材料力学性能-动画.
合集下载
材料力学材料的力学性能优质课件

结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
材料的力学性能最新课件

形成原因:纤维状是由于塑性变形过程中,众多微细裂 纹不断扩展和相互连接造成的,而暗灰色是纤维断口表 面对光的反射能力很弱所致。
举例:一些塑性较好的金属材料及高分子材料在室温 下的静拉伸断裂具有典型的韧性断裂特征。
脆性断裂定义:是材料断裂前基本上不产生明显的宏观塑性变 形,没有明显预兆,往往表现为突然发生的快速断裂过程,因 而具有很大的危险性。
图 3.21 压痕相似原理图
F1 D12
D F222
D F2
常数
材料物理与性能
洛氏硬度试验
HR k h 0.002
HRA、HRB、 HRC
图 3.22 洛氏硬度试验过程示意图 a) 加初始实验力 b) 加主实验力 c) 卸除试验力
材料物理与性能
0.20F4 s in 136
HV 0.10F2
20.189 F1
(6)应变速率与应力状态:应变速率对金属材料的屈服强 度有明显的影响。应变速率高,金属材料的屈服应力显著提高; 应力状态对金属材料屈服强度的影响规律是:切应力分量越大, 越有利于塑性变形,屈服强度就越低。
应变硬化应变硬化源自变硬化应变硬化抗拉强度
抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的 应力。其值等于最大拉力Fb除以试样的原始横截面面积A0, 抗拉强度用σb表示,即 σb=Fb/A0
剪切断裂与解理断裂是两种不同的微观断裂方式,是材料 断裂的两种重要微观机理。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离 而造成的断裂。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起 的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
材料物理与性能
剪切断裂的另一种形式为微孔 聚集型断裂,微孔聚集型断裂 是材料韧性断裂的普通方式, 其断口在宏观上常呈现暗灰色、 纤维状,微观断口特征花样则 是断口上分布大量“韧窝”, 如图1-26所示,微孔聚集断裂 过程包括微孔形核、长大、聚 合直至断裂。
举例:一些塑性较好的金属材料及高分子材料在室温 下的静拉伸断裂具有典型的韧性断裂特征。
脆性断裂定义:是材料断裂前基本上不产生明显的宏观塑性变 形,没有明显预兆,往往表现为突然发生的快速断裂过程,因 而具有很大的危险性。
图 3.21 压痕相似原理图
F1 D12
D F222
D F2
常数
材料物理与性能
洛氏硬度试验
HR k h 0.002
HRA、HRB、 HRC
图 3.22 洛氏硬度试验过程示意图 a) 加初始实验力 b) 加主实验力 c) 卸除试验力
材料物理与性能
0.20F4 s in 136
HV 0.10F2
20.189 F1
(6)应变速率与应力状态:应变速率对金属材料的屈服强 度有明显的影响。应变速率高,金属材料的屈服应力显著提高; 应力状态对金属材料屈服强度的影响规律是:切应力分量越大, 越有利于塑性变形,屈服强度就越低。
应变硬化应变硬化源自变硬化应变硬化抗拉强度
抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的 应力。其值等于最大拉力Fb除以试样的原始横截面面积A0, 抗拉强度用σb表示,即 σb=Fb/A0
剪切断裂与解理断裂是两种不同的微观断裂方式,是材料 断裂的两种重要微观机理。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离 而造成的断裂。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起 的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
材料物理与性能
剪切断裂的另一种形式为微孔 聚集型断裂,微孔聚集型断裂 是材料韧性断裂的普通方式, 其断口在宏观上常呈现暗灰色、 纤维状,微观断口特征花样则 是断口上分布大量“韧窝”, 如图1-26所示,微孔聚集断裂 过程包括微孔形核、长大、聚 合直至断裂。
《材料力学性能》PPT课件

反向加载,规定残余伸长应力降低的现象。
注:所有退火状态和高温回火的金属与合金都有包辛格效应。 可用来研究材料加工硬化的机制。
