寻北仪的方位引出方法
摆式陀螺寻北仪步进寻北原理

摆式陀螺寻北仪步进寻北法1982.10.1前言悬挂摆式陀螺寻北仪是目前使用最广的一种寻北系统。
它能在几十分钟到几分钟内准确地测定出天文北,而不需要观测天星或地面目标。
仪器的主要部分是一个用恒弹性金属悬带自由悬吊着的陀螺房,其内部装有高速旋转的陀螺马达,马达的转轴即H轴呈水平放置。
由于陀螺房的悬挂点在其重心下部,因而构成一个能敏感地球自转角速度水平分量的陀螺摆,在地球自转运动的作用下水平状态的H轴将绕铅垂方向作正弦摆动。
当悬带不受扭时(通常可以通过上悬带夹跟踪方法消除其扭力影响),H轴摆动的平衡位置即为真北方位。
为了测得这个平衡位置可以有许多不同的方法,如逆转点方法、时差方法、力反馈方法、循环阻尼方法等等。
1977年西德学者H. Rymarczyk提出一种新的寻北方法-“叠代步进”寻北方法(1),以下简称“步进”寻北方法。
此方法曾经被用于西德矿山测绘所研制的MW50手动测量寻北仪。
在高精度MW77(Gyromat2000的前身)陀螺寻北仪中,由于测量摆动的线性光电传感器的敏区有限,在初始架设时如果陀螺H轴偏离北向比较大时,陀螺摆动的平衡位置可能偏离光电传感器的敏区(或者形成切割),因而无法完成光电自动积分测量。
采用步进”寻北可以完成快速粗寻北,将陀螺房的摆动收敛到光电传感器的敏区之内。
此过程在MW77是手动完成而Gyromat2000 则是自动完成。
文献1只对步进寻北方法的操作作了简单说明,而文献2只给出了大刚度悬带条件下即扭力比K〉1的步进寻北过程曲线。
均未提到K〈1条件下寻北测量方法、初始偏北角与步进次数的关系及理论真北的计算方法,也没有给出具有明显物理意义的寻北运动方程。
本文对其寻北过程的本质作了明确的解释,从简单的物理过程出发推导了包括K〉1在内的各关系式,其正确性已通过大量试验进行了证明,并成功地用于TJ-76和TDJ-83(西安101厂生产,目前可能已经改型了)陀螺经纬仪。
2步进寻北原理为了说明步进寻北法的原理,我们先分析一下陀螺摆在悬带受扭条件下的运动,然后介绍步进衰减的寻北过程。
陀螺仪高精度寻北方法

陀螺仪⾼精度寻北⽅法 ⼈们普遍认为是1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球⾃转,发明了陀螺仪。
那个时代的陀螺仪可以理解成把⼀个⾼速旋转的陀螺放到⼀个万向⽀架上⾯,这样因为陀螺在⾼速旋转时保持稳定,⼈们就可以通过陀螺的⽅向来辨认⽅向,确定姿态,计算⾓速度。
⼀、陀螺仪的发明 陀螺仪先后被⽤在航海上和航空上,因为飞机飞在空中,是⽆法像地⾯⼀样靠⾁眼辨认⽅向的,危险性极⾼,所以陀螺仪迅速得到了应⽤,成为飞⾏仪表的核⼼。
到了第⼆次世界⼤战,德国⼈搞了飞弹去炸英国,从德国飞到英国,千⾥迢迢怎么让飞弹能击中⽬标呢?于是,德国⼈搞出来惯性制导系统。
惯性制导系统采⽤⽤陀螺仪确定⽅向和⾓速度,⽤加速度计测试加速度,然后控制飞⾏姿态,争取让飞弹落到想去的地⽅。
⼆战时候,计算机和仪器的精度都是不太够的,所以德国的飞弹偏差很⼤,想要炸伦敦,结果炸得到处都是,让英国⼈恐慌了⼀阵。
不过,从此以后,以陀螺仪为核⼼的惯性制导系统就被⼴泛应⽤于航空航天,今天的导弹⾥⾯依然有这套东西,⽽随着需求的刺激,陀螺仪也在不断进化。
⼆、陀螺仪的进化 最早的陀螺仪都是机械式的,⾥⾯真有⾼速旋转的陀螺,⽽机械的东西对加⼯精度有很⾼的要求,还怕震动,因此机械陀螺仪为基础的导航系统精度⼀直都不太⾼。
