东莞市中考数学考点
东莞近八年中考数学真题题型及知识点分析

实数综合运算(零指数次幂、负指数次幂、特殊三角函数值、二次根式、绝对值……) 不等式 分式方程 一次函数 作图(中垂线) 解直三角形 增长率应用题 统计 四边形 几何找规律 分式化简与求值 平移与旋转在网格中 圆中计角与弦长 一次函数与 反比例函数 概率 二次函数 三角形与 四边形综合 方案设计 (不等式组) 不等式组 三角形全等 画圆判圆关系与 弧围成的面积 一次函数与 二次函数综合 购物优惠应用题 分式方程 直角三角形测塘宽 统计 梯形折叠成三角 形后求角及边 作图(中垂线) 一次函数与 作图(中垂线) 反比例函数 应用题(图 圆 形变换) 应用题 相似与全等 一次函数与 反比例函数 统计 列方程解应用 概率 三角形 解直三角 形(坡度)
22
23 二次函数 五、 解答 题三 27分 24 圆的证明题
25
两个三角板搭配, 一个三角板移动
近几年广东省中考数学试题知识点分析
大题 题号 1 一、 选择 题15 分 2 3 4 5 6 二、 填空 题20 分 7 8 9 10 11 三、 12 解答 13 题30 分 14 15 16 四、 解答 17 题28 分 18 19 2006年 实数运算 取值范围 科学记数法 平行四边形 展开图 众数 因式分解 全等三角形 分母有理化 圆柱体 二次函数 实数运算 圆 概率 作图有网格 统计 不等式应用题 一次函数与 反比例函数 圆 不等式 一次函数 2007年 科学记数法 实数 因式分解 概率 三角形 角 平行线 统计 代数式 菱形 2008年 绝对值 科学记数法 完全平方公式 轴对称 中位数 相反数 反比例函数 正三角形 平行线与 三角形内角 圆 2009年 算术平方根 幂运算 视图 科学记数法 折叠 因式分解 圆、直角三角 形 打折 概率 几何找规律 2010年 相反数 平行线 中位数与众数 三视图 二次根式 科学记数法 分式化简 直角三角形 增长率一元 二次方程 正方形面积 2011年 倒数 科学记数法 相似 概率 正多边形内角 反比例函数 根式的取值范围 代入数程序找结果 圆
2013—东莞市中考数学卷总结(含详解).doc

2013 —东莞市中考数学卷总结(含详解)【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是-5.故选:D. 2. 一带一路”昌议提出三年以来,广东企业到一带一路” 国家投资越来越活跃,据商务部门发布的数据显示,广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A. 0.4 X109B. 0.4 >1010C. 4X109D. 4X1010【考点】11 :科学记数法一表示较大的数.【分析】科学记数法的表示形式为a X0n的形式,其中1W|a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4 X09.故选:C. 3.已知/ A=70° , 则/ A 的补角为()A . 110°B. 70°C. 30°D .,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90, 85, 90, 80,95,则这组数据的众数是()A. 95B. 90C. 85D. 80【考点】W5 :众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B . 6.下列所述图形中,既是轴对称图形又是中心对称图形的是() A .等边三角形B .平行四边形C.正五边形D .圆【考点】R5 :中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D. 7 .如图,在同一平面直角坐标系中,直线y=k1x (k1工0与双曲线y= (k2工0相交于A , B两点,已知点A的坐标为(1, 2),则点B的坐标为()A . (- 1, - 2) B .(2,- 1) C. (- 1,- 1) D. (-2, - 2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,贝V经过原点的直线的两个交点一定关于原点对称.【解答】解:•••点A与B关于原点对称,二B点的坐标为(- 1 , - 2 ).故选:A . 8 .下列运算正确的是()A. a+2a=3a2B. a3?a2=a5C (a4) 2=a6D. a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46: 同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3?a2=a5此选项正确;C、(a4) 2=a8,此选项错误;D、a4与a2不是同类项, 不能合并,此选项错误;故选:B . 9.如图,四边形ABCD内接于O O, DA=DC,/ CBE=50,则/ DAC 的大小为()A . 130° . 100 65°D . 50°【考点】M6 :圆内接四边形的性质.【分析】先根据补角的性质求出/ ABC的度数,再由圆内接四边形的性质求出/ ADC的度数,由等腰三角形的性质求得/ DAC的度数.