寻北仪原理及典型指标参数

寻北仪原理及典型指标参数
寻北仪原理及典型指标参数

寻北仪原理

简介和分类

寻北仪是罗盘的一种,是用来寻找某一位置的真北方向值。陀螺寻北仪又称陀螺罗盘,是利用陀螺原理测定地球自转角速率在当地水平面投影方向(即真北方位)的一种惯性测量系统。它的寻北过程无需外部参考。除受高纬度限制之外,它的寻北测量不受天气、昼夜时间、地磁场和场地通视条件的影响。陀螺寻北仪是一种精密惯性测量仪器,通常用于为火炮、地对地导弹和地面雷达等机动武器系统提供方位参考。根据所用陀螺类型,陀螺寻北仪可分为以下三种:

◆以二自由度陀螺作为地球自转敏感器的寻北仪(如悬挂摆式陀螺寻北仪)

◆以单轴速率陀螺作为敏感器的寻北仪(如捷联式陀螺寻北仪,高精度,例SDI-151)

◆平台寻北系统

陀螺寻北仪对环境的振动干扰(特别是对低频振动干扰)极为敏感。根据使用环境,陀螺寻北仪可分为地面架设的高精度寻北仪、车载陀螺寻北仪和船用动基座陀螺寻北仪三种。

工作原理

陀螺寻北仪原理

陀螺仪是一种机械转动部件的惯性测量元件,具有耐冲击、灵敏度高、寿命长、功耗低、集成可靠等优点,是新一代捷联式惯性导航系统中理想的惯性器件。

在基于陀螺的寻北应用中,采用的大多数方法是FOG转动固定角度,通过确定偏移量计算相对北方向的夹角。为了精确指北,还必须消除FOG的漂移。一般使用一个旋转平台如图1所示,将陀螺置于动基座上,动基座平面平行于水平面,陀螺的敏感轴平行于动基座平面。开始寻北时,陀螺处于位置1,陀螺敏感轴与载体平行。假设陀螺敏感轴的初始方向与真北方

向的夹角为。陀螺在位置1 的输出值为;然后转动基座90°,在2位置测

得陀螺的输出值为。依次再转动两次90°,分别转到3和4的位置,得到角速度和。

图 1. 陀螺寻北示意图

图 2. 地球自转在陀螺敏感轴上的投影

假设测量点的纬度为,地球自转为,则1位置测得的角速度为:

其中,为陀螺输出的零点漂移。同理可得:

在短时间内,假设陀螺的漂移为一常量,即:, 则

用此方法测量,可以消除陀螺的零偏,也不需要知道测量地点的纬度值。如果测量地点的纬度为已知值,那么可以只需测量1和3(或者2和4)两个位置便可以求出航向角。

基座的倾斜对寻北精度的影响

上面的分析是基于动基座平面水平,即陀螺的敏感轴处于水平面内而得出的结论。如果安装陀螺的基座平面与水平面存在较大倾角,则寻北精度会受到较大的影响。下面分析当基座平面不水平时,倾角对方位角测量产生的影响。

设载体的姿态角为, ,,分别表示航向角、倾斜角和俯仰角。建立如下坐标系:

1) 地理坐标系OX n Y n Z n,其方向分别为东、北、天, 如图3中左图所示。

2) OX1Y1Z1坐标系, 是坐标系OX n Y n Z n绕Z n轴旋逆时针转角得到。

3) OX2Y2Z2坐标系,是坐标系OX1Y1Z1绕X1轴旋逆时针转角得到。

4) 载体坐标系OX b Y b Z b,是坐标系OX2Y2Z2绕Y2轴旋逆时针转角得到。OX b, OY b, OZ b

分别为载体首尾线水平面及水平面法线方向,其中载体纵轴与OX b轴重合,陀螺坐标系与之重合,即陀螺敏感轴与OX b轴重合,如图3中右图所示。

在地理坐标系OX n Y n Z n 中地球自转角速率的分量为(0,

,

), 经过OX n Y n Z n 到

OX b Y b Z b 的变换后,在陀螺坐标系OX b Y b Z b 中地球自转角速率的分量为:

即为陀螺的敏感轴方向,可以得到陀螺的输出为:

