面积=扇形OCP 的面积,△AOB 的面积=△BOC 的面积,∴两部分面积之差的绝对值是2 4.BOP S OP OC =⋅=点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.14、24 【解题分析】 直接利用二次根式的性质化简求出答案. 【题目详解】111284822===,故答案为24. 【题目点拨】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.15、33【解题分析】 如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×42=43,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN =3,由此即可解决问题. 【题目详解】解:如图,连接BD .∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC 3423 ∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC ,∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN,∴S 阴故答案为【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、-1【解题分析】根据二次函数的性质将x=2代入二次函数解析式中即可.【题目详解】f(x)=x 2-3x+1∴ f(2)= 22-3⨯2+1=-1.故答案为-1.【题目点拨】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题(共8题,共72分)17、(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解题分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【题目详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【题目点拨】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.18、(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解题分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【题目详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形.19、11x x +-, 【解题分析】运用公式化简,再代入求值.【题目详解】原式=2222211(1) ()?11x xx x x-++--=222(1)•(1)(1)x xx x x+ -+=11xx+-,当+1时,原式1=+【题目点拨】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.20、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解题分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【题目详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【题目点拨】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.21、(1)证明见解析;(2)25BE 6=. 【解题分析】 ()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【题目详解】()1证明:BA BC =,AO CO =, BD AC ∴⊥,CE 是O 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=.BC 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE =,15BF BC 22∴==, 在Rt BEF 中,EF 4sin 3sin 1BE 5∠∠===设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE =. 【题目点拨】 本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.22、(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =. 【解题分析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积; (2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【题目详解】解:(1)连接AB ,与OC 交于点D ,四边形AOBC 是正方形,∴△OCA 为等腰Rt △,∴AD=OD=12OC=22, ∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴ AOB 90∠=,AOC 45∠=.∵ 将正方形AOBC 绕点O 顺时针旋转45,∴ 点A '落在x 轴上.∴OA OA 4'==.∴ 点A '的坐标为()4,0.∵ OC =∴ A C OC OA 4=-=''.∵ 四边形OACB ,OA C B '''是正方形,∴ OA C 90∠''=,ACB 90∠=.∴ CA E 90∠'=,OCB 45∠=.∴ A EC OCB 45∠∠=='.∴ A E A C 4==''. ∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 42422'=⋅==-''∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 (82416--=.∴旋转后的正方形与原正方形的重叠部分的面积为16.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时,∵POQ 90∠=,OP=t ,OQ=2t∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP,QM为OP的垂直平分线,OP=2OM=2BQ,OP=t,BQ=2t-4,t=2(2t-4),解得:t=83.③当点P、Q在AC上时,ΔOPQ不能为等腰三角形综上所述,当8t3时ΔOPQ是等腰三角形【题目点拨】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.23、(1)详见解析;(2)∠BDE=20°.【解题分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【题目详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF 是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB ,∴∠PBC=∠PCB ,∴PC=PB ;(2)如图2,连接OD ,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC ,∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=12∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【题目点拨】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.24、5【解题分析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.。

2010-2023历年初中毕业升学考试(黑龙江鸡西卷)数学(带解析)

2010-2023历年初中毕业升学考试(黑龙江鸡西卷)数学(带解析)

2010-2023历年初中毕业升学考试(黑龙江鸡西卷)数学(带解析)第1卷一.参考题库(共12题)1.先化简:并任选一个你喜欢的数a代入求值.2.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.3. 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3.这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明.4.如图,Rt△ABC中,∠ACB=90°,直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,则= .5.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.6.如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5 ⑤A.1B.2C.3D.47.如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是 m.8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SASB.ASAC.AASD.SSS9.五一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.10.为了加快3G网络建设,电信运营企业将根据各自发展规划,今明两年预计完成3G投资2800亿元左右,请将2800亿元用科学记数法表示为元.11.甲乙两车同时从A地前往B地.甲车先到达B地,停留半小时后按原路返回.乙车的行驶速度为每小时60千米.下图是两车离出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出A、B两地的距离与甲车从A到B的行驶速度.(2)求甲车返回途中y与x的函数关系式,并写出自变量x的取值范围.(3)两车相遇后多长时间乙车到达B地?12.下列图形中既是轴对称图形又是中心对称图形的是()第1卷参考答案一.参考题库1.参考答案:,12.参考答案:32 m或20+m或m3.参考答案:见解析4.参考答案:5.参考答案:1,3,5或2,3,46.参考答案:C7.参考答案:2508.参考答案:D9.参考答案:九10.参考答案:11.参考答案:(1)450千米(2),(3)1.5 小时12.参考答案:B。

