储油罐液位测量系统设计

合集下载

储油罐液位测量方法分析

储油罐液位测量方法分析

储油罐液位测量方法分析摘要:介绍了几种常用的油罐液位测量技术,对这几种油罐测量技术进行了比较。

结果表明,每种测量技术都有不同的适用范围,现场应根据油品类型和实际情况,选用合适的测量技术。

关键词:油罐液位测量方法分析1 引言储油罐液位测量主要是对油品的液位、体积和重量等参数进行直接或间接测量。

早期液位测量大多采用机械原理,近年来随着电子技术的应用,逐步向机电一体化方向发展,并且发展了许多新的测量原理,在传统原理中也渗透了电子技术及微机技术,结构上和功能上都有了很大的提高。

随着油罐液位测量技术的不断发展,测量方法和测量仪表类型也随之增多。

2 储油罐液位测量技术现状目前国内外在液位测量方面采用的技术和产品很多,传统的液位传感器按其采用的测量技术及使用方法已经多达十余种,比较实用的油罐液位测量技术和方法有人工检尺、浮体式液位测量仪表、伺服式液位计、雷达液位计、静压式液位测量法以及超声波液位计。

2.1人工检尺人工检尺这种测量方法可作为其它液位计性能校验的工具之一。

即采用带有重锤的米制钢带卷尺或者有刻度的标尺计量,手工记录读数,人工查表换算,最后得到油量数据。

这种方法不仅劳动强度大,同时存在不安全因素。

人工检尺的方法液位测量一般有±2mm的人为误差。

2.2浮体式液位测量仪表浮体式液位测量仪表分为浮筒式与浮子式。

浮筒式液位计是在滑轮组上用钢丝绳一端挂浮球,另一端挂重锤,通过浮球与重锤的运动距离达到液位测量的目的。

其缺点是钢丝绳与滑轮间存在滑动摩擦力,回位误差较大,特别是在钢丝绳和滑轮生锈时,回位误差更大,甚至无法测量。

在浮子式液位计中钢带浮子式液位计在原理及使用方面更为典型,钢带浮子式液位计是一种最简单的液位测量装置,由一根不锈钢管和一个空心球组成。

不锈钢管内部装有若干个干簧继电器,空心球内装有一块永久磁铁,当空心球随着液位上下运动时,空心球的运动被干簧继电器转换为相应的液位。

20世纪60年代到80年代初期,开始研制和使用各种钢带浮子式液位计。

中衡传感器储油罐液位检测系统【设计明细】

中衡传感器储油罐液位检测系统【设计明细】

东北石油大学课程设计2013年7月16日任务书课程传感器课程设计题目储油罐液位检测系统设计专业姓名学号主要内容:本文主要是针对类似油罐等封闭式液体的液位的测量,在考虑了各种液位测量方式后,根据前文所述,决定要超声波作为主要手段,采用脉冲回波测量法。

综合运用传感器的基本原理绘出装配草图,选择合适的传感器,设计控制电路。

绘出硬件电路图,对参数进行计算,确认元器件的工作电流、电压、频率和功耗等参数能满足电路指标的要求,最终完成对储油罐液位的测量。

基本要求:1、利用已学不同种类传感器,设计储油罐液位测量电路。

2、最终完成对储油罐液位的测量。

主要参考资料:[1]黄贤武,郑筱霞.传感器原理与应用[M].成都:电子科技大学出版社,2004.[2]杨洋.电子制作—电子电路设计与制作[M].北京:科学出版社,2005.8.[3]刘国钧,陈绍业,王凤翥.图书馆目录[M].北京:高等教育出版社,1957.8.[4]施文康,余晓芬.检测技术[M].北京:机械工业出版社,2010.完成期限2013.7.12—2013.7.16指导教师专业负责人2013年7 月16 日摘要超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。

与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。

因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。

试设计储油罐(圆柱体型)液位、温度的实时监测系统。

对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。

关键词:储油罐;液位测量;仪表;现状目录一、设计要求 0二、方案设计 01、方案一 02、方案二 (1)3、方案三 (1)三、传感器工作原理 (2)四、超声波测液位电路图............................... 错误!未定义书签。