于是,⼈们开始寻找更好的办法,利⽤物理学上的进步,发展出激光陀螺仪,光纤陀螺仪,以及微机电陀螺仪(MEMS)。
这些东西虽然还叫陀螺仪,但是它们的原理和传统的机械陀螺仪已经完全是两码事了。
光纤陀螺仪利⽤的是萨格纳克(Sagnac)效应,通过光传播的特性,测量光程差计算出旋转的⾓速度,起到陀螺仪的作⽤,替代陀螺仪的功能。
激光陀螺仪也是通过算光程差计算⾓速度,替代陀螺仪。
微机电陀螺仪则是利⽤物理学的科⾥奥利⼒,在内部产⽣微⼩的电容变化,然后测量电容,计算出⾓速度,替代陀螺仪。
iPhone和我们的智能⼿机⾥⾯所⽤的陀螺仪,就是微机电陀螺仪(MEMS)。
寻北仪工作原理

寻北仪工作原理探秘寻北仪:一窥地球磁场的“罗盘指路”在科技的世界里,有一种精密仪器犹如探险家手中的魔法指南针,它能精准捕捉到地球母亲脉搏的跳动,沿着磁力线翩翩起舞,这就是我们今天要揭开神秘面纱的主角——寻北仪。
你可能会问,“哎呦喂,这玩意儿究竟如何工作?又为何能在大千世界中独领风骚?”别急,这就带你一步步走进它的奇妙世界。
寻北仪,顾名思义,就是寻找地理北极的神器。
在地球这颗巨大的“磁铁”上,其核心产生的磁场就如同无形的丝线,贯穿南北两极。
而寻北仪正是通过感知并解码这些磁力线,从而实现定位和导航的功能。
说白了,它就像一只聪明绝顶的小精灵,能够读懂地球磁场的“密码”,然后告诉我们:“嘿,兄弟,北方在这儿呢!”寻北仪的工作原理,其实内含乾坤,堪比一场精妙绝伦的地球物理学表演。
首先,仪器内部装有高灵敏度的磁强计,这是它的“眼睛”,能敏锐地捕获周围微弱的磁场变化。
一旦开机,磁强计便开始忙碌起来,像只勤奋的小蜜蜂,不断采集并分析周遭的磁场信息。
其次,寻北仪内置的电子系统则扮演着“大脑”的角色,通过对磁强计收集的数据进行实时处理,计算出磁北方向。
这一过程仿佛是大自然与高科技的一次深度对话,磁场信号经过数字化、解析化,最终转化为我们看得懂、用得上的导航数据。
接下来,寻北仪通常会配备一个指向机构,比如指示针或者显示屏,它们是与用户直接交流的“嘴巴”。
无论环境多么复杂,只要找到磁北,这个“嘴巴”就会毫不犹豫地指向那个方向,坚定而准确。
当然,为了提高精度和适应各种复杂环境,高级的寻北仪还会采用诸如陀螺仪等辅助设备进行修正,确保在动态或磁干扰环境下仍能精确寻北。
这种精益求精的精神,真是让人忍不住拍案叫绝:“乖乖,这家伙还真有一套!”综上所述,寻北仪凭借其对地球磁场的深刻理解和巧妙利用,成为了现代科技领域中不可或缺的一员。
从地质勘探、建筑施工,到航天航海、军事应用,哪里需要精准定位,哪里就有寻北仪的身影。
它以独特的技术魅力和实用价值,向我们生动诠释了科学探索的力量与智慧,真可谓“小小身躯,大大能量”。
寻北仪原理

寻北仪原理嘿,朋友们!今天咱来聊聊寻北仪原理这神奇的玩意儿。
你说这寻北仪啊,就像是一个超级厉害的指南针,但可比普通指南针牛多啦!它就像我们在生活中遇到困难时那个能精准指出方向的好朋友。
想象一下,你在茫茫荒野中,周围啥标志都没有,就像在一个大迷宫里一样。
这时候寻北仪就闪亮登场啦!它能稳稳地告诉你北方在哪里,让你不再迷茫。
它是怎么做到的呢?其实啊,就靠一些特别的技术和原理。
寻北仪里面有一些超级敏感的元件,就好像是它的小眼睛,能敏锐地察觉到地球的磁场。