黑龙江省牡丹江、鸡西地区2020年数学中考试题及答案

黑龙江省牡丹江、鸡西地区2020年数学中考试题及答案

牡丹江、鸡西地区2020年数学中考试题一、选择题(每小题 3分,共 36分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( ) A. (a +b )(a -2b )=a 2-2b 2 B. 2211()24a a -=-C. -2(3a -1)=-6a +1D. (a +3)(a -3)=a 2-93.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A.13B.49C.35D.235.一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是( ) A.285B.325或5 C.285或325 D. 56.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A.2B.5 C.5 D. 27.如图,点,,A B S 在圆上,若弦AB 2倍,则ASB ∠的度数是( ).A. 22.5°B. 30°C. 45°D. 60°8.若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A. 3 B. 3,-3 C. 3 D. 3,-39.如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,23),将菱形绕点O旋转,当点A落在x 轴上时,点C的对应点的坐标为()A. (22)3--,或(23,2)- B. (2,23)C. (2,23)- D. (22)3--,或(2,23)10.若关于x的分式方程21mx x=-有正整数解,则整数m的值是()A. 3B. 5C. 3或5D. 3或411.如图,A,B是双曲线kyx=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC的面积为1,D为OB的中点,则k的值为()A.34B. 2C. 4D. 812.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为12x=,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若15()2y-,,25()2y,是抛物线上的两点,则y1<y2;⑤14b>m(am+b) (其中m ≠12).其中说法正确的是( )A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、填空题(每小题3分,共24分)13.一周时间有604800秒,604800用科学记数法表示为______.14.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD 是平行四边形(填一个即可).15.在函数21y x =-中,自变量x 的取值范围是_______. 16.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是____元. 17.将抛物线y =(x -1)2-5关于y 轴对称,再向右平移3个单位长度后顶点的坐标是_____.18.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是___个.19.5O 中,弦AB 垂直于弦CD ,垂足为P ,AB=CD=4,则S △ACP =______.20.正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若∠BEF=∠EBC ,AB=3AE ,则下列结论:①DF=FC ;②AE+DF=EF ;③∠BFE=∠BFC ;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC ;⑥ DF:DE:EF=3:4:5;⑦ BF:EF=35.其中结论正确的序号有_____.三、解答题(共60分)21.先化简,再求值:2221699332x x xx x x x++--÷-+其中x=1-2tan45°.22.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.23.等腰三角形ABC中,AB=AC=4,∠BAC=45º,以AC为腰作等腰直角三角形ACD,∠CAD为90º,请画出图形,并直接写出点B到CD的距离.24.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.25.A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市路程之和是460千米.26.∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.(1)如图①,求证AD+BC=BE ;(2)如图②、图③,请分别写出线段AD ,BC ,BE 之间的数量关系,不需要证明; (3)若BE ⊥BC ,tan ∠BCD=34,CD=10,则AD=______. 27.某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题: (1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.28.如图,在平面直角坐标系中,四边形OABC 的边OC 在x 轴上,OA 在y 轴上.O 为坐标原点,AB//OC ,线段OA ,AB 的长分别是方程x 2-9x +20=0的两个根(OA<AB ), tan ∠OCB=43.(1)求点B ,C 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将∆POQ 翻折,使点O 落在AB 上的点O '处,双曲线k y x=的一个分支过点O '.求k 的值;(3)在(2)的条件下,M 为坐标轴上一点,在平面内是否存在点N ,使以O ',Q ,M ,N 为顶点四边形为矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.B2.D3.A4.B5.C6.B7.C8.C9.D10.D11.D12.A13.56.04810⨯14.AD=BC(答案不唯一)15.12 x>16.8017.(2,-5)18.9219.12或32或9220.①②③④⑤⑥⑦.21.解:2221699 332x x xx x x x++--÷-+=21(3)23(3)(3)(3)x xx x x x x+-⨯-++-=12 33x x---=12+33x x --=33x -,当x=1-2tan45°=-1时,原式=34.22.(1)将点A(-2,0),C(0,94)代入y = a(x - 2)2 + c,得:160944a ca c+=⎧⎪⎨+=⎪⎩,解得:3163ac⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为y=316-(x-2)2+3 .∴顶点D的坐标为(2,3).(2)∵A,B两点为抛物线与x轴两交点,D为坐标顶点,∴DA=DB,故∠DAB=∠DBA,∵DE=EF,∴∠EDF=∠EFD.∵∠EFD=∠FEB+∠EBD,∠DEF=∠DAB,∴∠EDF=∠FEB+∠DEF,∴∠BDE=∠BED,故BD=BE.∵A(-2,0),D(2,3),∴利用对称性可得B(6,0),经计算BD=5,故BE=5.23.本题有两种情况:(1)如图,∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴//AB CD ,∴点B 到CD 的距离等于点A 到CD 的距离, 过点A 作AE CD ⊥, ∵4AB AC ==, ∴222AE ==, ∴点B 到CD 的距离为22; (2)如图:∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴90AEC ∠=︒,∴点B 到CD 的距离即BE 的长, ∵4AB AC ==,∴222AE ==, ∴422BE AB AE =-=-,即点B 到CD 的距离为422-. 24.(1)本次接受问卷调查的学生有:3636%100÷=(名), 故答案为100;(2)喜爱C 的有:10082036630----=(人), 补全的条形统计图如右图所示;(3)扇形统计图中B 类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=, 故答案为72︒; (4)82000160100⨯=(人), 答:该校最喜爱新闻节目的学生有160人.25.(1)由图象可知甲车在8t =时行驶到C 市,此时行驶的路程为480km ,故速度为48060km/h 8=, ∴乙车的行驶速度为:602080km/h +=, ∴乙车由C 市到A 市需行驶4806h 80=, ∴图中括号内的数为4610+=, 故答案为:60,10;(2)设线段MN 所在直线的解析式为 y = kt + b ( k ≠ 0 ) .把点M (4,0),N (10,480)代入y = kt + b ,得:4010480k b k b +=⎧⎨+=⎩,解得:80320k b =⎧⎨=-⎩,∴线段MN 所在直线的函数解析式为y = 80t -320.(3)若在乙车出发之前,即4t <时,则48060460t -=,解得13t =; 若乙车出发了且甲车未到C 市时,即48t <<时,则()48060804460t t -+-=,解得17t =(舍); 若乙车出发了且甲车已到C 市时,即8t >时,则()60480804460t t -+-=,解得9t =; 综上,甲车出发13小时或9小时时,两车距C 市的路程之和是460千米. 26.(1)证明:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD+BC=AD+AB=BD=BE.(2)图②结论:BC -AD = BE ,证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴BA -AD=BC -AD= BE ,即BC -AD=BE图③结论:AD -BC = BE.证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD -AB=AD -BC= BD=BE ,即AD -AB=BE(3)如图②所示,作DG BC ⊥于G由(2)知△EAB ≌△DCB ,∴EBA ABC ∠=∠∵BE BC ⊥∴45EBA ABC ︒∠=∠=在Rt DCG 中,CD=10,3tan 4DG BCD GC ∠==,∴6,8,14DG GC BC === 在Rt BDG 中,6BG DG ==,62BD =∴1462AD AB BD BC BD =-=-=-如图③所示,作DH BC ⊥于H由(2)知△EAB ≌△DCB ,∴DBC EBA ∴DBE CBA HBD ∠=∠=∠∵BE BC ⊥∴45HBD DBE ︒∠=∠=在Rt DCH 中,CD=10,3tan 4DH BCD HC ∠==,∴6,8DH HC == 在Rt BDH 中,6BH DH ==,62BD = ∴8662262AD AB BD BC BD =+=+=-+=+综上所述:AD 的长度为14-2或 227.(1)设每台A 型号电脑进价为a 元.,则每台B 型号电脑进价为()500a -元, 由题意,得4000030000500a a =-,解得:a =2000, 经检验a =2000是原方程的解,且符合题意,2000-500=1500(元).答:每台A 型号电脑进价为2000元,每台B 型号电脑进价为1500元. (2)由题意,得 y =(2500-2000)x +(1800-1500)(20-x )=200x +6000,∵()20001500203600010x x x +-≤⎧⎪⎨≥⎪⎩,解得1012x ≤≤, ∵x 是整数,∴x =10,11,12,∴有三种方案.(3)∵利润2006000y x =+,随x 的增大而增大,∴当12x =时可获得最大利润,最大利润为2001260008400⨯+=(元),若要使捐赠A ,B 型号电脑总数尽可能多,则优先购买B 型号电脑,可购买5台, 所以捐赠A ,B 型号电脑总数最多5台.28.(1)解方程:x 2-9x +20=0,得x 1=4, x 2=5,∵OA <AB ,∴OA =4, AB =5,过点B 作BD ⊥OC 于点D ,∵tan ∠OCB =43,BD =OA =4,OD =AB =5, ∴CD =3,∴OC =8,∴点B 的坐标为(5,4),点C 的坐标为(8,0);(2)∵AB //OC , OQ =AB =5,∠AOQ =90º,∴四边形AOQB 为矩形,∴BQ =OA =4,由翻折,得OQ =O Q '=5,∴O B '=,∴A O '=2,∴O '(2, 4),∴248k =⨯=;(3)存在.①以O ',Q 为边时,点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭或10,03M ⎛⎫- ⎪⎝⎭或150,4M ⎛⎫- ⎪⎝⎭,当点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭时,点N 的坐标为13(3)2N -,;当点M 的坐标为10,03M ⎛⎫- ⎪⎝⎭时,点N 的坐标为21(4)3N --,;当点M 的坐标为150,4M ⎛⎫-⎪⎝⎭时,点N 的坐标为31(3)4N -,; ②以O ',Q 为对角线时,点M 的坐标为()2,0M ,此时点N 的坐标为4(5)N ,4,综上所述,点N 的坐标为:13(3)2N -,,21(4)3N --,,31(3)4N -,,4(5)N ,4.。

2024年黑龙江鸡西中考数学试题及答案

2024年黑龙江鸡西中考数学试题及答案

2024年黑龙江鸡西中考数学试题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A. 326a a a ⋅=B. ()527a a =C. ()339328a b a b -=-D.()()22a b a b a b -++=-【答案】C【解析】【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、 ()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.3. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4. 一组数据2,3,3,4,则这组数据的方差为()A. 1B. 0.8C. 0.6D. 0.5【答案】D【解析】【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5. 关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A. 4m ≤ B. 4m ≥ C. 4m ≥-且2m ≠ D. 4m ≤且2m ≠【答案】D【解析】【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴取值范围是4m ≤且2m ≠.故选:D .6. 已知关于x 的分式方程2333x x kx -=--无解,则k 的值为( )A. 2k =或1k =- B. 2k =- C. 2k =或1k = D. 1k =-【答案】A【解析】【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,的当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x x kx -=--无解时,2k =或1k =-.故选:A .7. 国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案( )A. 5B. 4C. 3D. 2【答案】B【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8. 如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A. 4.5B. 3.5C. 3D. 2.5【答案】A【解析】【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a ===,可得6B y OD a==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9. 如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为( )【答案】C【解析】【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin MAC OBC ∠=∠=sin MC AC MAC =∠=,tan MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===,21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠===,∴sin MC AC MAC =∠=,∴BM BC MC =-=-=,∴1tan 2MN BM OBC =∠==故选:C .10. 如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin NBC ∠=BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是( )A. ①②③④B. ①③⑤C. ①②④⑤D. ①②③④⑤【答案】A【解析】【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==,可判断④;根据相似有212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH ==,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB =90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BNBDBM AB ==,∴BN =,故④正确,∴212ABM DBN S AB S BD⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H HA ABC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HMAHBM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN ==,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.二、填空题(每小题3分,共30分)11. 国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.【答案】121.390810⨯【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12. 在函数y =中,自变量x 的取值范围是________.【答案】3x ≥##3x≤【解析】【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13. 已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.【答案】AC BD =或AB BC⊥【解析】【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14. 七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.【答案】35【解析】【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15. 关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.【答案】102a -≤<【解析】【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16. 如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.【答案】65【解析】【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17. 若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.【答案】90【解析】【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18. 如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.【答案】12+【解析】【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===,∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=,故答案为:12+.19. 矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.【答案】52或72或10【解析】【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20. 如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.【答案】()1,3【解析】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组,2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.三、解答题(满分60分)21. 先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos 60m =︒.【答案】1m -+,12【解析】【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)【答案】(1)作图见解析,()12,3B(2)作图见解析,()23,0B -(3【解析】【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB =,再由旋转角等于90︒,利用弧长公式即可求出.【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3,小问2详解】如图,22AB C 为所求;()23,0B -,【小问3详解】AB ==,点B 旋转到点2B=.23. 如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【解析】【分析】本题主要考查二次函数的图象与性质以及与几何综合:【(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A50100x <≤3B 100150x <≤m C150200x <≤20D200250x <≤14E 250300x <≤5(1)频数分布表中m = ,扇形统计图中n = .(2)本次调查立定跳远成绩的中位数落在 组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【解析】【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;【小问2详解】解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25. 甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是 km/h ,乙货车的速度是 km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【解析】【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【小问1详解】解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤【小问3详解】设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26. 已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【解析】【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM △中由勾股定理得222QH HM QM +=,即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,为AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即22212BQ BM BQ QM ⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27. 为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元的(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【解析】【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫-⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+-⎪⎝⎭,根据一次函数的性质即可求解.【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫- ⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28. 如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩ (3)存在,(12,4N +,()22,4N -,(32,N -,4N ⎛⎝【解析】【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(3)当2=时求出2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=和+=O 、P 、M 、N 为顶点的四边形是菱形【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ===,211322S OQ PD t ∴=⨯⨯=⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,QE ==又2OP t =,2122S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭。