当和为零,即转台完全水平时,公式(9)与公式(1)一致。依次旋转90°角度后,可以测得陀螺在1、2、3和4位置的输出为:

在测量时间内假设,可以求得:

其中

在实际测量中,可以通过一个加速度传感器来测得平台的倾斜角和。加速度计的敏感轴与OY b平行。

在地理坐标系OX n Y n Z n中地球重力加速度为(0, 0, -g),则在载体坐标系OX b Y b Z b中各轴的重力分量为:

因此加速度计在四个位置的输出为:

其中,为重力加速度,为加速度传感器偏置,为加速度传感器噪声。假设测量过程中加速度传感器的零偏和噪声不变,可以求解得

可以把(21)、(22)式代入(14)式中求得航向角。

参考型号和技术指标

SDI-151寻北仪是我们公司自研的产品,也是目前市场上最畅销的寻北仪,由双自由度动力调谐陀螺,机械转动装置和信号解算电路构成。双自由度陀螺具有两个基本特性,进动性和定轴性。陀螺仪自转轴相对于惯性空间保持方位不变,而地球以其自转角速度绕极轴相对惯性空间转动,若以地球为参考基准,将会看到陀螺仪自转轴相对地球转动,因此陀螺仪可以跟踪测量地球自转角速度。利用陀螺敏感到的地球自转角速度在X、Y 轴上的分量不同得到产品参考轴的方位信息。

病人监护仪技术参数

病人监护仪技术参数 一. 监护参数 标准配置参数: 心电(ECG),血压(NIBP),血氧(SpO2),心率(HR)/脉率(PR),呼吸(Resp,体温(Temp) 可选配置: 记录仪 二. 性能特点: 1.整体小巧便携,锂电供电便于携带转运(续航时间长达4小时) 2.多种固定安装选件,包括滚轮支架,壁挂支架 3.具有血氧灌注指数,显示血氧灌注信号质量 4.心率失常监测 5.ECG滤波功能,在手术室中减少伪差及电刀干扰 6.打印记录,可记录病人ID,日期,时间及生命体征信息 7.有双向数据接口,并无偿提供,能与我院医院信息系统无缝连接 8.配备USB接口,便于软件升级(并且免费) 9.多种病人(成人/儿童/新生儿)类型设计,满足不同人群需要 10.图标式用户交互界面,操作简便易学 11.可选配条形码扫描仪 12. 三年保修 三.显示 显示屏尺寸:8.4寸 LCD屏幕 分辨率: 800X600 显示通道:4 通道 大字体显示界面 四.电源 电源类型: 内部电池,工作时间:4 小时,充电时间 < 4 小时 交流电源:国标单相三线220V,频率 50/60 Hz 五.安全标准 防护类别:第 I 类,即内部供电设备

防护等级: CF 类防除颤 工作模式:连续 六.性能指标 6.1 心电(ECG) 心率范围 15 - 300 bpm 心率精度±1% 或± 5 bpm (取较大值) EASI 带宽正常监护:0.15 - 40Hz 滤波监护(手术室模式):0.5 -20Hz 导联 3 导联 显示扫描速度 12.5、 25、 50 mm/s 起搏器检测在波形显示上的指示信号,用户可选 心电图尺寸(灵敏度) 2.0、1.0、0.5、 0.25 cm/mV 或“自动” 导联脱落情况检出并显示 差分输入阻抗 > 2MΩ CMRR(共模抑制比) > 86 db (有 51 KΩ /47nF 不均衡) 输入信号范围±5 mV 6.2 血压(NIBP) 技术使用逐级放气压力的震荡计法 成人/儿童测量范围收缩压 30 - 255 mmHg 舒张压 15 - 220 mmHg 平均压 20 - 235 mmHg 脉率范围 30-240 bpm 新生儿测量范围收缩压 30 - 135 mmHg 舒张压 15 - 110 mmHg 平均压 20 - 125 mmHg 脉率范围 40 - 240 bpm 血压精度± 5 mmHg 脉率精度± 2 bpm 或± 2%(取较大值) 初始袖带充气成人:160 mmHg 儿童:140 mmHg 新生儿:100 mmHg 后续袖带充气比上次测得的收缩压数值高 30 毫米汞柱