精选ppt
19
精选ppt
20
消除包申格效应的方法:
(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶
温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。
如果施加交变载荷,且最大应力低于宏观弹性极限,加载速率比较大, 则也得到弹性滞后环(图b) 。
如果交变载荷中最大应力超过宏观弹性极限,就会得到塑性滞后环(图 c) 。
精选ppt
16
金属的循环韧性
定义:
金属材料在交变载荷(或振动)下吸收不可逆变形功 的能力,也称为金属的内耗或消振性。
意义:
材料力学性能指标具体数值的高低表示材料 抵抗变形和断裂能力的大小,是评定材料质 量的主要依据。
精选ppt
3
第1章 静载荷下材料的力学性能
1.1 应力-应变曲线
拉伸试验是工业上应用最广泛的基本力学性能试 验方法之一。本章将详细讨论金属材料在单向拉 伸静载荷作用下的基本力学性能指标如:屈服强 度、抗拉强度、断后伸长率和断面伸长率等。
循环韧性越高,机件依靠自身的消振能力越好,所以 高循环韧性对于降低机器的噪声,抑制高速机械的振 动,防止共振导致疲劳断裂意义重大。
精选ppt
17
1.2.4、包申格效应(Bauschinger)
精选ppt
18
包申格效应的定义:
金属材料经过预先加载产生少量塑性变形,残 余应变约1-4%,卸载后再同向加载,规定残余 伸长应力(弹性极限或屈服强度)增加;
精选ppt
24
注:所有退火状态和高温回火的金属与合金都有包辛格效应。 可用来研究材料加工硬化的机制。
精选ppt
19
精选ppt
20
消除包申格效应的方法:
(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶
温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。
如果施加交变载荷,且最大应力低于宏观弹性极限,加载速率比较大, 则也得到弹性滞后环(图b) 。
如果交变载荷中最大应力超过宏观弹性极限,就会得到塑性滞后环(图 c) 。
精选ppt
16
金属的循环韧性
定义:
金属材料在交变载荷(或振动)下吸收不可逆变形功 的能力,也称为金属的内耗或消振性。
意义:
材料力学性能指标具体数值的高低表示材料 抵抗变形和断裂能力的大小,是评定材料质 量的主要依据。
精选ppt
3
第1章 静载荷下材料的力学性能
1.1 应力-应变曲线
拉伸试验是工业上应用最广泛的基本力学性能试 验方法之一。本章将详细讨论金属材料在单向拉 伸静载荷作用下的基本力学性能指标如:屈服强 度、抗拉强度、断后伸长率和断面伸长率等。
循环韧性越高,机件依靠自身的消振能力越好,所以 高循环韧性对于降低机器的噪声,抑制高速机械的振 动,防止共振导致疲劳断裂意义重大。
精选ppt
17
1.2.4、包申格效应(Bauschinger)
精选ppt
18
包申格效应的定义:
金属材料经过预先加载产生少量塑性变形,残 余应变约1-4%,卸载后再同向加载,规定残余 伸长应力(弹性极限或屈服强度)增加;
精选ppt
24
金属材料的力学性能ppt课件.ppt

为塑性变形。
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
材料力学性能01-04

S1-2 拉伸性能指标
1.弹性模量:E 2.强度:p、e、s、b 3.塑性:k、k
塑性材料在拉伸时的力学性能: 对于没有明显屈 服阶段的塑性材料, 用名义屈服极限Rp0.2来 表示。
R p 0.2
o
0.2%
0
两个塑性指标: l1 l0 A 100% 断面收缩率: Z A0 A1 100% 伸长率: l0 A0
5.压缩性能试验
(MPa)
400
低碳钢压缩应 力应变曲线
E(b)
C(s上) (e) B 200 D(s下) A(p)
f1(f)
低碳钢拉伸应 力应变曲线
g
E=tg O O1 O2 0.1 0.2
b
灰铸铁的 压缩曲线
b
= 45o
剪应力引起 断裂
灰铸铁的 拉伸曲线O引起破坏的有关因素: 1) 塑性材料拉伸: 沿45°滑移线、屈服,
塑性材料和脆性材料力学性能比较:
塑性材料
延伸率
脆性材料
延伸率
δ > 5%
δ < 5%
断裂前有很大塑性变形 抗压能力与抗拉能力相近 可承受冲击载荷,适合于 锻压和冷加工
断裂前变形很小 抗压能力远大于抗拉能力 适合于做基础构件或外壳
材料力学性能