这就跟我们能通过眼睛看到美丽的风景一样神奇呢!这些小眼睛会把感受到的磁场信息传递给仪器的大脑,然后经过一番计算和处理,嘿,北方的方向就出来啦!这是不是很厉害?就好像它有一双神奇的手,能在混乱中准确地抓住正确的方向。
咱平时走路可能还会迷失方向呢,可寻北仪就不会。
它总是那么坚定,那么可靠。
而且啊,寻北仪可不像我们有时候会犯迷糊,它总是那么精确,那么一丝不苟。
它就像是一个严谨的科学家,一点点偏差都不允许。
这要是放在我们生活中,那得是多么优秀的品质啊!你说这寻北仪的原理神奇不神奇?它就像是一个隐藏在科技世界里的小魔法,默默地为我们指引着方向。
我们得好好珍惜它,利用它,让它带着我们在未知的世界里勇敢前行。
反正我是觉得寻北仪真的太了不起啦!它让我们在探索世界的时候有了更多的信心和勇气。
不管是在野外探险,还是在其他需要确定方向的场合,它都能发挥巨大的作用。
我们真应该好好感谢那些发明寻北仪的科学家们,是他们让我们的生活变得更加方便和有趣。
所以啊,朋友们,当你们下次看到寻北仪的时候,可别小瞧了它哦!它可是有着大本事的呢!让我们一起为寻北仪点赞吧!。
静基座寻北

2013-8-5
目
1
录
陀螺寻北仪原理
2
捷联式寻北系统
3
水平条件下的四位置寻北算法
4
倾斜条件下的四位置寻北算法
§1 陀螺寻北仪原理
陀螺寻北技术一般可分为两类: 陀螺罗经式
直接利用双自由度 转子陀螺特性的陀 螺罗经式自主寻北 技术,包含陀螺罗 经系统和摆式陀螺 寻北仪,特点是精 度高、定向时间较 长。
寻北系统中,光纤陀螺输入轴与转台面平行,若转台 面是水平的,当转台转到四个正交位置
:
N1 K g 0 K g1 N cos( 1 ) g
90 : N 2 K g 0 K g1 N cos( 2 90 ) g
180 : N3 K g 0 K g1 N cos( 3 180 ) g
270 : N 4 K g 0 K g1 N cos( 4 270 ) g
§3 水平条件下的四位置寻北方法
对于转台的角定位误差及陀螺的安装误差,可事先进行 标定或补偿(也可视情况忽略不计),可近似认为:
1 2 3 4 0
则有:
N1 N 3 cos 2 K e cos
综上可见,寻北精度与陀螺漂移、转台定位误差、陀螺安 装误差、及标度因数误差有关,而其中关键是四个位置上 光纤陀螺总漂移的均值稳定性,这主要与测量时间、光纤 陀螺短期零位稳定性及随机游走因素有关。
N4 N2 sin 2 Ke cos N4 N2 arctan N1 N 3
捷联式寻北
直接测量当地地理 水平面上地球转速 分量的方法,推算 出当地真北方向, 它不发生摆动,定 向时间短,但指北 精度不够高。
陀螺寻北仪原理(精度影响因素及技术参数)

式(18)
式(17)
0.6 0.4 0.2 0 -0.2 0 -0.4 -0.6
误差/度
60
120
180
240
300
360
方位角/度
图8
仿真条件:纬度为 20 度; 在两个采样周期(3 分钟)内的陀螺 x 轴漂移为+0.05,y 轴漂移+0.05; 俯仰角和横滚角分别为 5; 仿真结果见图 9
225
270
315
360
图6 3.3 纬度误差对寻北精度的影响 仿真条件:纬度为 40 度; 纬度误差为:0.1 俯仰角和横滚角分别为 5; 计算公式(17)式。
北京七维航测科技股份有限公司 地址:海淀区西北旺镇永捷南路 2 号院 2 号楼
北京七维航测科技股份有限公司
Beijing SDi Science&Technology Co.,Ltd.