石化罐区安全仪表系统的设计

石化罐区安全仪表系统的设计

1 引言石化罐区的特点是工艺流程简单、作业过程缓慢、介质易燃易爆,随着国家对石化罐区安全生产的日益关注,国家安全生产监督管理总局下发了一系列围绕危险化学品重点设施的相关政令,其中116号文《加强化工安全仪表系统管理的指导意见》中明确规定:从2016年1月1日起,大型和外商独资合资等具备条件的化工企业新建涉及“两重点一重大”的化工装置和危险化学品储存设施,要按照本指导意见的要求设计符合相关标准规定的安全仪表系统。

结合储运厂联合车间隐患治理的设计实施过程,介绍石化罐区安全仪表系统工程设计的基本内容和方法。

安全仪表系统的设计工作,尤其是液位计、紧急切断阀的设计,面临着老旧罐区的各种复杂情况和后期工程作业的局限,设计中依据相关政令及现行规范,针对上述问题提出了不同的解决方案,并进行归类、对比和总结,旨在为石化罐区安全仪表系统的工程设计提供一些可借鉴的经验。

2 设计基础安全仪表系统是实现一个或多个安全仪表功能的控制系统,它主要包括测量仪表、逻辑控制器、最终元件等。

根据罐区生产的特点,最常见的安全仪表功能为储罐高高液位联锁切断进料,但各罐区的罐体型式、介质物性不同,其安全仪表回路的设计也不尽相同。

在联合车间的隐患治理项目中,安全仪表系统的主要组成部分为液位计、紧急切断阀、逻辑控制器等。

3 液位计根据安全仪表回路的安全完整性等级,在液位计设计时,可采用单台或冗余配置方式,常见的结构形式包括“1oo1”、“1oo2”、“2oo2”、“2oo3”等。

在联合车间隐患治理项目中,采用“1oo1”、“1oo2”逻辑时,一台液位计报警即触发联锁动作,若联锁为误动作,容易造成上游装置停车,影响到炼油厂、管道局的核心装置和设备运行,间接造成经济的损失,这种配置方案的可用性较低;而“2oo2”逻辑,必须两台液位计同时报警,才能触发联锁动作,易发生不动作情况,影响罐区的安全生产,其可靠性较差。

最终设计为“2oo3”的表决结构,三台液位计中的两台报警时,触发联锁动作,不易发生误动作或不动作现象,兼顾了可用性及可靠性。

基于单片机的液位测量系统设计

基于单片机的液位测量系统设计

基于单片机的液位测量系统设计乔 智 孙传友(长江大学电信学院,湖北荆州 邮编434023)摘要:本文研究基于89C51单片机的液位测量系统,提出双差压法和参比法的改进方案,克服了液体密度变化和电源电压波动对液位测量结果的影响,提高了液位测量的精度。

关键词:双差压法,参比法,液位测量,单片机1.引言液体的液位测量在工业生产中非常普遍,应用领域也比较广,例如:自来水水位的测量和控制;油田、炼油厂的油罐和储油槽的油位的测量等。

液位测量的方法很多,其中差压法应用比较广泛。

然而在某些生产过程中被测介质的密度随着工况或环境的变化而改变。

这种情况下,采用普通差压法测量液位,精度无法保证。

此外,测量电路的电源电压波动也将对液位测量结果产生影响。

针对上述问题,本文提出双差压法和参比法的改进方案,以克服液体密度变化和电源电压波动对液位测量结果的影响,提高液位测量的精度。

2. 双差压法液位测量原理差压法测量液位的原理是基于如下公式:gH p ρ=∆ (1) 其中△P ――差压值H ――液位高度ρ――液体密度g ――重力加速度由上式可见,只有在液体密度ρ恒定不变的条件下,差压△P 才与液位高度H 呈线性正比关系,才可以通过测量差压△P 间接地获取液位H 值。