【解答】解:I/ CBE=50°,二/ ABC=180°-/ CBE=180°-50°=130°, T四边形ABCD为O O的内接四边形,二/ D=18C° -/ ABC=180 - 130°=50°, v DA=DC,二/ DAC==65,故选C. 10.如图,已知正方形ABCD,点E是BC边的中点,DE 与AC相交于点F,连接BF,下列结论:①SMBF=S A ADF ;②S8DF=4S △CEF :③S^ADF=2S △CEF :④SMDF=2S △CDF, 其中正确的是()A .①③B .②③C.①④D .②④【考点】LE :正方形的性质.【分析】由A AFD AFB,即可推出S A ABF=S A ADF,故①正确,由BE=EC=BC=AD , AD // EC,推出===,可得S8DF=2S △CEF, SMDF=4S △CEF, S^ADF=2S △CDF,故②③错误④正确,由此即可判断.【解答】解:v四边形ABCD是正方形,二AD // CB , AD=BC=AB,/ FAD= / FAB,在MFD 和△AFB 中,,/.△ AFD □ △ AFB,二SMBF=S MDF,故①正确,v BE=EC=BC=AD , AD // EC ,二===,二S8DF=2S A CEF , SMDF=4S △CEF , SMDF=2S A CDF,故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a (a+1).【考点】53:因式分解-提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a (a+1).故答案为:a (a+1). 12 .一个n 边形的内角和是7级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45<xV 5012B5g xV 55mC5空x v 6080D60wx 6540E657016 (1)填空:① m=52 (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB :扇形统计图;V5 :用样本估计总体;V7 :频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40母体重低于60千克的学生大约有X1000=7参考答案与试题解析一、选择题(共10 小题,每小题3分,满分30分)1. (3分)-2的相反数是()A. 2B . - 2C. D .-【考点】相反数.菁优网版权所有【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,- 2的相反数是2 .故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2. (3分)如图所示,a与b的大小关系是()A. a v bB. a> bC . a=bD. b=2a【考点】有理数大小比较.菁优网版权所有【分析】根据数轴判断出a, b与零的关系,即可.【解答】根据数轴得到a v 0, b>0,二b>a,故选A【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点.3. (3分)下列所述图形中,是中心对称图形的是()A .直角三角形B.平行四边形C.正五边形D.正三角形【考点】中心对称图形.菁优网版权所有【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项C、正错误;B、平行四边形是中心对称图形,故本选项正确;五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选 B .【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. (3分)据广东省旅游局统计显示,4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A. 0.277 X07B. 0.277 采08C. 2.77 K07D . 2.77 X08【考点】科学记数法一表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为aX0n的形式,其中1w|a|v 10, n为整数.确定n的值时,整数位数减1即可.当原数绝对值〉10时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将27700000用科学记数法表示为2.77 107,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X10n的形式,其中K |齐10, n为整数,表示时关键要正确确定a的值以及n的值.5. (3分)如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B. 2C. +1D . 2+1【考点】正方形的性质.菁优网版权所有【分析】由正方形的性质和已知条件得出BC=CD==1 ,ZBCD=90 , CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:•••正方形ABCD的面积为1,二BC=CD==1 , / BCD=90 ,T E、F 分别是BC、CD 的中点,二CE=BC=, CF=CD=,二CE=CF,:.