2019年黑龙江省鸡西市中考数学试卷以及逐题解析版

2019年黑龙江省鸡西市中考数学试卷以及逐题解析版

2019年黑龙江省鸡西市中考数学试卷以及逐题解析一、填空题(每题3分,满分30分)1.(3分)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为 .2.(3分)在函数y =中,自变量x 的取值范围是 .3.(3分)如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD 是平行四边形.4.(3分)在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是 .5.(3分)若关于x 的一元一次不等式组0213x m x ->⎧⎨+>⎩的解集为1x >,则m 的取值范围是 . 6.(3分)如图,在O 中,半径OA 垂直于弦BC ,点D 在圆上且30ADC ∠=︒,则AOB ∠的度数为 .7.(3分)若一个圆锥的底面圆的周长是5cm π,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是 .8.(3分)如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且12PAB PCD S S ∆∆=,则PC PD +的最小值为 .9.(3分)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为 .10.(3分)如图,四边形11OAA B 是边长为1的正方形,以对角线1OA 为边作第二个正方形122OA A B ,连接2AA ,得到△12AA A ;再以对角线2OA 为边作第三个正方形233OA A B ,连接13A A ,得到△123A A A ;再以对角线3OA 为边作第四个正方形,连接24A A ,得到△234A A A ⋯⋯记△12AA A 、△123A A A 、△234A A A 的面积分别为1S 、2S 、3S ,如此下去,则2019S = .二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是( )A .22423a a a +=B .1025b b b ÷=C .222()m n m n -=-D .236(2)8x x -=-12.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A .B .C .D .13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .314.(3分)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( )A .平均数B .中位数C .方差D .极差15.(3分)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .716.(3分)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数1y x =上,顶点B 在反比例函数5y x=上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是( )A .32B .52C .4D .617.(3分)已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m … B .3m < C .3m >- D .3m -…18.(3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,:3:2AB BC =,过点B 作//BE AC ,过点C 作//CE DB ,BE 、CE 交于点E ,连接DE ,则tan (EDC ∠= )A .29B .14CD .31019.(3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A .4种B .3种C .2种D .1种20.(3分)如图,在平行四边形ABCD 中,90BAC ∠=︒,AB AC =,过点A 作边BC 的垂线AF 交DC 的延长线于点E ,点F 是垂足,连接BE 、DF ,DF 交AC 于点O .则下列结论:①四边形ABEC 是正方形;②:1:3CO BE =;③DE =;④AOD OCEF S S ∆=四边形,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分)21.(5分)先化简,再求值:2121()111x x x x --÷+-+,期中2sin301x =︒+. 22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,OAB ∆的三个顶点(0,0)O 、(4,1)A 、(4,4)B 均在格点上.(1)画出OAB ∆关于y 轴对称的△11OA B ,并写出点1A 的坐标;(2)画出OAB ∆绕原点O 顺时针旋转90︒后得到的△22OA B ,并写出点2A 的坐标;(3)在(2)的条件下,求线段OA 在旋转过程中扫过的面积(结果保留)π.23.(6分)如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点(3,0)A 、点(1,0)B -,与y 轴交于点C .(1)求拋物线的解析式;(2)过点(0,3)D 作直线//MN x 轴,点P 在直线NN 上且PAC DBC S S ∆∆=,直接写出点P 的坐标.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是 ;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y (米)与小强所用时间t (分钟)之间的函数图象如图所示.(1)求函数图象中a 的值;(2)求小强的速度;(3)求线段AB 的函数解析式,并写出自变量的取值范围.26.(8分)如图,在ABC⊥于点E,AD与BE⊥于点D,BE AC∆中,AB BC=,AD BC交于点F,BH AB⊥于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若30+=;∠=︒,求证:DF BHABC(2)如图②所示,若45∠=︒(点M与点D重合),猜ABCABC∠=︒,如图③所示,若60想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?28.(10分)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程27120-+=的两个根()x x>,2BC ABOA OB=,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED DA-向点A运动,运动的时间为(06)…秒,设BOPt t<∆与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使BEP∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.2019年黑龙江省鸡西市中考数学试卷答案与解析一、填空题(每题3分,满分30分)1.(3分)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为 51.810⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将180000用科学记数法表示为51.810⨯,故答案是:51.810⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.(3分)在函数y =中,自变量x 的取值范围是 2x … .【分析】根据二次根式有意义的条件是被开方数大于或等于0即可求解.【解答】解:在函数y =中,有20x -…,解得2x …,故其自变量x 的取值范围是2x ….故答案为2x ….【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(3分)如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件 //AD BC (答案不唯一) ,使四边形ABCD 是平行四边形.【分析】可再添加一个条件//AD BC ,根据两组对边分别相等的四边形是平行四边形,四边形ABCD 是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件://AD BC .故答案为://AD BC(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.4.(3分)在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是16.【分析】先画出树状图展示所有6种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解.【解答】解:画树状图为:,共有6种等可能的结果数,其中2个球都是黄球占1种,∴摸出的2个球都是黄球的概率16 =;故答案为:16.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.5.(3分)若关于x的一元一次不等式组213x mx->⎧⎨+>⎩的解集为1x>,则m的取值范围是1m….【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式0x m->,得:x m>,解不等式213x+>,得:1x>,不等式组的解集为1x>,1m∴…,故答案为:1m….【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)如图,在O 中,半径OA 垂直于弦BC ,点D 在圆上且30ADC ∠=︒,则AOB ∠的度数为 60︒ .【分析】利用圆周角与圆心角的关系即可求解.【解答】解:OA BC ⊥,∴AB AC =,2AOB ADC ∴∠=∠,30ADC ∠=︒,60AOB ∴∠=︒,故答案为60︒.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.7.(3分)若一个圆锥的底面圆的周长是5cm π,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是 150︒ .【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5cm π, ∴65180n ππ⨯=, 解得:150n =故答案为150︒.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.8.(3分)如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且12PAB PCD S S ∆∆=,则PC PD +的最小值为【分析】如图,作PM AD ⊥于M ,作点D 关于直线PM 的对称点E ,连接PE ,EC .设AM x =.由PM 垂直平分线段DE ,推出PD PE =,推出PC PD PC PE EC +=+…,利用勾股定理求出EC 的值即可.【解答】解:如图,作PM AD ⊥于M ,作点D 关于直线PM 的对称点E ,连接PE ,EC .设A M x =.四边形ABC 都是矩形,//AB CD ∴,4AB CD ==,6BC AD ==, 12PAB PCD S S ∆∆=, ∴11144(6)222x x ⨯⨯=⨯⨯⨯-, 2x ∴=,2AM ∴=,4DM EM ==,在Rt ECD ∆中,ECPM 垂直平分线段DE , PD PE ∴=,PC PD PC PE EC ∴+=+…,PD PC ∴+…PD PC ∴+的最小值为【点评】本题考查轴对称-最短问题,三角形的面积,矩形的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.9.(3分)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为 3或247. 【分析】依据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,分两种情况讨论:90DEB ∠=︒或90BDE ∠=︒,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt ACD Rt AED(HL)∆≅∆, 6AE AC ∴==,1064BE =-=,设CD DE x ==,则8BD x =-, Rt BDE ∆中,222DE BE BD +=,2224(8)x x ∴+=-, 解得3x =, 3CD ∴=;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,90AFE EDB ∴∠=∠=︒,AEF B ∠=∠,AEF EBD ∴∆∆∽,∴AF EFED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-,∴68x xx x-=-, 解得247x =, 247CD ∴=, 综上所述,CD 的长为3或247, 故答案为:3或247. 【点评】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.10.(3分)如图,四边形11OAA B 是边长为1的正方形,以对角线1OA 为边作第二个正方形122OA A B ,连接2AA ,得到△12AA A ;再以对角线2OA 为边作第三个正方形233OA A B ,连接13A A ,得到△123A A A ;再以对角线3OA 为边作第四个正方形,连接24A A ,得到△234A A A ⋯⋯记△12AA A 、△123A A A 、△234A A A 的面积分别为1S 、2S 、3S ,如此下去,则2019S = 20172 .【分析】首先求出1S 、2S 、3S ,然后猜测命题中隐含的数学规律,即可解决问题. 【解答】解:四边形11OAA B 是正方形, 1111OA AA A B ∴===,1111122S ∴=⨯⨯=,190OAA ∠=︒,222111AO ∴=+=2232OA A A ∴==,212112S ∴=⨯⨯=,同理可求:312222S =⨯⨯=,44S =⋯,22n n S -∴=, 201720192S ∴=, 故答案为:20172.【点评】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到n a 的规律是解题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是( ) A .22423a a a +=B .1025b b b ÷=C .222()m n m n -=-D .236(2)8x x -=-【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A 、22223a a a +=,故此选项错误;B 、1028b b b ÷=,故此选项错误;C 、222()2m n m mn n -=-+,故此选项错误;D 、236(2)8x x -=-,故此选项正确;故选:D .