双筒望远镜参数说明

望远镜参数说明 望远镜参数说明 倍率:指将景物拉近的能力。 例:一台10x42的望远镜,望远镜的倍率是10或者10x 10倍就是说可将1000米外景物“拉近”到100米处。其实际观察大小等于我们走近到100米外观景。放大率越高,所见景物越大。倍率较高会使背景较黑,高倍率会令影像变得较朦亦会将手震幅度放大,使影像摇动不已。一般来说10倍乃是一般人之极限。低倍率情况下影像较光,亦较清晰锐利,色差及其他像差亦较少。 物镜口径:物镜的直径大小 例:一台10x42的望远镜,物镜是42MM。 口径越大,集光力越高,所见暗星越多,影像越亮,解像度越高越锐利。但一阔三大,重量也更大,而且大镜较难研磨。4cm级较轻便,但所见暗星不及5cm级。3cm级集光力比较弱,但较轻巧,日间观鸟比较方便。比5cm大的机型都较重,而且较难保持平衡,需用脚架支撑。总的来说,8x40/10x40等机型较方便,适合一般用途。8x30机型最适合观鸟。 视场(Field of View) 视场即是我们观景的范圉,视场越大,观测范圉越大。如下图所示,表示看1000米以外的景物,能看到的宽度是120米。 视距(Eye Relief)

视距指在能够清晰看到整个视场下,眼睛和目镜之间最短距离。视距长度以mm 表示,取决於目镜设计。视距太短时,若眼睛不是贴近目镜玻璃便导致视野边缘失光,不合戴眼镜人仕使用;视距太长,影像容易有黑影出现,但只要将眼杯拉长问题即可解决。 戴眼镜人仕请选视距14mm以上之型号(详见下图): 计算:物镜口径(mm) /倍率 当你手持双筒望远镜,你会见目镜中央有一个圆形光点,其余地方为黑色,这光点就是出射光瞳。优质的望远镜出射光瞳为一个完美清晰的圆形光点,位处中央,周围呈黑色。出射光瞳越大,代表影像亮度越亮,清晰度越高,而且眼球较易看到影像,此种望远镜适合海事、环境不断晃动场合下使用。出射光瞳太细会使影像难于对准观测,但是出射光瞳超过7mm后,一部分光线便会散失掉,造成浪费。而且人越老瞳孔越细,如50岁的人瞳孔夜间中 扩到最大亦只有5mm。所有望远镜的出射光瞳亦不宜太大。 镀膜(Coating) 镜片表层镀膜可减少由反射造成的光的流失,从而增加影像的亮度,清晰度和对比度,也可减缓眼视疲劳。镀膜可分为四个层次 1)镀膜coated:至少在一个光学面上镀有单层增透膜; 2)全表面镀膜fully coated:所有的镜片和棱镜都镀有单层膜; 3)多层镀膜multi-coated:至少在一个光学面上镀有多层增透膜 4)多层全光学面镀膜fully nmulti-coated:所有的镜片和棱镜都镀有多层增透膜。

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

监护仪技术参数

申购设备科室主任参数制作 工程师 参数审核 工程师技术参数表 序号项目参数技术要求1.产地国产 2.功能要求置于普通病房中,可固定于床旁,用于监测病人各项生理参数。同时也可转运使用。 3.工作条件电源:兼具交流供电:220v,50Hz和内部蓄电池供电;蓄电池容量:工作时间≥3小时,电池带电量显示,低电量提醒功能 4.显示要求≥10.4寸,彩色高分辨率显示,中文/英文操作界面,可选标准或大字体简明界面。 5.监护项目基本监护项目:心电ECG、心率(脉搏率)、呼吸RESP、血氧SPO2,、无创血压NIBP基本五项监测; 需要时可增配:有创血压,体温等。 5.1心电3导联或5导联可选; 导联方式可选:I、II、III、aVR、aVL、aVF; 心电波形幅度和扫描速度可调。 心律失常检测分析功能,ST段检测分析功能。 抗干扰功能:抗干扰电路,抗肌电、除颤、电刀等干扰。 5.2心率HR心律来源可选; QRS音量可调节; 具备简单的心律失常分析功能; 5.3呼吸阻抗呼吸描迹法; 可同时实现波形显示和数字显示;呼吸波形幅度和扫描速度可调; 5.4血氧具备波形和数字显示,具有抗运动和低灌注功能;测量范围:1-100%