但是液体密度ρ是液体组份和温度的多元函数。

当液体组份和温度变化导致密度ρ改变时,即使液位高度H 没有变化,也将使差压信号△P 改变,此时若还按原先的液体密度ρ从差压信号△P 计算出液位H ,显然将导致测量误差,严重时会造成操作人员的错误判断。

为此,本文提出采用两个差压传感器,如图1所示。

其中差压传感器1用于测量未知液位高度H 产生的差压,即密闭容器底部和液面上方的压力差。

(若测量敞口容器内的液位,则差压传感器器1的低压室应与大气相通,即大气P P =2) gH P P P H ρ=−=∆21 (2) 差压传感器2用于测量已知液位高度h 产生的差压,即容器底部和液面下方取压点的压力差gh P P P h ρ=−=∆31(3) 由上两式可得 h P P H h H ⋅∆∆=(4)式中 H—容器内被测液面高度;h —液面下方两固定取压点间的垂直距离;由上式可见,双差压法可消除液位密度ρ变化对液位测量的影响。

油田原油储罐液位检测控制方案

油田原油储罐液位检测控制方案

油田原油储罐液位检测控制技术方案一、原油储罐液位检测的一般方法随着石油工业的发展,油田的生产、储运、管理部门对油罐自动计量技术越来越重视,对油罐液位检测的安全性、可靠性、准确性的要求也普遍提高。

因此,各种检测仪表、控制方法和技术被应用于原油罐位的检测控制,不但适应了这些生产要求,而且随着微电子、计算机、光纤、超声波、传感器等高科技的迅猛发展,各种新技术、新方法被应用到储罐计量领域,使储罐自动计量呈现出功能化、精确化、管控一体化的新局面,从而形成了仪表齐全、方法多样、技术先进、性能可靠、价格灵活、可以适应不同目的和用途的罐位监控系统。

目前从原油罐位检测方法来看,国内外普遍采用的主要有三种方法:检尺法、静压法和液位法。

检尺法是比较基本的测量方法,是将液面的动态变化转换为直观的液位标尺和电信号;静压法是利用压力传感器(变送器)测量罐内液体的静压力,结合液体的密度计算出液位,并可根据储罐几何参数计算出容量和重量;液位法是通过间接测量罐内液体的液位高度及密度等参数,来获得罐内储液的容量及重量。

检尺法仪表结构复杂、安装工作量大、施工及维护不太方便,难以保证长年可靠性,其优点是在特殊情况下还能直观地指示液位,一般在介质相对洁净而且不太粘稠的大罐上还在使用。

静压计量技术的优点是简便、稳定可靠。

技术的关键是选用精度高、稳定性好的压力传感器。

比较著名的厂商例如美国霍尼韦尔公司、美国罗斯蒙特公司、德国恩德斯豪斯公司、英国德鲁克公司、日本EJA公司等等。

液位法仪表在发展许多新的测量原理方面表现最为突出。

智能化液位计、非接触测量方式的液位计、新原理的小型液位开关为当前的主要发展方向,通过利用电子技术及微机技术,使得仪表的结构和功能都有很大改进,并且仪表在朝着总线式方向发展。

二、非接触测量液位法介绍非接触测量液位计主要包括超声波液位计、微波液位计、激光液位计、γ射线液位计以及罐体外壁感应式液位计等等。

超声波液位计是非接触液位计中发展最快的一种。

组态王储油罐液位控制

组态王储油罐液位控制

1绪论随着工业自动化技术的不断发展,人们对系统监测性能的要求越来越高,组态王作为一个开发型的通用工业来监控系统,拥有良好的图形化操作界面,便于生产的组织与管理;同时,作为工业控制软件,它又可以很好的保证系统的可靠性与实时性。