【点评】此题主要考查了同底数幂的乘除运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.12.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.【点评】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.3【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点评】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.(3分)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差【分析】根据中位数的定义解答可得.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.【点评】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.15.(3分)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.7【分析】设这种植物每个支干长出x个小分支,根据主干、支干和小分支的总数是43,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设这种植物每个支干长出x个小分支,依题意,得:2143x x++=,解得:17x=-(舍去),26x=.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(3分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数1yx=上,顶点B在反比例函数5yx=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.32B.52C.4D.6【分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得.【解答】解:如图作BD x⊥轴于D,延长BA交y轴于E,四边形OABC 是平行四边形, //AB OC ∴,OA BC =,BE y ∴⊥轴, OE BD ∴=,Rt AOE Rt CBD(HL)∴∆≅∆,根据系数k 的几何意义,5BDOE S =矩形,12AOE S ∆=, ∴四边形OABC 的面积115422=--=, 故选:C .【点评】本题考查了反比例函数的比例系数k 的几何意义、平行四边形的性质等,有一定的综合性17.(3分)已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m …B .3m <C .3m >-D .3m -…【分析】根据解分式方程的方法可以求得m 的取值范围,本题得以解决. 【解答】解:213x mx -=-, 方程两边同乘以3x -,得 23x m x -=-,移项及合并同类项,得 3x m =-,分式方程213x mx -=-的解是非正数,30x -≠, ∴30(3)30m m -⎧⎨--≠⎩…, 解得,3m …, 故选:A .【点评】本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.18.(3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,:3:2AB BC =,过点B 作//BE AC ,过点C 作//CE DB ,BE 、CE 交于点E ,连接DE ,则tan (EDC ∠= )A .29B .14CD .310【分析】如图,过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .根据邻边相等的平行四边形是菱形即可判断四边形OBEC 是菱形,则OE 与BC 垂直平分,易得EF OG =,1122CF QE AB ==.所以由锐角三角函数定义作答即可.【解答】解:矩形ABCD 的对角线AC 、BD 相交于点O ,:3:2AB BC =,∴设3AB x =,2BC x =.如图,过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G . //BE AC ,//CE BD ,∴四边形BOCE 是平行四边形,四边形ABCD 是矩形, OB OC ∴=,∴四边形BOCE 是菱形.OE ∴与BC 垂直平分, 1122EF AD BC x ∴===,//OE AB , ∴四边形AOEB 是平行四边形,OE AB ∴=,113222CF OE AB x ∴===.2tan 3932EF x EDC DF x x ∴∠===+. 故选:A .【点评】本题考查矩形的性质、菱形的判定与性质以及解直角三角形,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( ) A .4种B .3种C .2种D .1种【分析】设一等奖个数x 个,二等奖个数y 个,根据题意,得6434x y +=,根据方程可得三种方案;【解答】解:设一等奖个数x 个,二等奖个数y 个, 根据题意,得6434x y +=,使方程成立的解有17x y =⎧⎨=⎩,34x y =⎧⎨=⎩,51x y =⎧⎨=⎩,∴方案一共有3种;故选:B .【点评】本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键. 20.(3分)如图,在平行四边形ABCD 中,90BAC ∠=︒,AB AC =,过点A 作边BC 的垂线AF 交DC 的延长线于点E ,点F 是垂足,连接BE 、DF ,DF 交AC 于点O .则下列结论:①四边形ABEC 是正方形;②:1:3CO BE =;③DE =;④AOD OCEF S S ∆=四边形,正确的个数是( )A .1B .2C .3D .4【分析】①先证明ABF ECF ∆≅∆,得AB EC =,再得四边形ABEC 为平行四边形,进而由90BAC ∠=︒,得四边形ABCD 是正方形,便可判断正误;②由OCF OAD ∆∆∽,得:1:2OC OA =,进而得:OC BE 的值,便可判断正误; ③根据BC ,2DE AB =进行推理说明便可;④由OCF ∆与OAD ∆的面积关系和OCF ∆与AOF ∆的面积关系,便可得四边形OCEF 的面积与AOD ∆的面积关系.【解答】解:①90BAC ∠=︒,AB AC =, BF CF ∴=,四边形ABCD 是平行四边形, //AB DE ∴, BAF CEF ∴∠=∠, AFB CFE ∠=∠,()ABF ECF AAS ∴∆≅∆, AB CE ∴=,∴四边形ABEC 是平行四边形,90BAC ∠=︒,AB AC =,∴四边形ABEC 是正方形,故此题结论正确;②//OC AD , OCF OAD ∴∆∆∽,:::1:2OC OA CF AD CF BC ∴===, :1:3OC AC ∴=,AC BE =,:1:3OC BE ∴=,故此小题结论正确;③AB CD EC ==,2DE AB ∴=,AB AC =,90BAC ∠=︒,AB ∴=,2DE ∴==,故此小题结论正确; ④OCF OAD ∆∆∽,∴211()24OCF OAD S S ∆∆==, ∴14OCF OAD S S ∆∆=,:1:3OC AC =, 3OCF ACF S S ∆∆∴=,ACF CEF S S ∆∆=,∴334CEF OCF OAD S S S ∆∆∆==, ∴1344OCF CEF OAD OAD OCEF S S S S S ∆∆∆∆⎛⎫=+=+= ⎪⎝⎭四边形,故此小题结论正确.故选:D .【点评】本题是平行四边形的综合题,主要考查了平行四边形的性质与判定,正方形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,等腰三角形的性质,第一小题关键是证明三角形全等,第二小题证明三角形的相似,第三小题证明BC 与AB 的关系,DE 与AB 的关系,第四小题关键是用OCF ∆的面积为桥梁.三、解答题(满分60分) 21.(5分)先化简,再求值:2121()111x x x x --÷+-+,期中2sin301x =︒+. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值化简代入计算可得. 【解答】解:原式12[](1)(1)(1)(1)(1)x x x x x x x --=-++-+-1(1)(1)(1)x x x =++-11x =-, 当12sin301211122x =︒+=⨯+=+=时,原式1=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,OAB ∆的三个顶点(0,0)O 、(4,1)A 、(4,4)B 均在格点上. (1)画出OAB ∆关于y 轴对称的△11OA B ,并写出点1A 的坐标;(2)画出OAB ∆绕原点O 顺时针旋转90︒后得到的△22OA B ,并写出点2A 的坐标; (3)在(2)的条件下,求线段OA 在旋转过程中扫过的面积(结果保留)π.【分析】(1)根据题意,可以画出相应的图形,并写出点1A 的坐标; (2)根据题意,可以画出相应的图形,并写出点2A 的坐标;(3)根据题意可以求得OA 的长,从而可以求得线段OA 在旋转过程中扫过的面积. 【解答】解:(1)如右图所示, 点1A 的坐标是(4,1)-; (2)如右图所示, 点2A 的坐标是(1,4)-; (3)点(4,1)A ,OA ∴=∴线段OA 174π=.【点评】本题考查简单作图、扇形面积的计算、轴对称、旋转变换,解答本题的关键是明确题意,利用数形结合的思想解答.23.(6分)如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点(3,0)A 、点(1,0)B -,与y 轴交于点C .(1)求拋物线的解析式;(2)过点(0,3)D 作直线//MN x 轴,点P 在直线NN 上且PAC DBC S S ∆∆=,直接写出点P 的坐标.【分析】(1)将点(3,0)A 、点(1,0)B -代入2y x bx c =++即可;(2)16132DBC PAC S S ∆∆=⨯⨯==,设(,3)P x ,直线CP 与x 轴交点为Q ,则有1AQ =,可求(2,0)Q 或(4,0)Q ,得:直线CQ 为332y x =-或334y x =-,当3y =时,4x =或8x =; 【解答】解:(1)将点(3,0)A 、点(1,0)B -代入2y x bx c =++, 可得2b =-,3c =-,223y x x ∴=--; (2)(0,3)C -, 16132DBC S ∆∴=⨯⨯=,3PAC S ∆∴=,设(,3)P x ,直线CP 与x 轴交点为Q , 则162PAC S AQ ∆=⨯⨯,1AQ ∴=,(2,0)Q ∴或(4,0)Q ,∴直线CQ 为332y x =-或334y x =-, 当3y =时,4x =或8x =, (4,3)P ∴或(8,3)P ;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,灵活转化三角形面积是解题的关键.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是72︒;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?【分析】(1)由1本的人数及其所占百分比可得答案;(2)求出2本和3本的人数即可补全条形图;(3)用360︒乘以2本人数所占比例;(4)利用样本估计总体思想求解可得.【解答】解:(1)本次调查中共抽取的学生人数为1530%50÷=(人);(2)3本人数为5040%20⨯=(人),则2本人数为50(15205)10-++=(人),补全图形如下:(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是103607250︒⨯=︒,故答案为:72︒;(4)估计该校在这次活动中阅读书籍的数量不低于3本的学生有205120060050+⨯=(人).【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y (米)与小强所用时间t (分钟)之间的函数图象如图所示. (1)求函数图象中a 的值; (2)求小强的速度;(3)求线段AB 的函数解析式,并写出自变量的取值范围.【分析】(1)根据“小明的路程=小明的速度⨯小明步行的时间”即可求解;(2)根据a 的值可以得出小强步行12分钟的路程,再根据“路程、速度与时间”的关系解答即可;(3)由(2)可知点B 的坐标,再运用待定系数法解答即可. 【解答】解:(1)300(105)9005a =⨯+=;(2)小明的速度为:300560÷=(米/分), 小强的速度为:(900602)1265-⨯÷=(米/分);(3)由题意得(12,780)B ,设AB 所在的直线的解析式为:(0)y kx b k =+≠, 把(10,900)A 、(12,780)B 代入得: 1090012780k b k b +=⎧⎨+=⎩,解得601500k b =-⎧⎨=⎩, ∴线段AB 所在的直线的解析式为601500(1012)y x x =-+剟.【点评】此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.26.(8分)如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD 与BE 交于点F ,BH AB ⊥于点B ,点M 是BC 的中点,连接FM 并延长交BH 于点H . (1)如图①所示,若30ABC ∠=︒,求证:DF BH +=; (2)如图②所示,若45ABC ∠=︒,如图③所示,若60ABC ∠=︒(点M 与点D 重合),猜想线段DF 、BH 与BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.【分析】(1)连接CF ,由垂心的性质得出CF AB ⊥,证出//CF BH ,由平行线的性质得出CBH BCF ∠=∠,证明BMH CMF ∆≅∆得出BH CF =,由线段垂直平分线的性质得出AF CF =,得出BH AF =,AD DF AF DF BH =+=+,由直角三角形的性质得出AD =,即可得出结论; (2)同(1)可证:AD DF AF DF BH =+=+,再由等腰直角三角形的性质和含30︒角的直角三角形的性质即可得出结论.【解答】(1)证明:连接CF ,如图①所示: AD BC ⊥,BE AC ⊥, CF AB ∴⊥,BH AB ⊥,//CF BH ∴, CBH BCF ∴∠=∠,点M 是BC 的中点, BM MC ∴=,在BMH ∆和CMF ∆中,MBH MCFBM MC BMH CMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BMH CMF ASA ∴∆≅∆, BH CF ∴=,。