△ CEF 是等腰直角三角形,二EF=CE=, 二正方形EFGH 的周长=4EF=4< =2;故选:B .【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.虎门铧师培训中心有限公司咨询电话0769-859880666.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000 元,那么他们工资的中位数是()A . 4000元B. 5000元C. 7000 元D . 10000 元【考点】中位数.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000 元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B .【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 7 . (3 分)在平面直角坐标系中,点P (- 2, - 3)所在的象限是()A .第一象限B .第二象限C.第三象限D .第四象限【考点】点的坐标.菁优网版权所有【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P (- 2,- 3)所在的象限是第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-); 第四象限(+, -) & (3分)如图,在平面直角坐标系中,点A 的坐标为(4, 3),那么cos a的值是()A. B. C. D .【考点】锐角三角函数的定义;坐标与图形性质.菁优网版权所有【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得0A==5,所以cos a=故选D .【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出0A的长度是解题的关键.9. (3分)已知方程x - 2y+3=8,则整式x - 2y的值为()A. 5B . 10C . 12D . 15【考点】等式的性质.菁优网版权所有【分析】根据等式的性质1:等式两边同时加上-3,可得x-2y=5.【解答】解:由x - 2y+3=8得:x - 2y=8 - 3=5,故选A【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想.10.(3 分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则MPC的面积y与点P运动的路程x之间形成的函数关系图象大致是() A . B . C. D.【考点】动点问题的函数图象.菁优网版权所有【专题】动点型;函数思想.【分析】分P在AB、BC、CD、AD上四种情况,表示出y 与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax ;当P在BC边上运动时,y=a (2a- x)= - ax+a2;当P在CD边上运动时,y=a (x - 2a)=ax- a2;当P在AD边上运动时,y=a (4a- x)= - ax - 2a2,大致图象为:故选C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(共6小题,每小题4分,满分24分)11. (4分)9的算术平方根是3.【考点】算术平方根.菁优网版权所有【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:T( ±3) 2=9,二9的算术平方根是| ±|=3 .故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12. (4分)分解因式:m2 - 4= (m+2) ( m2).【考点】因式分解-运用公式法.菁优网版权所有【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2- b2= (a+b) (a- b).【解答】解:m2- 4= (m+2) (m - 2).故答案为:(m+2) (m -2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反. 13 . (4分)不等式组的解集是-3v x wi【考点】解一元一次不等式组.菁优网版权所有【专题】计算题.【分析】分别解两个不等式得到xwi和x>- 3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x<1解②得x>- 3,所以不等式组的解集为-3v x<1故答案为-3v x<1【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集. 解集的规律: 同大取大;同小取小;大小小大中间找;大大小小找不到.14. (4 分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC, 已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是10n cm (计算结果保留n.【考点】圆锥的计算;弧长的计算.菁优网版权所有【分析】根据的长就是圆锥的底面周长即可求解.