申购设备科室主任参数制作 工程师 参数审核 工程师 5.5无创血压可测量收缩压、舒张压和平均压;成人血压测量范围:0—300mmHg;小儿血压范围:0—250mmHg 有过压保护 6.报警功能具有三级报警功能 报警项目:心率(或脉搏率)、SPO2、NIBP(收缩压、舒张压和平压)、呼吸率、体温、心律失常等 报警指示:高亮度显示信息、报警声音和报警灯; 报警音量可实现自主调节; 7.数据存储可存储病人数据,数据可以通过数据卡传输 趋势图参数:心率(或脉搏率)、呼吸率、ST水平、事件、SPO2、NIBP(收缩压、舒张压和平均压); 趋势图:≥24小时趋势图和生命体征列表; 存储回顾:≥24小时全息波形回顾; 8.打印装置必要时可选配内置打印机 9. 售后要求9.1. 提供设备装箱单 9.2. 提供设备附件分项报价 9.3. 提供耗材及易损件报价 9.4. 产品全套保修≥2年 9.5. 提供操作手册及维修指南 9.6. 提供设备操作流程和设备日常维护记录表 9.7. 提供该设备维修专用工具以及非标的电源连接线。 9.8. 该设备为强检设备,安装验收时销售单位必须出具计量部门出具的检验合格 9.9 .维修响应承诺

监护仪原理和分类

监护仪原理和分类 一.监护仪原理和分类。 监护仪基本原理 监护仪功能各异,其具体工作原理也不同,但一般都是通过传感器感应各种生理变化,然后放大器会把信息强化,再转换成电信息,这时数据分析软件就会对数据进行计算,分析和编辑,最后在显示屏中的各个功能模块显示出来,或根据需要记录,打印下来,当监测的数据超出设定的指标时,就会激发警报系统,发出信号引起医护人员的注意。 1.监护仪是一种以测量和控制病人生理参数,并可与已知设定值进行比较,如果出现超标,可发出警报的装置或系统。 2.监护仪与监护诊断仪器不同,它必须24小时连续监护病人的生理参数,检出变化趋势, 指出临危情况,供医生应急处理和进行治疗的依据,使并发症减到最少达到缓解并消除病情的目的。 监护仪的用途除测量和监护生理参数外,还包括监视和处理用药及手术前后的状况。 3.监护仪可选的参数:心电、呼吸、血压(有无创和有创两种)、血氧饱和度、脉率、体温、呼吸末二氧化碳、呼吸力学、麻醉气体、心输出量(有创和无创)、脑电双频指数等 二.监护仪临床应用范围 手术中、手术后、外伤护理、冠心病、危重病人、新生儿、早产儿、高压氧舱、分娩室等。 三.监护仪分类 单参数监护仪:如血压监护仪、血氧饱和度监护仪、心电监护仪等。 多功能、多参数综合监护仪:可同时监护心电、呼吸、体温、血压、血氧等参数。 插件式组合监护仪:它是由各个方面分立可拆卸的生理参数模块和一台监护仪主机构成,用户可按照自己的要求选购不同的插件模块组成一个适合自己特殊要求的监护仪。 2.根据功能分为:床边监护仪(六参数监护仪)、中央监护仪、动态心电监护仪,心电图机(最原始的一种),颅内压监护仪,除颤监护仪,多普勒胎心监护仪,胎儿监护仪,母婴监护仪等。 床边监护仪是设置在病床边与病人连接在一起的仪器,能够对病人的各种生理参数或某些状态进行连续的监测,予以显示报警或记录,它也可以与中央监护仪构成一个整体来进行工作。

第一章 望远镜基本原理

望遠鏡基本原理 1.1望遠鏡光學原理 望遠鏡由物鏡和目鏡組成,接近景物的凸形透鏡或凹形反射鏡叫做物鏡,靠近眼睛那塊叫做目鏡。遠景物的光源視作平行光,根據光學原埋,平行光經過透鏡或球面凹形反射鏡便會聚焦在一點上,這就是焦點。焦點與物鏡距離就是焦距。再利用一塊比物鏡焦距短的凸透鏡或目鏡就可以把成像放大,這時觀察者覺得遠處景物被拉近,看得特別清楚。 折射鏡是由一組透鏡組成,反射式則包括一塊鍍了反光金屬面的凹形球面鏡和把光源作 90 度反射的平面鏡。兩者的吸光率大致相同。折射和反射鏡各有優點,現分別討論。 1.2 折射和反射望遠鏡的選擇 折射望遠鏡的優點 1.影像穩定 折射式望遠鏡鏡筒密封,避免了空氣對流現象。 2.彗像差矯正 利用不同的透鏡組合來矯正彗像差(Coma)。 3.保養