2021年黑龙江鸡西朝鲜族学校中考数学真题及答案


D. a ab a b
2、下列图形中,既是轴对称图形,又是中心对称图形的是(
A.
B.
C.

D.
3、由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图所示, 则搭成该几何体所用的小立方块的个数可能是( ) A.4 个 B.5 个 C.7 个 D.8 个
左视图 俯视图
4、从小到大的一组数据-1,1,2,x,6,8 的中位数为 2,则这组数据的众数和平均数分别是( )
50~60 分
60~70 分 8%
90~100 分
70~80 分
80~90 分 36%
人数
18 16 14 12 10
8 6 4 2 0 50 60 70 80 90 100 成绩/分
(注:每组数据只含最低分,不含最高分)
25、A,B,C 三地在同一条公路上,C 地在 A,B 两地之间,且到 A,B 两地的路程相等. 甲、乙两车分别从 A,B 两地出发,匀 速行驶.甲车到达 C 地并停留1数小学时试后题以第原4速页继(续共前8往页B)地,到达 B 地后立即调头(调头时间忽略不计),并按原路原速返回 C 地 停止行驶,乙车经 C 地到数达学试A 地题停第止5行页驶(.在共两8 车页行)驶的过程中,甲、乙两车距 C 地的路程 y(单位:千米)与所用的时间 x(单 位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题: (1)直接写出 A,B 两地的路程和甲车的速度; (2)求乙车从 C 地到 A 地的过程中 y 与 x 的函数关系式(不用写自变量的取值
F
是正方形;③∠EBM=300;S 四边形 BCEM:S∆BFM=(2 2 +1):1. 其中结论正确的序号是( )
A. ①② B. ①②③ C. ①②④ D. ③④

2023年黑龙江鸡西中考数学真题及答案

2023年黑龙江鸡西中考数学真题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1.下列运算正确的是()A.22(2)4a a -=- B.222()a b a b -=-C.()()2224m m m -+--=- D.()257a a =2.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.74.已知一组数据1,0,3,5,,2,3x --的平均数是1,则这组数据的众数是()A.3-B.5C.3-和5D.1和35.如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A.5mB.70mC.5m 或70mD.10m 6.已知关于x 的分式方程122m x x x +=--的解是非负数,则m 的取值范围是()A.2m ≤B.2m ≥C.2m ≤且2m ≠-D.2m <且2m ≠-7.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A.5种 B.6种 C.7种 D.8种8.如图,ABC 是等腰三角形,AB 过原点O ,底边BC x ∥轴,双曲线k y x=过,A B 两点,过点C 作CD y ∥轴交双曲线于点D ,若12BCD S = ,则k 的值是()A.6-B.12-C.92- D.9-9.如图,在平面直角坐标中,矩形ABCD 的边5,:1:4AD OA OD ==,将矩形ABCD 沿直线OE 折叠到如图所示的位置,线段1OD 恰好经过点B ,点C 落在y 轴的点1C 位置,点E 的坐标是()A.()1,2B.()1,2-C.)1,2-D.()12-10.如图,在正方形ABCD 中,点,E F 分别是,AB BC 上的动点,且AF D E ⊥,垂足为G ,将ABF △沿AF 翻折,得到,AMF AM △交DE 于点P ,对角线BD 交AF 于点H ,连接,,,HM CM DM BM ,下列结论正确的是:①AF DE =;②BM DE ∥;③若CM FM ⊥,则四边形BHMF 是菱形;④当点E 运动到AB 的中点,tan BHF ∠=;⑤2EP DH AG BH ⋅=⋅.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤二、填空题(每小题3分,共30分)11.据交通运输部信息显示:2023年“五一”假期第一天,全国营运性客运量约5699万人次,将5699万用科学记数法表示为__________.12.函数中,自变量x 的取值范围是____________.13.如图,在矩形ABCD 中对角线AC ,BD 交于点O ,请添加一个条件______________,使矩形ABCD 是正方形(填一个即可)14.一个不透明的袋子中装有3个红球和2个白球,这些小球除标号外完全相同,随机摸出两个小球,恰好是一红一白的概率是__________.15.关于x 的不等式组501x x m +>⎧⎨-≤⎩有3个整数解,则实数m 的取值范围是__________.16.如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC ,若28B ∠=︒,则P ∠=__________︒.17.已知圆锥的母线长13cm ,侧面积265cm π,则这个圆锥的高是__________cm .18.在Rt ACB △中,30,2BAC CB ∠=︒=,点E 是斜边AB 的中点,把Rt ABC △绕点A 顺时针旋转,得Rt AFD △,点C ,点B 旋转后的对应点分别是点D ,点F ,连接CF ,,EF CE ,在旋转的过程中,CEF △面积的最大值是__________.19.矩形ABCD 中,3,9AB AD ==,将矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,若ADE V 是直角三角形,则点E 到直线BC 的距离是__________.20.如图,在平面直角坐标系中,ABC 的顶点A 在直线13:3l y x =上,顶点B 在x 轴上,AB 垂直x 轴,且OB =,顶点C 在直线2:l y =上,2BC l ⊥;过点A 作直线2l 的垂线,垂足为1C ,交x 轴于1B ,过点1B 作11A B 垂直x 轴,交1l 于点1A ,连接11A C ,得到第一个111A B C △;过点1A 作直线2l 的垂线,垂足为2C ,交x 轴于2B ,过点2B 作22A B 垂直x 轴,交1l 于点2A ,连接22A C ,得到第二个222A B C △;如此下去,……,则202320232023A B C 的面积是__________.三、解答题(满分60分)21.先化简,再求值:2222111m m m m m -+⎛⎫-÷ ⎪+-⎝⎭,其中tan 601m =︒-.22.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是()()2,1,1,2A B --,()3,3C -.(1)将ABC 向上平移4个单位,再向右平移1个单位,得到111A B C △,请画出111A B C △.(2)请画出ABC 关于y 轴对称的222A B C △.(3)将222A B C △着原点O 顺时针旋转90︒,得到333A B C △,求线段22A C 在旋转过程中扫过的面积(结果保留π).23.如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点,交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P ,使得12PBC ABC S S =,若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.某中学开展主题为“垃圾分类,绿色生活”的宜传活动、为了解学生对垃圾分类知识的掌握情况,该校团委在校园内随机抽取了部分学生进行问卷调在,将他们的得分按A :优秀,B :良好,C :合格,D :不合格四个等级进行统计,并绘制了如下不完整的条形统计图和扇形统计图.(1)这次学校抽查的学生人数是__________人;(2)将条形图补充完整;(3)扇形统计图中C 组对应的扇形圆心角度数是__________︒;(4)如果该校共有2200人,请估计该校不合格的人数.25.已知甲,乙两地相距480km ,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km ,货车继续出发2h 3后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中a 的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离()km y 与行驶时间()h x 之间的函数关系式;(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km .26.如图①,ABC 和ADE V 是等边三角形,连接DC ,点F ,G ,H 分别是,DE DC 和BC 的中点,连接,FG FH.易证:FH =.若ABC 和ADE V 都是等腰直角三角形,且90BAC DAE ∠=∠=︒,如图②:若ABC 和ADE V 都是等腰三角形,且120BAC DAE ∠=∠=︒,如图③:其他条件不变,判断FH 和FG 之间的数量关系,写出你的猜想,并利用图②或图③进行证明.27.2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A ,B 两款文化衫,每件A 款文化衫比每件B 款文化衫多10元,用500元购进A 款和用400元购进B 款的文化衫的数量相同.(1)求A 款文化衫和B 款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A 款七折优惠,B 款每件让利m 元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m 值.28.如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t 秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q 的坐标,若不存在,说明理由.参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(每小题3分,共30分)【11题答案】【答案】75.69910⨯【12题答案】【答案】3x ≥-【13题答案】【答案】AB BC =或AC BD⊥【14题答案】【答案】35##0.6【15题答案】【答案】32m -≤<-##23m ->≥-【16题答案】【答案】34【17题答案】【答案】12【18题答案】【答案】4+4【19题答案】【答案】6或3+或3-【20题答案】【答案】2三、解答题(满分60分)【21题答案】【答案】1m m +,原式33=【22题答案】【答案】(1)见解析(2)见解析(3)134π【23题答案】【答案】(1)223y x x =--+(2)存在,点P 的坐标为()2,3-或()3,12-【24题答案】【答案】(1)40(2)见解析(3)90(4)220人【25题答案】【答案】(1)120(2)60y x=(3)12517h 或13117h 【26题答案】【答案】图②中FH =,图③中FH FG =,证明见解析【27题答案】【答案】(1)A 款文化衫每件50元,则B 款文化衫每件40元,(2)一共有六种购买方案(3)5m =【28题答案】【答案】(1)3y x =-+(2)223902392t t t S t t t -+≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(3)存在,点Q 的坐标是333,22⎛⎫ ⎪ ⎪⎝⎭或(.。