【解答】解:•••圆锥的高h为12cm, OA=13cm,二圆锥的底面半径为=5cm,二圆锥的底面周长为10 n cm二扇形AOC中的长是10n cm故答案为:10n【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大. 15. (4分)如图,矩形ABCD中,对角线AC=2 , E为BC边上一点,BC=3BE , 将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC 上的B'处,贝U AB=.【考点】矩形的性质;翻折变换(折叠问题).菁优网版权所有【分析】先根据折叠得出BE=B E,且/ AB' E2 B=90°可知AEB C 是直角三角形,由已知的BC=3BE得EC=2B E,得出/ ACB=30,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B E, / AB' E玄B=90° •••/EB‘ C=90; v BC=3BE,二EC=2BE=2B E,:丄 ACB=30°,在Rt AABC中,AC=2AB,二AB=AC=< 2=,故答案为:【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.16. (4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是OO的直径,AB=BC=CD .连接PA、PA、PC,若PA=a,贝V点A 至U PB 和口PC 的距离之和AE+AF=a .【考点】圆周角定理;勾股定理;解直角三角形.菁优网版权所有【分析】如图,连接OB、OC.首先证明/ AOB= / BOC= / COD=60,推出/ APB= / AOB=30,/ APC= / AOC=60,根据AE=AP?sin30 , AF=AP?sin60,即可。
2021东莞中考数学考点

2021东莞中考数学考点数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
今天小编在这给大家整理了一些东莞中考数学考点,我们一起来看看吧!东莞中考数学考点1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如=x,=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数⑴(—幂,乘方运算)。
①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)。
东莞中考必考知识点总结

东莞中考必考知识点总结一、语文知识点:1.作文写作技巧:选择合适的写作题材,构思合理的结构,使用得体的词汇和句式,注意语法和标点的使用。
4.古诗文鉴赏:熟悉古诗文的常见的诗体、诗句、传世名句,理解古人的感情、思想、意境等,能够正确解析古诗文的意象和表达方式。
5.修辞手法:熟悉常见的修辞手法,如比喻、夸张、排比、对仗等,能够辨析修辞手法的效果和作用。
二、数学知识点:1.整数:理解整数的概念,进行整数的加减乘除运算,熟练掌握整数的性质和相关定理,能够应用到实际问题中。
2.分数:理解分数的概念,进行分数的加减乘除运算,熟练掌握分数的性质和相关定理,能够应用到实际问题中。
3.平方根与立方根:掌握平方根和立方根的计算方法,能够进行平方根和立方根的运算,熟练掌握平方根和立方根的性质和相关定理。
4.代数式与方程:了解代数式的概念与性质,熟练进行代数式的合并与展开,理解方程的概念和解法,能够解一元一次方程,并应用到实际问题中。
5.图形的认识与计算:熟悉各种图形的名称、性质和计算方法,理解图形的相似与全等,能够计算图形的周长、面积和体积。
三、英语知识点:1.词汇理解:熟悉常见的英语单词和词组的意义和用法,能够正确理解词汇在句子中的意义和运用。
2.语法知识:掌握英语基础语法知识,包括动词时态、主谓一致、形容词和副词的比较级和最高级等,能够准确运用语法知识进行句子的构造和变换。
4.阅读表达与写作:能够根据所提供的信息进行书面表达和写作,包括完成句子、写作文和简要概括等。
五、基础知识点:1.政治常识:了解国家的政治制度和国家机关的组成,理解公民的权利和义务,掌握社会主义核心价值观等基本常识。
2.地理知识:了解世界和我国的地理位置、自然地理环境、人文地理环境等,熟悉地理学科的基本概念和方法。
3.历史知识:熟悉中国历史的重要事件、历史人物和历史时期,理解历史的发展轨迹和历史事件的原因和影响。
4.物理与化学知识:了解物理与化学的基本概念、原理和实验知识,理解常见物质的性质和变化规律,能够应用到实际问题中。
东莞市中考数学考点

东莞市中考数学考点东莞市中考数学考点一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
中考数学考点总结轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
东莞数学中考考点

东莞数学中考考点东莞数学中考考点1、二次函数的概念一般地,如果,那么y叫做x的二次函数。
叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。