附录:寻北仪主程序框图 GPS 加电
查询导航计算机
发送 GPS 数据 N
Y
寻 北 仪 加
接收 GPS 数据
给陀螺和加速度计发出启动指令
寻北仪自检
接收导航计算机初始参数
接收 GPS 数据 N 寻北开始? Y
北京七维航测科技股份有限公司 地址:海淀区西北旺镇永捷南路 2 号院 2 号楼
北京七维航测科技股份有限公司
北京七维航测科技股份有限公司 地址:海淀区西北旺镇永捷南路 2 号院 2 号楼
北京七维航测科技股份有限公司
Beijing SDi Science&Technology Co.,Ltd.
地理坐标系: 取东为 Xg 轴的正方向, 北为 Y g 轴的正方向, 铅垂轴向上为 Z 轴的正方向, 原点为寻北仪的质心。 陀螺和加速度计的安装方式见图 1 和图 2
三轴光纤陀螺仪寻北原理

三轴光纤陀螺仪寻北原理嘿,朋友们!今天咱来聊聊三轴光纤陀螺仪寻北原理。
你说这玩意儿神奇不神奇?就好像是一个超级敏锐的小侦探,能帮我们找到北方那个神秘的方向呢!咱先想想啊,这世界这么大,方向那么多,要是没有个靠谱的工具来指引,那可不得像只无头苍蝇一样乱撞呀!而三轴光纤陀螺仪呢,就像是我们在方向海洋里的灯塔。
它是怎么工作的呢?简单来说,它就像是一个特别厉害的舞者,在空间中不断地旋转、感知。
它里面有那些细细的光纤,就像是舞者的丝带一样,随着它的转动,能敏锐地感受到各种微小的变化。
你说这像不像我们在生活中对各种细节的捕捉呀?就好比我们通过观察身边的点点滴滴来判断事情一样。
三轴光纤陀螺仪也是通过对这些微小的信号的分析,来确定北方在哪里。
你看啊,它可以在各种复杂的环境下工作,不管是热得要命的沙漠,还是冷得刺骨的冰原,它都能稳稳地发挥作用。
这多厉害呀!这不就像是一个坚强的战士,不管遇到什么艰难险阻,都能坚定地向前冲嘛!而且哦,它的精度还特别高。
你想想,如果它指错了方向,那我们岂不是要走冤枉路啦!所以它得特别靠谱,就像我们信任自己最好的朋友一样信任它。
有时候我就想呀,这科技的发展可真是让人惊叹!从以前只能靠着太阳、星星来辨别方向,到现在有了这么先进的三轴光纤陀螺仪。
这就好像我们从走路变成了坐火箭一样,速度那叫一个快呀!咱再回过头来看看这三轴光纤陀螺仪寻北原理,是不是觉得特别有意思呀?它就像是一个隐藏在科技世界里的小秘密,等着我们去探索、去发现。
它就像一个无声的伙伴,默默地为我们指引着方向,让我们在探索世界的道路上不再迷茫。
我们应该好好珍惜这样的科技成果,让它为我们的生活带来更多的便利和惊喜呀!这三轴光纤陀螺仪寻北原理,真的是太神奇、太实用啦!。
寻北仪原理及典型指标参数

寻北仪原理简介和分类寻北仪是罗盘的一种,是用来寻找某一位置的真北方向值。
陀螺寻北仪又称陀螺罗盘,是利用陀螺原理测定地球自转角速率在当地水平面投影方向(即真北方位)的一种惯性测量系统。
它的寻北过程无需外部参考。
除受高纬度限制之外,它的寻北测量不受天气、昼夜时间、地磁场和场地通视条件的影响。
陀螺寻北仪是一种精密惯性测量仪器,通常用于为火炮、地对地导弹和地面雷达等机动武器系统提供方位参考。
根据所用陀螺类型,陀螺寻北仪可分为以下三种:◆以二自由度陀螺作为地球自转敏感器的寻北仪(如悬挂摆式陀螺寻北仪)◆以单轴速率陀螺作为敏感器的寻北仪(如捷联式陀螺寻北仪,高精度,例SDI-151)◆平台寻北系统陀螺寻北仪对环境的振动干扰(特别是对低频振动干扰)极为敏感。