黑龙江鸡西市第一中学2021年中考数学复习题含答案(附解析)

黑龙江鸡西市第一中学2021年中考数学复习题含答案(附解析)一、单选题1、﹣3的绝对值是()A.﹣3 B.C.3 D.±3【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2、如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.3、海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4、不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.5、如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°【分析】直接利用已知角的度数结合平行线的性质得出答案.【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6、下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【分析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7、这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D.【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.8、已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C 不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.9、如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【解答】解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10、海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.二、填空题1、“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为40% .(用百分数表示)【分析】根据题意可以列出相应的方程,从而可以求得该地区居民年人均收入平均增长率,本题得以解决.【解答】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的增长率.2、如图所示的网格是正方形网格,则∠PAB+∠PBA=45 °(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.3、计算﹣的结果是.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:【点评】此题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.4、如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为2﹣.【分析】根据S阴=S△ABC﹣2•S扇形ADE,计算即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2,∴AB=2,∠A=∠B=45°,∵D是AB的中点,∴AD=DB=,∴S阴=S△ABC﹣2•S扇形ADE=×2×2﹣2×=2﹣,故答案为:2﹣.【点评】本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.5、二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N的大小关系为M<N.(填“>”、“=”或“<”)【分析】根据二次函数的图象与性质即可求出答案.【解答】解:当x=﹣1时,y=a﹣b+c>0,当x=2时,y=4a+2b+c<0,M﹣N=4a+2b﹣(a﹣b)=4a+2b+c﹣(a﹣b+c)<0,即M<N,故答案为:<【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6、如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(难度:中等)1、计算:(2x2)3﹣x2•x4.【分析】先算乘方与乘法,再合并同类项即可.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.【点评】本题考查了整式的混合运算,掌握运算性质和法则是解题的关键.2、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.3、解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4、先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.5、某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.6、慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.【分析】(1)根据正切的定义用a表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.【解答】解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=,则AH=HE•tan∠AEH≈1.9a,∴AG=AH﹣GH=1.9a﹣0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a﹣0.2,∴BD=1.9a﹣0.2,答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;(2)由题意得,1.9a﹣0.2+a=52,解得,a=18,则AG=1.9a﹣0.2=34.4,∴AB=AG+GB=36.1,答:慈氏塔的高度AB为36.1米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.7、一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x =0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.8、天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【分析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.9、如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。

2020年黑龙江省鸡西市中考数学试卷(农垦、森工用)(附答案详解)