组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。

通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。

其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。

尤其考虑三方面问题:画面、数据、动画。

通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。

组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。

而且,它能充分利用Windows 的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。

它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。

2系统需求分析在石油、化工、工矿等企业一般都有油库,这些油库是企业重要的燃料基地,是一个重要的生产环节。

各种油库的建设规模越来越大,造价也越来越高,为了确保油库的安全,必须要对影响油库安全的部分物理参数进行实时的数据采集,实现油库的自动化管理。

能及时掌握油库油罐的液位、温度、压力、油气浓度等状态参数可以大大提高油库的进油,储油和管理的工作效率,极大的提高安全保障,因此有广泛的应用价值。

通过对液位、温度、压力、油气浓度等状态量的实时监测,在智能仪表上实时显示并设置报警值,在越过限值时即可产生声光报警。

此外这些状态值也可以通过互联网传输,有访问权限的管理者可以在任何地方通过浏览器查看油库的安全参数,实现无人职守的远程监测系统。

3 系统方案论证在本设计中,为了实现对液位的控制,我使用了一个原油库,用来储存大量的原油,一个催化剂库用来存储大量的催化剂,它们分别在原料油罐催化剂罐液位少于20的时候进料,成品油罐用来存储成品油。

储油罐液位测量系统设计

储油罐液位测量系统设计一、引言二、系统设计1.系统组成该系统主要包括以下组成部分:1.1超声波传感器:用于发射超声波信号并接收返回的信号。

1.2控制器:负责控制传感器的工作,并将测量结果显示在屏幕上。

1.3信号处理模块:用于处理传感器返回的信号,并将其转换为液位高度。

1.4数据存储模块:将测量结果存储在数据库中,以备后续使用。

2.工作原理该液位测量系统基于超声波技术。

超声波传感器通过发射超声波信号并接收返回的信号来计算液位高度。

当超声波信号遇到液面时,一部分信号会被液体反射,传感器接收到这部分信号并计算液位高度。

3.系统特点3.1非接触式测量:该系统使用超声波技术进行液位测量,与传统的机械测量方法相比,具有非接触式测量的优势,可以确保测量准确性,并减小设备磨损。

3.2高精度测量:超声波技术可以提供较高的测量精度,能够满足储油罐管理的需求。

3.3实时监测:该系统可以实时监测液位变化,并将测量结果显示在控制器的屏幕上,方便操作员随时了解储油罐的液位状态。

4.设计细节4.1传感器选择:选择适合的超声波传感器对于测量系统的准确性至关重要。

应该考虑传感器的工作频率、测量范围、分辨率等参数,并根据具体的应用需求选择合适的传感器。

4.2信号处理:传感器返回的信号应进行处理,以提取有效的液位高度信息。

可以使用滤波算法和傅里叶变换等信号处理技术来提高信号的质量。

4.3可靠性设计:液位测量系统应具有良好的可靠性,以保证系统长时间稳定工作。

可以采取冗余设计、故障检测和报警机制等方法来提高系统的可靠性。

五、总结本文介绍了一个基于超声波技术的储油罐液位测量系统的设计。

该系统利用超声波传感器进行非接触式测量,能够提供高精度的液位测量结果,并实时监测液位变化。