根据使用环境,陀螺寻北仪可分为地面架设的高精度寻北仪、车载陀螺寻北仪和船用动基座陀螺寻北仪三种。
工作原理陀螺寻北仪原理陀螺仪是一种机械转动部件的惯性测量元件,具有耐冲击、灵敏度高、寿命长、功耗低、集成可靠等优点,是新一代捷联式惯性导航系统中理想的惯性器件。
在基于陀螺的寻北应用中,采用的大多数方法是FOG转动固定角度,通过确定偏移量计算相对北方向的夹角。
为了精确指北,还必须消除FOG的漂移。
一般使用一个旋转平台如图1所示,将陀螺置于动基座上,动基座平面平行于水平面,陀螺的敏感轴平行于动基座平面。
开始寻北时,陀螺处于位置1,陀螺敏感轴与载体平行。
假设陀螺敏感轴的初始方向与真北方向的夹角为。
陀螺在位置1 的输出值为;然后转动基座90°,在2位置测得陀螺的输出值为。
依次再转动两次90°,分别转到3和4的位置,得到角速度和。
图 1. 陀螺寻北示意图图 2. 地球自转在陀螺敏感轴上的投影假设测量点的纬度为,地球自转为,则1位置测得的角速度为:其中,为陀螺输出的零点漂移。
同理可得:在短时间内,假设陀螺的漂移为一常量,即:, 则用此方法测量,可以消除陀螺的零偏,也不需要知道测量地点的纬度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寻北仪的方位引出方法
陀螺寻北仪的寻北测量结果需要传递给使用者,这就需要解决寻北方位引出问题。
早期的摆式-液浮的和吊丝式寻北仪-都与经纬仪相连,以经纬仪望远镜光轴为寻北方位输出。
理论上讲,寻北方位输出应该以敏感地速水平分量的陀螺敏感轴为寻北方位输出轴,但是由于理论上的陀螺敏感轴难以直接观测或者引出不便因此通常以陀螺的安装基面或通过标定,将敏感轴传递到寻北仪的某个固定轴线例如经纬仪的水平光轴或者某个固定垂直基面的法线作为寻北结果的输出轴。
根据使用方法的不同采用不同的引出方法,此时需要考虑的是:标定和引出方便、易于检测和常数标定、与理论敏感轴之间的关系稳定、使用过程中易于保护等。
1.车载寻北仪
车体本身是机动的但是车载寻北仪是直接安装在车上的,寻北仪的寻北测量结果需要传递给车载导航仪或者车载雷达、火炮、火箭发射装置等,因此通常是以寻北仪外壳的侧向安装基面(法线)与车载导航仪建立固定的关系,经过标定测量来确定两者之间的固定安装角。
为了防止传递关系的变化需要定期检测。
见图1
自寻北航向仪是具有自寻北功能的惯性航向保持装置其航向仪的水平安装基面既是航向仪的输出基面也是寻北结果的输出基面。
2摆式(吊丝)陀螺寻北仪
2.1.普通吊丝式寻北仪
最初的摆式陀螺寻北仪MW10为半液浮的宝石轴承定位,相当于质心下移的悬浮式自由陀螺。
陀螺房上安装的侧向平面镜其法线大致平行于陀螺H轴。
大约在1975年德国研制出上挂摆式(陀螺敏感部安装在经纬仪之上)吊丝式陀螺经纬仪,简称为吊丝式陀螺经纬仪,这是摆式陀螺寻北仪发展的一个里程碑。
后来出现下挂式,而上挂式被淘汰。
这些寻北仪与普通经纬仪连接在一起,称为陀螺经纬仪。
通过标定,将陀螺H轴与经纬仪望远镜光轴建立稳定的方位角关系,将其寻北结果从经纬仪传递出去。
见图2
2.2.美国ALINE陀螺寻北仪(陀螺经纬仪)