主鏡密封,不會被污濁空氣侵蝕,基本上不用保養。 折射望遠鏡的缺點 1.色差 不同波長光波成像在焦點附近,所以望遠鏡出現彩色光環圍繞成像。矯正色差時要增加一塊不同折射率的透鏡,但矯正大口徑鏡就不容易。 2.鏡筒長 為了消除色差,設計望遠鏡時就要把焦距儘量增長,約主鏡口徑的十五倍,以六吋口徑計算,便是七呎半長,而且用起來又不方便,業餘製鏡者要造一座這樣長而穩定度高的腳架很是困難的一回事。 3.價錢貴 光線要穿過透鏡關係,所以要採用清晰度高,質地優良的玻璃,這樣價錢就貴許多。全部完成後的價錢也比同一口徑的反射鏡貴數倍至十數倍。 反射望遠鏡的優點 1.消色差 任何可見光均聚焦於一點。 2.鏡筒短 通常鏡筒長度只有主鏡直徑八倍,所以比折射鏡筒約短兩倍。短的鏡筒操作力便,又容易製造穩定性高的腳架。 3.價錢便宜 光線只在主鏡表面反射,製鏡者可以購買較經濟的普通玻璃去製造反射鏡的主要部份。

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

汽车驾驶基础理论知识

《汽车驾驶基础理论知识》 第一讲汽车行驶六大操纵机构的运用方法。 汽车行驶六大操纵机构包括: 方向盘离合器踏板制动踏板加速踏板变速杆驻车制动器(手刹)《一》方向盘 1. 方向盘的作用:是为了汽车的行驶方向 2. 方向盘握的位置两手握在方向盘中间两端部位,方向盘好比一个大钟表,即左手握在九时点,右手握在三时点 3. 方向盘握的方法: 四指合拢弯曲,大拇指贴方向盘的边沿 4. 左右手的分工 方向盘以左手为主,右手为副 5. 方向盘运用的原理 (1) 方向盘的转动方向和前轮的摆动方向是一致的。 即:方向盘向右转动,前轮向右摆动,方向盘向左转动,前轮向左摆动,汽车向左行驶。 (2))汽车在后倒时,方向盘转动的方向个车尾摆动的方向是一致的。 即:方向盘向右转动,车尾向右摆动,方向盘向左转动,车尾向左摆动,换一句话来说,向右倒车,方向盘就给右打,向左倒车方向盘就给左打。 (3))汽车在转弯时,汽车的行驶速度和方向盘转动的速度成正比。 即:速度快,方向盘要打的快,速度慢,方向盘要打的慢,如果说:汽车的速度快,方向盘打的慢,汽车就转不过弯,直走了,总之,转弯时,方向盘转动的速

度和汽车行驶的速度相适应。 (4))汽车在直线行驶的情况下,方向盘转动的速度和汽车的行驶速度成反比。即:速度快,方向盘要打的慢,假如说:速度快,方向盘打的快,汽车会蛇行前进。 (5))汽车行驶时,方向盘要快打快回,慢打要慢回,边打边回,打多少要回多少,那么汽车在行驶转弯时究竟打多少回多少? 即:方向盘转动一圈是360 度,转动两圈是720 度,俗称:方向盘转动为两圈时方向盘打不动,打不动就是两圈,前轮摆动的角度是45 度,方向盘转动一圈时,前轮摆动是22.5 度,汽车在正常转弯时,一般是打一圈回一圈即可。 (6))方向盘运用的三种方法: 〔一〕两手交叉打方向 向右打时,以左手为基准点(这个基准点是方向盘转动360 度,和前轮正直状态下的基准点即九时点)右手倒在和左手基准点平行的位置即 3 时点。 向左打时,以右手为基准点(即三时点)左手倒在和右手基准点平行的位置(即 九时点)。 〔二〕方向盘单手操作小回还。 方向盘单手操作,主要是以左手单手操作,左手单手操作方向盘时,打90 度回90 度,打180 度回180 度,叫作单手操作小回还。 〔三〕方向盘单手操作大回还 方向盘左手单手操作时,打360 度回360 度,叫作单手操作大回还。 方向盘的三种运用方法,根据汽车的行驶情况交替使用。 (7))方向盘的三种错误的打法:

监护仪基础知识和基本参数原理

监护仪基础知识和基本参数原理 1、根据结构分类 监护仪器按结构分类可以分成以下三类:便携式监护仪、一般监护仪、遥测监护仪⑴便携式监护仪。便携机比较小携带方便,结构简单,性能稳定,可以随身携带,可由电池供电,可以使用时间在2小时左右,一般用于非监护室及外出抢救病人的监护。⑵一般监护仪。一般监护仪通常指床边监护仪,这种机型比较普遍,在医院重症监护室和冠心病监护室得以广泛的应用。它设置在床边与病人连接起来对病人的某些状态(如心率、呼吸率、体温、血压等)进行监视,并显示出参数。它往往与中央监护仪构成一个系统进行监护。⑶遥测监护仪。遥测方式适合于能走动的病人,属于无线方式。 2、根据功能分类 根据功能分类有床边监护仪,中央监护仪和离院监护仪三种 ⑴床边监护仪。它是设置在病床边与病人联结在一起的仪器,能够对病人的各种生理参数或某些状态进行连续的检测,予以显示报警或记录,它也可以与中央监护仪构成一个整体来进行工作⑵中央监护仪。又可称为中央监护系统,它是有主监护仪和若干床边监护仪组成的,通过主监护仪可以控制各床边监护仪的工作,对多个被监护对象的情况进行同时监护,它的一个重要任务是完成对各种异常的生理参数的自动记录⑶离院监护仪。一般是病人可以随身携带的小型电子监护仪,可以在医院内外对病人的某种生理参数进行连续监护,供医生进行非实时性的检查。 三、监护生理参数的测量方法及测量原理 ㈠心电部分 1、心电图,又可称为心电波 心电图是从体表记录的心脏电位变化的曲线,它反映出心脏兴奋的产生、传导和恢复的过程中的生物电位变化。 下图是典型的心电波形,每个完整的心电波形都包含P波、Q波、R波、S波、T波、U波6个波形组成

望远镜的倍数

望远镜倍数 文章简介 很多人在购买望远镜时,对望远镜倍数的理解有误,导致对购买的望远镜不是很满意。本文将详细教你正确理解望远镜的倍数,同时教你选择一款适合自己需要的倍数的望远镜。 文章详细内容 很多人在购买望远镜时,对望远镜倍数的理解有误,导致对购买的望远镜不是很满意。本文将详细教你正确理解望远镜的倍数,同时教你选择一款适合自己需要的倍数的望远镜。 每架望远镜上都标有主要参数,如7x35表示该镜为7倍,物镜口径35mm。一般6倍以下为低倍率,6-10倍为中倍率,10倍以上为高倍率。现在主要讨论双筒望远镜的倍数。 很多人总认为倍数越高越好,一些厂家也以虚假的高倍来吸引消费者,实际上一架望远镜的合理倍数是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,用三角架固定观测的可以比手持观测高些。若选购手持观测的双筒望远镜,7-10倍之间足够用,最高不要超过12倍,否则倍数越高,观测视场就越小、越暗,观测效果反而下降,尤其是高倍带来的抖动也大大增加,使观测的景物无法稳定下来,很难正常观测。 望远镜的倍数,在理论上与望远镜的视野成反比,倍数越高,视野越小。所以望远镜的倍数不适宜太大。50MM口径的双筒望远镜,如果到了20倍就基本上到了极限了,如果倍数在大,视野就太小了。基本无法使用。 世界各国如美国、俄罗斯装备部队的望远镜品种虽很多,但大多以6-10倍为主,一些世界名牌如美国博士能、施华洛世奇、德国蔡司等所产望远镜同样也是以中倍率为多,这是因为一个清晰而稳定的成像是最重要的。 目前世界上的顶级望远镜,如博士能精英系列,一般都采用42MM口径,8-10倍的倍率就行了。 所以作为我们日常户外用的望远镜,建议选择7-10倍。超过10倍尽量就不要选择呢了。如果超过10倍就建议使用三角架。 我们从国外最流行的望远镜就能看到望远镜应该选择什么倍数。全球超高清望远镜连续三年销售冠军- 美国博士能精英系列的倍率就是7-10倍。 博士能奖杯系列应该所有知道望远镜的地球人都知道,博士能奖杯234210是全球400-600美元中高级望远镜销售冠军。而奖杯8X32是全球迷你望远镜销售冠军。刚才说了望远镜的倍数与视野成反比,但是不同的望远镜,同样倍率,同样口径的视野相差很大。