该系统具有较高的可靠性和稳定性,适合应用于储油罐的液位管理和控制。

储油罐液位测控系统设计


9C 引言
我国石油资源丰富, 采油炼油企业众多, 储油罐是 储存油品的重要设备, 储油罐液位的精确计量对生产 厂库存管理及经济运行影响很大。但国内 许 多 反 应 罐、 大型储油罐的液位计量仍采用人工检尺和分析化 验的方法, 其他参数的测定也没有实行实时动态测量, 这样易引发安全事故, 无法为生产操作和管理决策提 供准确的依据。采用计算机自动监测技术, 实时监测 储油罐液位、 温度等参数, 可以方便了解生产状况, 及 时监视、 控制容器液位及温度等, 保障安全平稳生产。 本文针对某原油储油罐 ( 圆柱体型, *$$ :( ) , 探讨 设计该储油罐液位测控系统, 可以连续进 行 液 位、 温 度、 流量的监测, 保护整个系统处在较高的安全水平。
路的输出脉冲进行双向计数、 计算下位监测系统测量 仪的各项参数、 与上位机进行通信等功能。 !" !" !% 人机对话部件 人机对话部件采用键盘, 它实现向单片机输入数 据、 传送命令等功能。 !" !" 2% 通信接口设计 +,-/# 内部有一个功能很强的全双工串行口, 该 串行口有 $ 种工作方式, 波特率可用软件设置, 由片内 定时 7 计数器产生, 接收发送均可触发中断系统, 使用 方便。此串行口可用于数据通信, 通信采用主从方式, 单片机串行接口工作在方式 2 。 系统所用电线电缆采用铝塑管防护, 要求铝塑管 耐低温、 耐腐蚀、 防电磁干扰, 在传感器与油罐相接部 分采用全部密封结构, 以保证了线路的可靠和油罐的 安全。建立一个中心监控室, 距离油罐 21 8。
图 #! 系统总体设计方案 L5@C #! H?31.== 23;5@- ;/73:3 0< ;>;63:
温度传感器采用埋入式光纤光栅温度传感器, 这 种传感器通过内部敏感元件光纤光栅所反射的光信号 中心波长移动量来检测温度值, 测温精度及分辨率不 受光源波动及传输线路弯曲损耗的影响, 可直接通过 光纤进行信号远程传输 ( 超过 M$ B: ) , 监测现场无需

储油罐液位监测系统设计实现.docx

储油罐液位监测系统设计实现1发展趋势随着科学技术的发展,越来越多的新技术将应用于储油罐液位的测量。

特别是对于新传感技术的应用,液位测量将更加精确和经济[1]。

同时,液位测量设备也将趋于小型化和智能化。

磁致伸缩液位传感器是趋势之一。

磁致伸缩液位传感器易于安装,测量精度高,但液体密度和温度变化会导致测量误差[2]。

2国内外研究现状自动测量液位对于液位监测至关重要。

目前针对液位的自动测量有很多种技术方法,诸如:吹气法、差压法、HTG法等[3]。

为了提升液位监测系统的准确性,就需要对液位监控系统进行高精度测量。

常见的液位计包括电容式液位计、超声波液位计、微波液位计、雷达液位计等[4]。

其中,电容式液位计价格低廉,易于安装,适用于高温、高压场合,但精度低,需定期维护和重新校准,使用寿命不长。

超声波液位计使用超声波,超声波的传播速度受介质密度,浓度,温度和压力等因素的影响,测量的精度低[5]。

微波液位计受微波速度的限制,并且几乎不受传播介质、温度、压力和液体介电常数的影响。

然而,液体界面的波动,液体表面上的泡沫和液体介质的介电常数对微波反射信号的强度有很大影响。

当压力超过规定值时,将直接关系到液位测量的准确性。

雷达液位计具有较高的测量可重复性,无需定期维护和重新校准,测量精度高,但价格昂贵,难以测量油水界面。

3系统总体实现3.1系统研究内容储油罐液位监测系统改变了传统的人工检尺和化验分析的方法,为了能够给生产操作和管理模块提送准确的测量数据,液位传感器安装在储油罐上,传感器测量的数据通过GRPS通讯模块发送到控制中心。