哈尔滨工业大学材料学院 朱景川
第一章 材料静载力学性能试验
表示一定应力状态下材料发生塑性变形的难易程度
3.扭转性能试验 (1)扭转试验方法:GB/T 10128-1988
试样:圆柱或圆管
扭转曲线
(2)扭转应力状态
扭转应力状态特点:
(3)扭转性能指标 T 切 力 应 : W
切 变 应 :
1.弹性模量:E 2.强度:p、e、s、b 3.塑性:k、k
塑性材料在拉伸时的力学性能: 对于没有明显屈 服阶段的塑性材料, 用名义屈服极限Rp0.2来 表示。
R p 0.2
o
0.2%
0
两个塑性指标: l1 l0 A 100% 断面收缩率: Z A0 A1 100% 伸长率: l0 A0
5.压缩性能试验
(MPa)
400
低碳钢压缩应 力应变曲线
E(b)
C(s上) (e) B 200 D(s下) A(p)
f1(f)
低碳钢拉伸应 力应变曲线
g
E=tg O O1 O2 0.1 0.2
b
灰铸铁的 压缩曲线
b
= 45o
剪应力引起 断裂
灰铸铁的 拉伸曲线O引起破坏的有关因素: 1) 塑性材料拉伸: 沿45°滑移线、屈服,
塑性材料和脆性材料力学性能比较:
塑性材料
延伸率
脆性材料
延伸率
δ > 5%
δ < 5%
断裂前有很大塑性变形 抗压能力与抗拉能力相近 可承受冲击载荷,适合于 锻压和冷加工
断裂前变形很小 抗压能力远大于抗拉能力 适合于做基础构件或外壳
材料力学性能
哈尔滨工业大学材料学院 朱景川
第一章 材料静载力学性能试验
表示一定应力状态下材料发生塑性变形的难易程度
3.扭转性能试验 (1)扭转试验方法:GB/T 10128-1988
试样:圆柱或圆管
扭转曲线
(2)扭转应力状态
扭转应力状态特点:
(3)扭转性能指标 T 切 力 应 : W
切 变 应 :
材料物理性能与力学性能PPT课件

3. 弹性模量的影响因素
弹性模量是构成材料的离子或分子之间键合强度的主 要标志,凡是影响键合强度的因素均能影响弹性模量。 如:键合方式、晶体结构、化学成分、微观组织、温 度、加载方式和速度等。
第22页/共119页
1)键合方式和原子结构 共价键、离子键、金属键----较高 分子键----较弱 原子半径越大,E越小
5)温度----温度升高,E降低 特例:橡胶。其弹性模量随温度升高而增加。
第25页/共119页
6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。 对于高分子聚合物,负荷时间延长,E下降。
第26页/共119页
4、比例极限和弹性极限
p
Fp A0
Fp:比例极限对应的应力 A0 :试棒的原始截面面积
第39页/共119页
第四节 塑性变形及其性能指标
一、塑性变形机理 定义:材料微观组织的相邻部分产生永久性位移,并不 引起材料破裂的现象。 1:金属材料的塑性变形机理:滑移、孪生 滑移系越多,塑性越好
复习: 滑移:晶体的一部分对于另一部分沿一定晶面和晶向发生相对
滑动,滑动后原子处于新的稳定位置。 滑移通常沿晶体中原子密度最大的晶面和晶向发生。
第6页/共119页
五、本课程学习注意问题:
预备知识:材料力学和金属学方面的基本理论知识。 理论联系实际:是实用性很强的一门课程。某些力学性能指
标根据理论考虑定义,而更多指标则按工程实用 要求定义。 重视实验: 通过实验既可掌握力学性能的测试原理,又可 掌握测试技术,了解测试设备,进一步理解所 测的力学性能指标的物理意义与实用意义。 做些练习: 加深理解――巩固所学的知识。
消除方法:进行较大塑性变形;再结晶退火
材料力学实验的有动画+++ppt课件

力学性能试验
应力分析实验
一、拉伸试验 二、压缩试验 三、扭转试验
电测法基本原理 四、弯曲正应力实验 五、薄壁圆筒的弯扭 组合变形
.
一、试验目的 1.测定低碳钢拉伸弹性模量E;
2.测定低碳钢拉伸力学性能(ss、 sb 、 d、 y ); 3.测定灰铸铁抗拉强度sb。
二、试验仪器 1.万能材料试验机; 2.引伸仪; 3.游标卡尺。
F Dl
√√
Dl
Fl EA
E
√
F A
√
l Dl
l
等量逐级加载法:
DF DF d(Dl)2
E
DF A
l d(D
l
)
d(Dl)1
Dl
O
.
2.测定低碳钢拉伸机械性能(ss、 sb 、 d、 y )
F
Fb 颈缩阶段
Fe FpFs屈服阶强段化阶段
冷作硬化 线弹性阶段
Dl O
屈服点:
s
s
Fs A0
抗拉强度:
s
b
Fb A0
伸长率:d l1 l0 100%
l0
断收面缩率:y
A0 A1 A0
100%
.