2020年黑龙江省鸡西市中考数学试卷(农垦、森工用)一、选择题(本大题共9小题,共27.0分)1.(2020·全国·月考试卷)下列各运算中,计算正确的是()A. a2+2a2=3a4B. x8−x2=x6C. (x−y)2=x2−xy+y2D. (−3x2)3=−27x62.(2021·湖南省怀化市·模拟题)下列图标中是中心对称图形的是()A. B. C. D.3.(2020·黑龙江省鹤岗市·历年真题)如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A. 2B. 3C. 4D. 54.(2020·黑龙江省鹤岗市·历年真题)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A. 1B. 2C. 0或1D. 1或25.(2021·全国·单元测试)已知2+√3是关于x的一元二次方程x2−4x+m=0的一个实数根,则实数m的值是()A. 0B. 1C. −3D. −16.(2021·山西省太原市·同步练习)已知关于x的分式方程xx−3−4=k3−x的解为非正数,则k的取值范围是()A. k≤−12B. k≥−12C. k>−12D. k<−127.(2021·安徽省·单元测试)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 968.(2021·山东省·其他类型)学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A. 2种B. 3种C. 4种D. 5种9.(2021·广东省深圳市·模拟题)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+√2)a;2③BE2+DG2=EG2;a2;④△EAF的面积的最大值是18a时,G是线段AD的中点.⑤当BE=13其中正确的结论是()A. ①②③B. ②④⑤C. ①③④D. ①④⑤二、填空题(本大题共10小题,共30.0分)10.(2020·黑龙江省鹤岗市·历年真题)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为______.11.(2021·重庆市·期中考试)在函数y=1中,自变量x的取值范围是______.√2x−312.(2020·安徽省蚌埠市·单元测试)如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt△ABC和Rt△EDF全等.13.(2020·黑龙江省鹤岗市·历年真题)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为______.14.(2021·四川省·模拟题)若关于x的一元一次不等式组{x−1>02x−a>0的解是x>1,则a 的取值范围是______.15.(2020·黑龙江省鹤岗市·历年真题)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=______°.16.(2021·浙江省杭州市·模拟题)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为______cm.17.(2021·广西壮族自治区·其他类型)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为______.18.(2021·安徽省淮南市·模拟题)在矩形ABCD中,AB=1,BC=a,点E在边BC上,a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的且BE=35边上,则折痕的长为______.19.(2020·黑龙江省鹤岗市·历年真题)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标______.三、解答题(本大题共8小题,共60.0分)20.(2021·福建省龙岩市·模拟题)先化简,再求值:(1−aa2+a )÷a2−1a2+2a+1,其中a=sin30°.21.(2020·黑龙江省鹤岗市·历年真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).22.(2021·重庆市市辖区·期末考试)如图,已知二次函数y=−x2+(a+1)x−a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.23.(2020·黑龙江省鹤岗市·历年真题)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.24.(2020·黑龙江省鸡西市·历年真题)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间;(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)25.(2020·黑龙江省鹤岗市·历年真题)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.26.(2021·广东省·其他类型)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.27.(2020·黑龙江省鸡西市·历年真题)如图,在平面直角坐标系中,矩形ABCD的边AB长是x2−3x−18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=______;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.答案和解析1.【答案】D【知识点】幂的乘方与积的乘方、合并同类项、完全平方公式【解析】【分析】本题考查了合并同类项法则,完全平方公式,幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A.结果是3a2,故本选项不符合题意;B.x8和−x2不能合并,故本选项不符合题意;C.结果是x2−2xy+y2,故本选项不符合题意;D.结果是−27x6,故本选项符合题意;故选D.2.【答案】B【知识点】中心对称图形【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符号题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【知识点】由三视图判断几何体【解析】解:左视图与主视图相同,可判断出底面最少有2个,第二层最少有1个小正方体,第三层最少有1个小正方体,则这个几何体的小立方块的个数最少是2+1+1=4个.故选:C.左视图底面有2个小正方体,主视图底面有2个小正方体,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.4.【答案】D【知识点】众数【解析】解:∵一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴数据x是1或2.故选:D.根据众数的定义得出正整数x的值即可.本题主要考查了众数的定义,根据众数是一组数据中出现次数最多的数得出x的值是解题的关键.5.【答案】B【知识点】一元二次方程的解【解析】解:根据题意,得(2+√3)2−4×(2+√3)+m=0,解得m=1,故选:B.把x=2+√3代入方程就得到一个关于m的方程,就可以求出m的值.本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.【答案】A【知识点】分式方程的一般解法、分式方程的解【解析】解:方程xx−3−4=k3−x两边同时乘以(x−3)得:x−4(x−3)=−k,∴x−4x+12=−k,∴−3x=−k−12,∴x=k3+4,∵解为非正数,∴k3+4≤0,∴k≤−12.故选:A.表示出分式方程的解,由解为非正数得出关于k的不等式,解出k的范围即可.本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.7.【答案】C【知识点】菱形的性质、直角三角形斜边上的中线【解析】【分析】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形的性质求得BD.根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=12AC⋅BD=12×12×8=48.故选C.8.【答案】B【知识点】二元一次方程的应用、二元一次方程的解【解析】【分析】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x ,y 的值.设购买了A 种奖品x 个,B 种奖品y 个,根据学校计划用200元钱购买A 、B 两种奖品,其中A 种每个15元,B 种每个25元,钱全部用完可列出方程,再根据x ,y 为非负整数可求出解.【解答】解:设购买了A 种奖品x 个,B 种奖品y 个,根据题意得:15x +25y =200,化简整理得:3x +5y =40,得y =8−35x ,∵x ,y 为非负整数,∴{x =0y =8,{x =5y =5,{x =10y =2, ∴有3种购买方案:方案1:购买了A 种奖品0个,B 种奖品8个;方案2:购买了A 种奖品5个,B 种奖品5个;方案3:购买了A 种奖品10个,B 种奖品2个.故选:B . 9.【答案】D【知识点】二次函数的最值、二次函数的性质、勾股定理、全等三角形的判定与性质、正方形的性质【解析】【分析】本题考查正方形的性质,全等三角形的判定和性质,二次函数的性质、最值,勾股定理等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考选择题中的压轴题.①在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS)即可解决问题;②③延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS)即可解决问题;④设BE=x,则AE=a−x,AF=√2x,构建二次函数,利用二次函数的性质解决最值问题;⑤当BE=13a时,设DG=x,则EG=x+13a,利用勾股定理构建方程可得x=a2即可解决问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD= AB+AD=2a,故②错误,设BE=x,则AE=a−x,AF=√2x,∴S△AEF=12⋅(a−x)×x=−12x2+12ax=−12(x2−ax+14a2−14a2)=−12(x−1 2a)2+18a2,∵−12<0,∴x=12a时,△AEF的面积的最大值为18a2.故④正确,当BE=13a时,设DG=x,则EG=x+13a,在Rt△AEG中,则有(x+13a)2=(a−x)2+(23a)2,解得x=a2,∴AG=GD,故⑤正确,故选:D.10.【答案】1.18×106【知识点】科学记数法-绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.【解答】解:1180000=1.18×106,故答案为:1.18×106.11.【答案】x>1.5【知识点】分式有意义的条件、函数自变量的取值范围、二次根式有意义的条件【解析】【分析】本题考查函数自变量的取值范围,根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得2x−3⩾0且√2x−3≠0则2x−3>0,解得x>1.5.故答案为:x>1.5.12.【答案】AB=ED(答案不唯一)【知识点】全等三角形的判定、条件开放型问题【解析】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC//DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中{∠DFE=∠BCA ∠DEF=∠BAC ED=AB,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).根据全等三角形的判定解答即可.此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.13.【答案】25【知识点】概率公式【解析】解:∵盒子中共装有5个小球,其中标号为偶数的有2、4这2个小球,∴从中随机摸出一个小球,是偶数的概率为2,5故答案为:2.5直接利用概率公式计算可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.【答案】a≤2【知识点】一元一次不等式组的解法【解析】解:解不等式x−1>0,得:x>1,,解不等式2x−a>0,得:x>a2∵不等式组的解集为x>1,∴a≤1,2解得a≤2,故答案为:a≤2.分别求出每一个不等式的解集,根据口诀:同大取大可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】50【知识点】三角形的外接圆与外心【解析】解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.根据圆周角定理即可得到结论.本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.16.【答案】10【知识点】圆锥的计算、扇形面积的计算l⋅R,【解析】解:∵S=12∴1⋅l⋅15=150π,解得l=20π,2设圆锥的底面半径为r,∴2π⋅r=20π,∴r=10(cm).故答案为:10.l⋅R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后先根据扇形的面积公式:S=12根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周l⋅R(l为弧长,R 长,扇形的半径等于圆锥的母线长;也考查了扇形的面积公式:S=12为扇形的半径).17.【答案】√3【知识点】平移的基本性质、菱形的性质、平行四边形的判定与性质、轴对称-最短路线问题、含30°角的直角三角形、解直角三角形【解析】【分析】本题考查了轴对称−最短路线问题,菱形的性质,平行四边形的判定和性质,解直角三角形,平移的性质,正确地理解题意是解题的关键.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG//AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+ED 的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线l上,作点D关于直线l的对称点M,连接CM交直线l于E,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG//AB,∵四边形ABCD是菱形,∴AB=CD,AB//CD,∴∠BAD=120°,∴EG=CD,EG//CD,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线l上,∴作点D关于直线l的对称点M,连接CM交直线l于E,则CM的长度即为EC+GC的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=12AD=12,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×√32CD=√3.故答案为:√3.18.【答案】√2或√305【知识点】翻折变换(折叠问题)、矩形的性质【解析】解:分两种情况:①当点B′落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B′AE=12∠BAD=45°,∴△ABE是等腰直角三角形,∴AB=BE=1,AE=√2AB=√2;②当点B′落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB′E=90°,AB′=AB=1,BE′=BE=35a,∴CE=BC−BE=a−35a=25a,B′D=√AB′2−AD2=√1−a2,在△ADB′和△B′CE中,∠B′AD=∠EB′C=90°−∠AB′D,∠D=∠C=90°,∴△ADB′∽△B′CE,∴B′DEC =AB′B′E,即√1−a225a=135a,解得:a=√53,或a=0(舍去),∴BE =35a =√55, ∴AE =√AB 2+BE 2=√12+(√55)2=√305; 综上所述,折痕的长为√2或√305; 故答案为:√2或√305. 分两种情况:①当点B′落在AD 边上时,证出△ABE 是等腰直角三角形,得出AE =√2AB =√2;②当点B′落在CD 边上时,证明△ADB′∽△B′CE ,得出B′D EC =AB′B′E ,求出BE =35a =√55,由勾股定理求出AE 即可.本题考查了翻折变换的性质、矩形的性质、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质是解题的关键. 19.【答案】(2×3n −1,3n )【知识点】一次函数图象上点的坐标特征、一次函数的性质、平面直角坐标系中点的坐标、相似三角形的判定与性质【解析】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 4(53,27),B 5(161,81),…由上可知,B n (2×3n −1,3n ),∴当n =2020时,B n (2×32020−1,32020).故答案为:(2×3n −1,3n ).由B 坐标为(1,1)根据题意求得A 1的坐标,进而得B 1的坐标,继续求得B 2,B 3,B 4,B 5的坐标,根据这5点的坐标得出规律,再按规律得结果.本题主要考查了一次函数的图象与性质,正方形的性质,等腰直角三角形的性质,规律变化,关键是求出前几个点的坐标得出规律.20.【答案】解:当a=sin30°时,所以a=12原式=a 2a2+a ⋅(a+1)2(a+1)(a−1)=a2a(a+1)⋅(a+1)2(a+1)(a−1)=aa−1=−1.【知识点】特殊角的三角函数值、分式的化简求值【解析】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.根据分式的运算法则即可求出答案,21.【答案】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(5,−3);(2)如图所示,△A2B2C1即为所求,点A2的坐标为(0,0);(3)如图,△A1B1C1在旋转过程中扫过的面积为:90×π×(4√2)2360+12×3×4=8π+6.【知识点】作图-平移变换、扇形面积的计算、作图-旋转变换【解析】(1)依据△ABC向下平移5个单位,即可得到△A1B1C1,进而写出点A1的坐标;(2)依据△A1B1C1绕点C1逆时针旋转90°,即可得到的△A2B2C1,进而写出点A2的坐标;(3)依据扇形面积公式和三角形面积公式,即可得到△A1B1C1在旋转过程中扫过的面积.本题考查了利用平移变换和旋转变换作图、扇形面积的计算等,利用平移变换作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.【答案】解:(1)∵y=−x2+(a+1)x−a,令x=0,则y=−a,∴C(0,−a),令y=0,即−x2+(a+1)x−a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴12(1−a)(−a)=6解得:a=−3,(a=4舍去);(2)∵a=−3,∴C(0,3),∵S△ABP=S△ABC.∴P点的纵坐标为±3,把y=3代入y=−x2−2x+3得−x2−2x+3=3,解得x=0或x=−2,把y=−3代入y=−x2−2x+3得−x2−2x+3=−3,解得x=−1+√7或x=−1−√7,∴P点的坐标为(−2,3)或(−1+√7,−3)或(−1−√7,−3).