ALINE寻北仪的方位引出方法是在方位跟踪转台上固定一片倾斜45°的平面镜,其法线的水平投影即为寻北方位引出线。
转台上的小型准直经纬仪向下俯45°来准直平面镜即完成寻北方位向经纬仪光轴的传递。
经纬仪仰角45°回到水平位置再向用户传递。
见图3 此时望远镜的俯仰偏差被带入了,为此需要计入经纬仪的俯仰偏差。
由于每次方位引出都需要经纬仪重新准直倾斜平面镜因此,经纬仪可以临时安置在转台上。
ALINE和下面的MARCS寻北仪中的陀螺房摆动传感器都是感应式的而不是光学的。
2.3.美国MARCS高精度吊丝式寻北仪
MARCS高精度寻北仪是世界最高精度的吊丝式寻北仪(2″级),作为野战条件下校正普通寻北仪的方位基准。
其方位转台上没有安装经纬仪因此不能称为陀螺经纬仪。
它的方位引出方法是:在方位跟踪转台上安装一个直角棱镜,其法线即为寻北方位引出线。
用户通过准直这个直角棱镜得到寻北方位。
由于减少了一些方位传递环节因此具有更高的稳定性。
其实,就经纬仪本身来说,从底部的安装面到上部的经纬仪望远镜之间以及度盘与上下回转机
构之间并非固定的整体结构其中就有回转(也可以说是方位传递)机构。
见图4 另外,与普通陀螺经纬仪相比,因为没有上部的经纬仪,使寻北仪的整体质心大大的向下移动了因此也大大提高了系统的稳定性。
3.四位陀螺罗盘的寻北方位引出方法
以上几种寻北仪都是通过与已知北向基准进行比对完成所谓的常数标定将陀螺寻北轴间接的转移的寻北仪的某个输出基面。
考虑到陀螺漂移,各安装误差和安装基面的稳定性以及多次传递误差等等造成仪器常数不稳定,因此需要定期或者不定期进行校准。
而美国四位陀螺罗盘属于半固定式寻北仪,其寻北方位引出方法是一种最理想的方位引出方法。
这里,陀螺被安装在水平翻转轴上,轴的两端安装有平面镜,其法线基本平行于水平翻转轴。
在每次寻北采样完成之后,水平轴要翻转180°进行第二次采样测量。
简单的翻转之后的第二次采样与前次采样相减,将陀螺“常值漂移”,轴侧镜法线与水平轴之间的平行差以及各种安装误差全部对消从而成为具有绝对寻北测量功能的寻北仪。
采用四位寻北采样还可以消除其他一些误差。
见图5
4.摆式陀螺寻北仪H直接引出的设想
严格说,摆式陀螺寻北仪在忽略了陀螺房悬带扭力和外部干扰转矩,例如磁场干扰,干扰气流的条件下,陀螺的理论H轴将对称天文北做方位摆动,在有速度阻尼条件下摆动衰减的零位处于子午面内,在赤道处,H轴平行地轴,在其他纬度条件下,H轴存在俯仰角但是其水平面投影就是当地的真北方向,此时只要我们设法将H轴方位直接引出来我们就可以得到真北方位,完成绝对寻北。
那么如何将理论H轴引出呢?本人提出如下设想:在陀螺H轴一端安装一个平面镜,尽可能使其法线平行于H轴。
考虑到陀螺马达轴承的精度,马达轴的轴线并非理论H轴。
转子旋转一周时侧向平面镜法线在水平面的投影并非时理论上的一个点而是一个不规则的“椭圆”。
此外,在寻北运动过程中,H轴存在俯仰角,形成上下移动的椭圆,如果将这不规则椭圆上画一条垂线将椭圆分割成左右面积相等的两半那么这条垂直平分线即可作为理论上的H方位引出线。
此时目视准直陀螺轴平面镜的返回图像不会是一个十字线可能是一个不规则的模糊椭圆,我们将目视镜的固定十字线与椭圆的垂直平分线的竖线对准应该就完成了吊丝式寻北仪的绝对寻北。