由C、M、D三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得值(或最小值),即当时,。
如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y 随x的增大而减小,则当时,,当时,。
数学中考考点总结二次函数的解析式有三种形式:(1)一般式:(2)顶点式:(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。
如果没有交点,则不能这样表示。
注意:抛物线位置由决定.(1)决定抛物线的开口方向①开口向上.②开口向下.(2)决定抛物线与y轴交点的位置.①图象与y轴交点在x轴上方.②图象过原点.③图象与y轴交点在x轴下方.(3)决定抛物线对称轴的位置(对称轴:)①同号对称轴在y轴左侧.②对称轴是y轴.③异号对称轴在y轴右侧.(4)顶点坐标.(5)决定抛物线与x轴的交点情况.、①△>0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a0k0时,函数图像的两个分支分别在第一、三象限。
广东省东莞市中考数学试题及答案
广东省东莞市初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( ) A .2B .-2C .21D .21-【答案】D 。
【考点】倒数。
【分析】根据两个数乘积是1的数互为倒数的定义,直接得出结果。
2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨 B .5.464×108吨 C .5.464×109吨 D .5.464×1010吨【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
故选B 。
3.将左下图中的箭头缩小到原来的1,得到的图形是( )【答案】A 。
【考点】相似。
【分析】根据形状相同,大小不一定相等的两个图形相似的定义,A 符合将图中的箭头缩小到原来的21的条件;B 与原图相同;C 将图中的箭头扩大到原来的2倍;D 只将图中的箭头ABD题3图长度缩小到原来的21,宽度没有改变。
故选A 。
4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .83【答案】C 。
【考点】概率。
【分析】根据概率的计算方法,直接得出结果。
5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º 【答案】B 。
【考点】多边形内角和定理。
【分析】根据多边形内角和定理,求出正八边形的内角和为(8-2)×1800=10800,再平均10800÷8=1350。
东莞中考数学考点归纳
东莞中考数学考点归纳东莞中考数学考点归纳抛物线顶点坐标公式y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)相关结论过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1_x2=p^2/4,y1_y2=—P^2,要在直线过焦点时才能成立;②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];③(1/|FA|)+(1/|FB|)=2/P;④若OA垂直OB则AB过定点M(2P,0);⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);⑥弦长公式:AB=√(1+k^2)_│x2-x1│;⑦△=b^2-4ac;⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有两个实数根;⑵△=b^2-4ac=0有两个一样的实数根;⑶△=b^2-4ac<0没实数根。
中考数学考点归纳一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
2025年广东省九年级中考数学第一部分+中考考点梳理课件+第二章 方程(组)与不等式(组)
5.会用一元二次方程根的判别式判别方程是否有实根及两个实根是否相等.
6.了解一元二次方程的根与系数的关系(例67)(2022版课标去掉“*”).
7.能解可化为一元一次方程的分式方程.
返回
目录
新课标示例:
例67
-元二次方程的根与系数的关系
知道一元二次方程的根与系数的关系,能通过系数表示方程的根,能
用方程的根表示系数.
设问角度
核心素养
一元一次不等式组
选择,T8/3分
- > ,
的解集为
<
运算能力
解答,T16/8分 解不等式组 - > ,
+<
返回
目录
考什么
年份
考点
2021
怎么考
题型/分值
设问角度
为什么考
核心素养
- > (-),
解答,T18/6分 解不等式组
-
>
解一元一
- ≥ -,
为什么考
素材情境 核心素养
=时间差,
甲
v甲=1.2v乙
追及问题
- =
.
求一元一次不等式的
最小解
打折问题
5×0.1x-4≥4×10%
模型观念
运算能力
应用意识
返回
目录
考什么
年份
考点
怎么考
题型/分值
一元一次方
程或二元一
设问角度
为什么考
素材情境 核心素养
数学文化:每人钱数8×学生
程解的意义
,经历估计方程解的过程.
2.能根据具体问题的实际意义,检验方程解的合理性.