低碳钢拉伸试验现象: 屈服: 颈缩: 断裂:
.
tmax引起
3.测定灰铸铁抗拉强度 sb
F Fb
O
抗拉强度:
Dl
s
b
Fb A0
.
一、试验目的
1.测定低碳钢压缩屈服点ssc; 2.测定灰铸铁抗压强度sbc。
E1 I1 R1 R2 I4 R4 R3
I1
E1 R1 R2
I4
E1 R4 R3
U BD
E1
应力分析实验
一、拉伸试验 二、压缩试验 三、扭转试验
电测法基本原理 四、弯曲正应力实验 五、薄壁圆筒的弯扭 组合变形
.
一、试验目的 1.测定低碳钢拉伸弹性模量E;
2.测定低碳钢拉伸力学性能(ss、 sb 、 d、 y ); 3.测定灰铸铁抗拉强度sb。
二、试验仪器 1.万能材料试验机; 2.引伸仪; 3.游标卡尺。
F Dl
√√
Dl
Fl EA
E
√
F A
√
l Dl
l
等量逐级加载法:
DF DF d(Dl)2
E
DF A
l d(D
l
)
d(Dl)1
Dl
O
.
2.测定低碳钢拉伸机械性能(ss、 sb 、 d、 y )
F
Fb 颈缩阶段
Fe FpFs屈服阶强段化阶段
冷作硬化 线弹性阶段
Dl O
屈服点:
s
s
Fs A0
抗拉强度:
s
b
Fb A0
伸长率:d l1 l0 100%
l0
断收面缩率:y
A0 A1 A0
100%
.
低碳钢拉伸试验现象: 屈服: 颈缩: 断裂:
.
tmax引起
3.测定灰铸铁抗拉强度 sb
F Fb
O
抗拉强度:
Dl
s
b
Fb A0
.
一、试验目的
1.测定低碳钢压缩屈服点ssc; 2.测定灰铸铁抗压强度sbc。
E1 I1 R1 R2 I4 R4 R3
I1
E1 R1 R2
I4
E1 R4 R3
U BD
E1
材料力学性能-动画

F 2F HB S D πD( - D2 -d2 )
图1 .2 .7 布氏硬度测试原理
图1 .2 .8 布氏硬度测试示意
2.洛氏硬度(HR)
(1)测试原理 洛氏硬度值用主载荷 作用下试样产生塑性变形 压痕深度BD来确定。 图1 .2 .9 洛氏硬度测试原理示意 (2)表示方法 硬度标尺:HRA、 HRB 、 HRC,C标尺最常用。如 250HRC。 (3)适用范围 在批量的成品或半成品 质量检验中广泛使用,也 可测定较薄工件或表面有 图1 .2 .10 洛氏硬度测试 较薄硬化层的硬度。
图1 .2 .11 维氏硬度测试原理示意
1.裂纹扩展的基本形式
(Ⅰ) 张开型 图1 .2 .12
(Ⅱ) 滑开型 裂纹扩展的基本形式
(Ⅲ) 撕开型
2.应力场强度因子KⅠ
衡量裂纹尖端 附近应力场强弱程 度的力学参量称为 应力场强度因子, 用KⅠ表示。其表 达式为:
图1 .2 .13
裂纹尖端附近应力场示意
图1 .1 3 韧性、脆性断裂示意
2.测得的主要力学性能指标
(1)弹性极限: 材料产生完全弹性变形时所能承受的最大应力值,以
“σe”表示,单位为MPa。
(2)弹性模量:材料在弹性变形的阶段内,直线的斜率。以“E ”表示,
单位为MPa。E 值反映材料的刚度大小。 通常材料一定, E 值变化很小。
E tan
图1 .1 .1 弹性变形示意
2.塑性变形
载荷增加到一定程 度时,材料发生的变形 不能完全消失而一部分 被保留下来, 被保留的 变形称之为塑性变形或 永久变形。如图1 .1 .2 所示。
图1 .1 .2 塑性变形示意
3.断裂
断裂前出现明显宏 观塑性变形的断裂称为 韧性断裂;在断裂前没 有宏观塑性变形的断裂 称为脆性断裂。如图 1 .1 .3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 .2 .14 裂纹扩展示意
1.3.1 冲击韧度
材料的韧性是指材料
在塑性变形和断裂的全过程中
吸收能量的能力,它是材料塑