测量数据的分析和处理由控制中心来执行相应指令。

实时监测储油罐内液面的变化,及时准确地掌握油井生产动态,为生产指挥和技术方案提供决策依据,提高油田自动化管理水平。

系统的主要功能可表述为:(1)测量油气液位。

(2)测量油水分界。

(3)测量储油罐内温度。

(4)将测量的原始数据传输到控制中心。

(5)控制中心根据温度补偿算法,通过测量的原始数据计算出油气液位和油水分界线高度,从而计算出原油产量;(6)统计分析油井产量。

油罐中使用液位计的两种测量方法 液位计常见问题解决方法

油罐中使用液位计的两种测量方法液位计常见问题解决方法1、间接测量法:利用传感元件测出与液位有关的信号后,再利用电量的转换得到所测液位仪。

例如:某油库某号罐区所使用的差压式液位仪就是测量液体在不同高度所产生的压力差,然后利用计算机通过密度换算,温度补偿等得到液位值。

再比如光导液位仪表是利用光电原理从与浮子罐内浮子相连的信息码带上读取液位编码信息,然后通过二次表翻译成液位值。

此种测量方法较为多而杂,成本高,系统误差大,但可以大大降低劳动强度,能有效适时的避开溢罐等安全事故的发生,简单实现储罐区自动化管理。

2、直接测量:人工测量法是利用计量工具直接测取液位,不需要任何中心转换。

例如,石油化工储运系统用的人工量油尺,浮子钢带式直读液位表(如读取光导表一次表刻度值),磁性液位计,磁翻版液位计等等。

这种测量方法直观、可信度高、使用简单,并且造价低,但人为读数误差较大。

目前在多数石化企业人工检尺仍是测量、掌控液位的紧要方法,并且常常作为标定其他仪表的紧要参考。

其实油库油罐的液位,并不特别紧要,用户实际要了解的并不是液位,而是通过测量液位来了解油罐中油品的实际数量(即吨数),从而防止满溢。

由此分析接受差压法来测液位(实际为吨数)也不失为一个好的选择。

磁翻板和其他任何仪表一样,在使用中都会显现一些这样或那样的情况,今日我们就讲讲当显现假液位怎么办?磁翻板液位计在长期的使用中简单显现假液位的现象,给用户带来了几大的麻烦,造成磁翻板液位计显现假液位的原因有以下几种:1、首先确定液相、气相都是通的!2、用一块磁铁,沿其表面扫一下全程,你即可以体会到会修正好。

3、假如是安全液体,先把液相放掉,执行操作2;4、假如气相的蒸汽压较大,关闭气相伐,将管中液体压回贮罐,执行2,操作。

顶装式磁翻板液位计适用于测量各种不便于侧面安装液位计的容器,特别是地下贮槽内的液位测量。

广泛适用于石油、化工、冶金、电力、轻工及医药等行业和部门。

5、外界干扰信号过大,造成电路得到的是假的信号,不是实际测量的信号;6、液位计内部的波导丝故障,比如松动,密封不好进水生锈等,造成信号失真;7、波导丝安装不正确,信号传递失真;8、信号处理电路故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储油罐液位测量系统设计
1.测量原理选择:根据储油罐的特点和工作环境选择合适的液位测量原理。

常用的液位测量原理包括浮球式液位计、压力变送器、超声波液位计等。

不同的原理适用于不同的储油罐类型和液体性质。

2.传感器选型:根据储油罐的容积和工作条件选择合适的传感器。

传感器的特性包括测量范围、精度、材料、工作温度范围等。

同时,还需要考虑传感器与液体的接触方式,可以选择浸入式或非接触式传感器。

3.信号传输和处理:将传感器测量到的液位信号传输到控制室进行处理和显示。

可以选择模拟信号传输或数字信号传输,根据实际情况选择合适的传输介质和协议。

在控制室,可以使用PLC或DCS系统对信号进行处理和显示。

4.安全性考虑:储油罐液位测量系统设计要考虑安全因素,包括防爆性能和防火防爆设计。

传感器和信号处理设备应具备相应的防爆等级,并符合相关安全标准。

5.抗干扰设计:储油罐液位测量系统易受到环境干扰,如波动的液体表面、气体产生的压力变化等。

因此,系统设计需要考虑抗干扰能力,采用合适的滤波和补偿算法,并保证测量结果的稳定性和准确性。

6.制定标准和程序:为了保证系统正常运行和维护工作的顺利进行,需要制定相应的标准和操作程序。

包括液位测量精度要求、标定周期、维护和保养程序等。

在设计储油罐液位测量系统时,还需要考虑经济性和实用性。

合理选择传感器和设备,充分利用现有的技术和设备,可以降低成本,提高系统可靠性和操作效率。

相关文档
最新文档