2025年广东省东莞市中考数学一轮复习:函数基础知识(附答案解析)
2025年广东省东莞市中考数学一轮复习:函数基础知识一.选择题(共10小题)1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.若函数=2+2(≤2)2o>2),则当函数值y=8时,自变量x的值是()A.±6B.4C.±6或4D.4或−6 3.函数y=2−+1K1中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠14.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时5.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.6.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个7.小刚从家骑自行车出发,以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家距离为s(千米),速度为v(千米/分),时间为t(分).下列函数图象能表达这一过程的是()A.B.C.D.8.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s9.函数y=x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠210.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.二.填空题(共5小题)11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)12.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.13.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△AB C的面积是.15.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.三.解答题(共5小题)16.如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D 的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、54cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△A PD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.18.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.某剧院的观众席的座位为扇形,且按下列方式设置:排数(x)1234…座位数(y)50535659…(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.20.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?2025年广东省东莞市中考数学一轮复习:函数基础知识参考答案与试题解析一.选择题(共10小题)1.下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【答案】D【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.若函数=2+2(≤2)2o>2),则当函数值y=8时,自变量x的值是()A.±6B.4C.±6或4D.4或−6【考点】函数值.【专题】计算题.【答案】D【分析】把y=8直接代入函数=2+2(≤2)2o>2)即可求出自变量的值.【解答】解:把y=8代入函数=2+2(≤2)2o>2),先代入上边的方程得x=±6,∵x≤2,x=6不合题意舍去,故x=−6;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或−6.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.3.函数y=2−+1K1中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值范围.【答案】B【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【考点】函数的图象.【答案】D【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发0.5小时,两车相距70km,∴乙车的速度为:(100﹣70)÷0.5=60(km/h),故乙行驶全程所用时间为:10060=123(小时),由最后时间为1.75小时,可得乙先到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:1001.25=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣123=112(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【考点】动点问题的函数图象.【专题】动点型;几何直观;模型思想.【答案】C【分析】要找出准确反映s 与x 之间对应关系的图象,需分析在不同阶段中s 随x 变化的情况.【解答】解:由题意知,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x ≤2,s =12,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .【点评】本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,是基础题.6.甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A .4个B .3个C .2个D .1个【考点】函数的图象.【专题】数形结合.【答案】B【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15(千米/时);故②正确;④设乙出发x分钟后追上甲,则有:1028−18×x=1040×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×1028−18=6(km),故③错误;所以正确的结论有三个:①②④,故选:B.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.小刚从家骑自行车出发,以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家距离为s(千米),速度为v(千米/分),时间为t(分).下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【答案】C【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本题考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.8.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【考点】常量与变量.【专题】推理填空题.【答案】C【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.【点评】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.9.函数y=x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠2【考点】函数自变量的取值范围.【答案】C【分析】根据分式的分母不为零、被开方数是非负数来求x的取值范围.【解答】解:依题意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故选:C.【点评】本题考查了函数自变量的取值范围.本题属于易错题,同学们往往忽略分母x ﹣2≠0这一限制性条件而解错.10.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.【考点】函数的图象.【专题】函数及其图象.【答案】B【分析】根据题意可以得到各段时间段内y随x的变化情况,从而可以判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共5小题)11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是①③④.(把你认为正确说法的序号都填上)【考点】函数的图象.【专题】压轴题.【答案】见试题解答内容【分析】结合函数图象及选项说法进行判断即可.【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.【点评】本题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,有一定难度.12.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为①③.【考点】函数的图象.【专题】行程问题;数形结合.