性和强度的综合表现。
材料在冲击载荷作用下抵抗 破坏的能力称为冲击韧度。
1.摆锤冲击实验
冲击韧度值用公式表示:
图1 .3.1 冲击试样
k
Ak S0
(J/cm2)
国家标准现已规定用
硬度标尺:HRA、 HRB 、HRC,C标尺最 常用。如250HRC。
(3)适用范围
在批量的成品或半成品 质量检验中广泛使用,也 可测定较薄工件或表面有 较薄硬化层的硬度。
图1 .2 .9 洛氏硬度测试原理示意 图1 .2 .10 洛氏硬度测试
3.维氏硬度(HV)
(1)测试原理
和布氏硬度试验原理
基本相同。
(2)表示方法
例如:640HV30/20。
(3)适用范围
用于测量金属镀层薄
片材料和化学热处理后的表
面硬度。
各硬度值之间大致有以下
关系:
布氏硬度值在200~45450HBS,
HBS≈HV。
图1 .2 .11 维氏硬度测试原理示意
2)断面收缩率ψ ψ=[(S0-S1)/S0]×100%
图1 .2 .5 屈服强度示意
1.布氏硬度(HB) (1)测试原理 计算公式:
F
2F
HB S πD(D - D2 -d2)
(2)测定条件
压头为淬火钢球,适于测定硬度 在450以下的材料,如结构钢、铸 铁及非铁合金等,以HBS表示;压 头为硬质合金,以HBW表示,适于 测定硬度值在450以上的材料,最 高可测650HBW。
1.裂纹扩展的基本形式
(Ⅰ) 张开型
(Ⅱ) 滑开型
(Ⅲ) 撕开型
图1 .2 .12 裂纹扩展的基本形式
2.应力场强度因子KⅠ
衡量裂纹尖端 附近应力场强弱程 度的力学参量称为 应力场强度因子, 用KⅠ表示。其表 达式为:
图1 .2 .13 裂纹尖端附近应力场示意
K Yσ a
单位为MPa·m1/2 。
(3)表示方法
例如:
120HBS10/1000/30。
(4)适用范围
铸铁、铸钢、非铁金属材料及热 处理后钢材毛坯或半成品。
图1 .2 .7 布氏硬度测试原理 图1 .2 .8 布氏硬度测试示意
2.洛氏硬度(HR)
(1)测试原理
洛氏硬度值用主载荷作 用下试样产生塑性变形压
痕深度BD来确定。
(2)表示方法
E tan
图1 .2 .2 弹性极限和弹性模量示意
图1 .2 .3 弹性模量与结构刚度示意
(3) 屈服点σs和屈服强度σ0.2
(4) 抗拉强度σb
(5) 塑性
1)断后伸长率δ
δ=[(L1-L0)/L0]×100%
注意:δ和δ5的区别。
图1 .2 .4 屈服点与抗拉强度
图1 .2 .6 δ和δ5的区别
Ak作为韧性判据。
图1 .3.2 冲击试验
1.3.2 疲劳强度
1.疲劳强度
疲劳强度是指材料经无数
次交变载荷作用而不断裂的最
大应力值用σ-1表示,单位为
MPa,它表现了材料抵抗疲劳
断裂的能力。
2.疲劳断裂
零件在循环应力作用下,
在一处或几处产生局部永久性
累积损伤,经一定循环次数后突
然产生断裂的过程,称为疲劳断
图1 .1 .1 弹性变形示意
2.塑性变形
载荷增加到一定程 度时,材料发生的变形 不能完全消失而一部分 被保留下来, 被保留的 变形称之为塑性变形或 永久变形。如图1 .1 .2 所示。
3.断裂
断裂前出现明显宏 观塑性变形的断裂称为 韧性断裂;在断裂前没 有宏观塑性变形的断裂 称为脆性断裂。如图 1 .1 .3所示。
图1 .1 .2 塑性变形示意 图1 .1 3 韧性、脆性断裂示意
2.测得的主要力学性能指标
(1)弹性极限:材料产生完全弹性变形时所能承受的最大应力值,以
“σe”表示,单位为MPa。
(2)弹性模量:材料在弹性变形的阶段内,直线的斜率。以“E ”表示,
单位为MPa。E 值反映材料的刚度大小。 通常材料一定, E 值变化很小。
裂.如图1.3.4示意。
疲劳断裂由疲劳裂纹产
生—扩展—瞬时断裂三个阶段
组成。
图1 .3.4 疲劳断裂示意