【知识点】二次函数与一元二次方程、二次函数的性质、二次函数图象上点的坐标特征【解析】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数的性质,求得交点坐标是解题的关键.(1)由y=−x2+(a+1)x−a,令y=0,即−x2+(a+1)x−a=0,可求出A、B坐标结合三角形的面积,解出a=−3;(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.23.【答案】解:(1)该公司员工一分钟跳绳的平均数为:x−=60×4+80×13+100×19+120×7+140×5+160×24+13+19+7+5+2=100.8,答:该公司员工一分钟跳绳的平均次数至少是100.8个;(2)把50个数据从小到大排列后,处在中间位置的两个数都在100~120这个范围;(3)300×(5+2)=2100(元),答:公司应拿出2100元钱购买纪念品.【知识点】中位数、频数(率)分布直方图【解析】(1)要求平均次数至少是多少,可每组都取最小值计算平均数即可;(2)找出中位数所在的成绩范围,(3)样本中获奖的有7人,求出费用即可.考查频数分布直方图的意义和制作方法,理解频数、频率、总数之间的关系是正确计算的前提.24.【答案】解:(1)设ME 的函数解析式为y =kx +b(k ≠0),由ME 经过(0,50),(3,200)可得:{b =503k +b =200,解得{k =50b =50, ∴ME 的解析式为y =50x +50;(2)设BC 的函数解析式为y =mx +n ,由BC 经过(4,0),(6,200)可得:{4m +n =06m +n =200,解得{m =100n =−400, ∴BC 的函数解析式为y =100x −400;设FG 的函数解析式为y =px +q ,由FG 经过(5,200),(9,0)可得:{5p +q =2009p +q =0,解得{p =−50q =450, ∴FG 的函数解析式为y =−50x +450,解方程组{y =100x −400y =−50x +450得{x =173y =5003, 同理可得x =7ℎ,答:货车返回时与快递车图中相遇的时间173ℎ,7h ;(3)(9−7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km .【知识点】一次函数的应用【解析】(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC 与FG 的解析式,再联立解答即可;(3)根据题意列式计算即可.本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,相遇问题,读懂题目信息,理解两车的运动过程是解题的关键.25.【答案】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°−90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,{∠ABM=∠EAP∠AMB=∠P=90°AB=AE,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,{∠P=∠NQG∠ENP=∠GNQ EP=GQ,∴△EPN≌△GQN(AAS),∴EN=NG.如图2,∠BAC≠90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°−90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,{∠ABM=∠EAP∠AMB=∠P=90°AB=AE,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,{∠P=∠NQG∠ENP=∠GNQ EP=GQ,∴△EPN≌△GQN(AAS),∴EN =NG .【知识点】四边形综合、正方形的性质、全等三角形的判定与性质【解析】(1)由等腰直角三角形的性质得出∠MAC =45°,证得∠EAN =∠NAG ,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS ”证明△ABM 和△EAP 全等,根据全等三角形对应边相等可得EP =AM ,同理可证GQ =AM ,从而得到EP =GQ ,再利用“AAS ”证明△EPN 和△GQN 全等,根据全等三角形对应边相等可得EN =NG .本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.26.【答案】解:(1)依题意,得:{10m +5n =1706m +10n =200, 解得:{m =10n =14. 答:m 的值为10,n 的值为14.(2)设购买甲种蔬菜x 千克,则购买乙种蔬菜(100−x)千克,依题意,得:{10x +14(100−x)≥116010x +14(100−x)≤1168, 解得:58≤x ≤60.∵x 为正整数,∴x =58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y 元,则y =(16−10)x +(18−14)(100−x)=2x +400. ∵k =2>0,∴y 随x 的增大而增大,∴当x =60时,y 取得最大值,最大值为2×60+400=520.依题意,得:(16−10−2a)×60+(18−14−a)×40≥(10×60+14×40)×20%, 解得:a ≤1.8.答:a 的最大值为1.8.【知识点】一元一次不等式组的应用、二元一次方程组的应用、一次函数的应用【解析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100−x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;(3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x的函数关系式,利用一次函数的性质可得出获得利润最多的方案,由总利润=每千克的利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其最大值即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用一次函数的性质,找出利润最大的购物方案.27.【答案】解:(1)3√3;(2)如图,过点M作MH⊥BD于H,∵AD//BC,∴∠ADB=∠DBC=30°,∴MH=12MD=√32t,∵∠DBC=30°,CN⊥BD,∴BN=√3CN=9,当0<t<92时,△PMN的面积s=12×(9−2t)×√32t=−√32t2+9√34t;当t=92时,点P与点N重合,s=0,当92<t≤6时,△PMN的面积s=12×(2t−9)×√32t=√32t2−9√34t;(3)如图,过点P作PE⊥BC于E,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二○一一年鸡西市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、单项选择题(每题3分,满分30分)1.下列各式:①a 0=1 ②a 2·a 3=a 5③ 2–2= –41④ –(3-5)+(–2)4÷8×(–1)=0 ⑤x 2+x 2=2x 2, 其中正确的是 ( ) A ①②③ B ①③⑤ C ②③④D ②④⑤ 2.下列图形中既是..轴对称图形又是..中心对称图形的是()3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是 ( )4.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是 ( )A C DA B C D A B C D5.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=x3图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是 ( ) A y 3>y 1>y 2 B y 1>y 2>y 3 C y 2>y 1>y 3 D y 3>y 2>y 16.某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 甲x 、乙x ,方差依次为2甲s 、2乙s ,A 甲x <乙x , 2甲s <2乙sB 甲x =乙x , 2甲s <2乙s C 甲x =乙x , 2甲s >2乙s D 甲x >乙x , 2甲s >2乙s7.分式方程=--11x x )2)(1(+-x x m有增根,则m 的值为( ) A 0和3 B 1 C 1和-2 D 38.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E ,AE=3,ED=4,则AB 的长为 ( ) A 3 B 23 C21 D 359.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,现有下列结论: ① b 2-4ac >0 ② a >0 ③ b >0 ④ c >0 ⑤9a+3b+c <0,则其 中结论正确的个数是 ( ) A 2个 B 3个 C 4个 D 5个 10.如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个二、填空题(每题3分,满分30分)11.2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为 人次.(结果保留两个有效数字) 12.函数y=32-+x x 中,自变量x 的取值范围是 . 13.如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF=CE ,请添加一个适当的条件: ,第8题图第10题图 第9题图 第13题图第20题图使得AC=DF.14.因式分解:-3x 2+6xy -3y 2= .15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是 . 16.将一个半径为6㎝,母线长为15㎝的圆锥形纸筒沿一条母线 剪开并展平,所得的侧面展开图的圆心角是 度. 17.一元二次方程a 2-4a -7=0的解为 .18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案. 19.已知三角形相邻两边长分别为20㎝和30㎝,第三边上的高为10㎝,则此三角形的面积为㎝². 20.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= . 三、解答题(满分60分)21.(本小题满分5分)先化简,再求值:(1-11+a )÷122++a a a ,其中a =sin60°.22.(本小题满分6分)如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC 向右平移3个单位长度,画出平移后的△A 1B 1C 1. (2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2. (3)画出一条直线将△AC 1A 2的面积分成相等的两部分.23.(本小题满分6分)已知:二次函数y=43x²+bx+c ,其图象对称轴为直线x=1,且经过点(2,–49).(1)求此二次函数的解析式.(2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积.第22题图注:二次函数y=a x 2+bx+c (a ≠0)的对称轴是直线x=-ab 2.24.(本小题满分7分)为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题: (1)求a 、b 的值.(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数. (3)该区0.8万名学生参加户外体育活动 时间达标的约有多少人?第24题图25.(本小题满分8分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1) 请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价. (2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?26.(本小题满分8分)在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,连结EG 、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.图(1)图(2)图(3)第26题图27.(本小题满分10分)建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?28.(本小题满分10分)已知直线y=3x+43与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA 向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.A二○一一年鸡西市初中毕业学业考试数学试题参考答案及评分说明一、单项选择题(每题3分,满分30分)填空题(每题3分,满分30分)11.7.3×10712.x ≥-2且x≠313.AB=DE 或∠A=∠D 等 14. -3(x -y)2 15.1611 16. 14417. a 1=2+11 ,a 2=2-11 18.219.(1002+503)或(1002-503)(答案不全或含错解,本题不得分)20. 83•201041⎪⎭⎫ ⎝⎛(表示为402321⎪⎭⎫⎝⎛•3亦可)三、解答题(满分60分) 21.(本小题满分5分)解:原式=(11++a a -11+a )·a a 2)1(+ = 1+a a ·aa 2)1(+=a +1 ------------------ (3分)把a =sin60°=23代入 --------------------------------------------------- (1分)原式=123+=223+----------------------------------------------------------------(1分) 22.(本小题满分6分)(1)平移正确给2分;(2分(答案不唯一).23.(本小题满分6分)解:(1) 由已知条件得21324392244bb c ⎧-=⎪⨯⎪⎨⎪⨯++=-⎪⎩ -------------------------------------------- (2分) 解得 b=-23, c=-49∴此二次函数的解析式为 y=43x 2-23x -49----------------------------- (1分) (2) ∵43x 2-23x -49=0 ∴x 1=-1,x 2=3∴B(-1,0),C (3,0)∴BC=4 ---------------------------------------------------------------- (1分) ∵E 点在x 轴下方,且△EBC 面积最大∴E 点是抛物线的顶点,其坐标为(1,—3)---------------------------------- (1分) ∴△EBC 的面积=21×4×3=6 ------------------------------------------------------ (1分)24.(本小题满分7分) 解:(1)a=80 , b= 10%--------------------------------------------------------------------- (2分) (2)20060×100%×360°=108°------------------------------------------------------- (2分) (3) 80+40+200×10%=140------------------------------------------------------------ (1分)200140×100%×8000=5600-------------------------------------------------------- (2分) 25.(本小题满分8分) 解:(1)制版费1千元, y 甲=21x+1 ,证书单价0.5元. ----------------------------(3分) (2)把x=6代入y 甲=21x+1中得y=4 当x ≥2时由图像可设 y 乙与x 的函数关系式为 y 乙=kx+b ,由已知得 2k+b=3 6k+b = 4解得⎪⎪⎩⎪⎪⎨⎧==4125k b ------------------------------------------------------------(2分)得y 乙=2541 x 当x=8时,y 甲=21×8+1=5, y 乙=41×8+25=29----------------------------(1分) 5-29=0.5(千元) 即,当印制8千张证书时,选择乙厂,节省费用500元.------------------------(1分)(3)设甲厂每个证书的印刷费用应降低a 元 8000a=500所以a=0.0625答:甲厂每个证书印刷费最少降低0.0625元.---------------------------------------(1分)26.(本小题满分8分)解(1)EG=C G EG ⊥CG------------------------------------------------------------(2分)(2)EG=CG EG ⊥CG------------------------------------------------------------(2分) 证明:延长FE 交DC 延长线于M ,连MG ∵∠AEM=90°,∠EBC=90°,∠BCM=90° ∴四边形BEMC 是矩形. ∴BE=CM ,∠EMC=90° 又∵BE=EF ∴EF=CM∵∠EMC=90°,FG=DG ∴MG=21FD=FG ∵BC=EM ,BC=CD ∴EM=CD ∵EF=CM ∴FM=DM ∴∠F=45° 又FG=DG ∵∠CMG=21∠EMC=45° ∴∠F=∠GMC∴△GFE≌△GMC∴EG=CG ,∠FGE=∠MGC------------------------------------------------------------------------(2分) ∵∠FMC=90°,MF=MD,FG=DG∴MG⊥FD∴∠FGE+∠EGM=90°∴∠MGC+∠EGM=90°即∠EGC=90°∴EG⊥CG------------------------------------------------------------------------------------------- (2分)27.(本小题满分10分) 解:(1)解:设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,由题意得⎩⎨⎧=+=+1.1235.0y x y x 解得⎩⎨⎧==4.01.0y x 答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元----------------(4分) ﹙2﹚设新建m 个地上停车位,则10<0.1m +0.4(50-m) ≤11解得 30≤m <3100, 因为m 为整数,所以m =30或m =31或m =32或m =33,对应的50-m =20或50-m =19或50-m =18或50-m =17所以,有四种建造方案。

相关文档
最新文档