【答案】见试题解答内容【分析】设实线表示甲的函数图象,求得在第15到33分时甲的速度,让15分加上甲行1千米用的时间即为第一次相遇的时间;易得乙的速度,乘以48即为全程;设t分时,第2次相遇,易得BC段甲的速度,相遇时甲走的路程等于乙走的路程,把相关数值代入求解后可得正误.【解答】解:①15到33分钟的速度为19km/min,∴再行1千米用的时间为9分钟,∴第一次相遇的时间为15+9=24min,正确;②第一次相遇时的路程为6km,时间为24min,所以乙的速度为6÷24=0.25km/min,所以全长为48×0.25=12km,故错误;③甲第三段速度为5÷10=0.5km/min,7+0.5×(t﹣33)=0.25t,解得t=38,正确,故答案为:①③.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决;得到甲乙两人在不同阶段内的速度是解决本题的易错点.13.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需78分钟到达终点B.【考点】函数的图象.【答案】见试题解答内容【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43千米/分钟,相遇后乙到达A站还需(16×16)÷43=2分钟,相遇后甲到达B站还需(10×43)÷16=80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故答案为:78.【点评】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△AB C的面积是12.【考点】动点问题的函数图象.【答案】见试题解答内容【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,B P先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∵图象右端点函数值为5,∴AB=BC=5∴PA=3,AP=PC=3,∴AC=6,∴△ABC的面积为:12×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.【考点】函数的图象.【专题】数形结合.【答案】见试题解答内容【分析】先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.【解答】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.【点评】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.三.解答题(共5小题)16.如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D 的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、54cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△A PD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?【考点】动点问题的函数图象.【专题】代数综合题;一次方程(组)及应用;函数及其图象.【答案】见试题解答内容【分析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒.(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.【解答】解:(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在边AB上,则12×10A=30∴AP=6则a=6(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6∵Q点路程总长为34cm,第6秒时已经走12cm,点Q还剩的路程为y2=34﹣12−54(−6)=592−54(3)当P、Q两点相遇前相距3cm时,592−54−(2x﹣6)=3解得x=10当P、Q两点相遇后相距3cm时(2x﹣6)﹣(592−54)=3解得x=15413,∴当x=10或15413时,P、Q两点相距3cm【点评】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是1500米.(2)小明在书店停留了4分钟.(3)本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)在整个上学的途中12分钟至14分钟(哪个时间段)小明骑车速度最快,最快的速度是450米/分.【考点】函数的图象.【专题】函数及其图象.【答案】见试题解答内容【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是15 00米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.18.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【考点】函数关系式.【专题】函数及其图象.【答案】见试题解答内容【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量﹣平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)代入x=280求出Q值即可;(3)根据行驶的路程=耗油量÷平均每千米的耗油量即可求出报警前能行驶的路程,与景点的往返路程比较后即可得出结论.【解答】解:(1)该车平均每千米的耗油量为(45﹣30)÷150=0.1(升/千米),行驶路程x(千米)与剩余油量Q(升)的关系式为Q=45﹣0.1x;(2)当x=280时,Q=45﹣0.1×280=17(L).答:当x=280(千米)时,剩余油量Q的值为17L.(3)(45﹣3)÷0.1=420(千米),∵420>400,∴他们能在汽车报警前回到家.【点评】本题考查了函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.19.某剧院的观众席的座位为扇形,且按下列方式设置:排数(x)1234…座位数(y)50535659…(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【考点】函数关系式.【答案】见试题解答内容【分析】(1)根据表格中数据直接得出y的变化情况;(2)根据x,y的变化规律得出y与x的函数关系;(3)利用(2)中所求,将y=90代入分析即可.【解答】解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x﹣1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,解得:x=433.故x不是整数,则某一排不可能有90个座位.【点评】此题主要考查了函数关系,正确得出y与x的函数关系式是解题关键.20.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东莞市中考数学考点
严谨是数学证明中很重要且基本的一部分。
数学家期望他们的定理以系统化的推理依着公理被推论下去。
这是为了不依着不可靠的直观,从而得出毛病的“定理”或“证明”。
今天作者在这给大家整理了一些东莞市中考数学考点,我们一起来看看吧!
东莞市中考数学考点
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、类似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、类似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做类似三角形。
2.性质:(1)类似三角形的对应角相等;
(2)类似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)类似三角形的周长比等于类似比,面积比等于类似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形类似;
(2)两边对应成比例,且夹角相等,两三角形类似;
(3)三边对应成比例,两三角形类似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形类似。
中考数学考点总结
轴对称知识点
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,依照原图顺序顺次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
中考数学考点
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)肯定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并肯定另一个因式;
①找公因式可依照肯定公因式的方法先肯定系数再肯定字母;
②提公因式并肯定另一个因式,注意要肯定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)肯定所求问题含待定系数的一样解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
东莞市中考数学考点到此结束。