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

监护仪基本原理及硬件构成

监护仪基本原理及硬件构成 监护仪是医院不可缺少的重要设备,通过24小时对各种生理参数的监测及分析,在病人的生理机能参数超出某一数值时发出警报,提醒医护人员或病人家属进行抢救的一种监护系统,是医护人员诊断和治疗及创救的重要参考指标。 监护仪技术正在不断发展和更新换代,可用于医院的多种病房,如:手术病房、冠心病房,精神病房、儿科与婴儿护理病房,外伤护理病房,放射治疗机护理病房等其它一些需要长时间的监测病人生理参数的场合。它既可单独使用,也可与其它监护仪及中央监护仪一起联网构成监护系统。 现代监护仪不仅实现了同时监测多种生理参数,而且实现了信号采集、分析、处理和控制的智能化。它使医生能更全面、及时、准确的掌握患者病情的变化情况,为制定治疗方案和进行应急处理提供重要依据。 监护仪器按结构分类可以分成以下三类:便携式监护仪、一般监护仪、遥测监护仪. 按功能分类有:床边监护仪,中央监护仪和离院监护仪三种. (一)基本原理: 监护仪功能各异,其具体工作原理也不同,下面介绍一下最基本的工作原理: 把信息强化对数据 传感器 ------------- 放大器 ------------- 数据分析软件 ---------------- 感应各种生理变化转换成电信息计算、分析、编辑 功能模块显示监测数据超出设定指示 显示屏 ----------------- 警报系统 --------------------- 引起医务人员的注意 根据需要记录、打印数据激发警报系统 1.信号采集:通过电极和传感器拾取人体生理参数信号,并将光、压力等其它信号转化为电信号。

2.模拟处理:通过模拟电路对采集的信号进行阻抗匹配、过滤、放大等处理。 3.数字处理:是现代监护仪的的核心部分。 4.信息输出:显示波形、文字、图形,启动报警和打印记录。 (二)基本硬件构成: 生理感受器(即传感器) 信号放大器 (1)测量服务器:数据模拟处理 数据分析处理 数据输出接口 (2)数据分析及记录、警报系统 (3)抢救设备:起搏器 呼吸机 除颤器 (三) 相关配件及耗材: 监护仪心电电缆与导联线、心电图机心电电缆和导联线、动态心电电缆与导联线、温度探头、无创血压袖带、一次性无创血压袖带、成人袖带、婴儿袖带、血氧转接线、有创血压连接电缆、血氧饱和度探头等.

频谱仪在分析无线电干扰中的应用

频谱仪在分析无线电干扰中的应用 2007-03-02 申浩张旭东 频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。 1频谱仪的原理 频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图 频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。

要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。 (1)频率扫描范围 通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency=150 MHz,stop frequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency=155 MHz,span=10 MHz。这两种设置的结果是一样的。Span越小,光标读出信号频率的精度就越高。一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。如分析一个正弦波,则扫描范围应大于2f(f为调制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。 (2)中频分辨率带宽 频谱分析仪的中频带宽决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别,若有两个频率成分同时落在中放通频带内,则频谱仪不能区分两个频率成分,所以,中放通频带越窄,则频谱仪的选择性越好。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。根据实际经验,在测量信号功率时,一般来说,分辨率带宽RBW宜为扫描宽度的1%—3%,即可保证测量精度。 分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。这是因为当带宽增加时,若测量信号的带宽大于通频带带宽,由于通过中频放大器的

监护仪技术参数

监护仪技术参数 1.硬件结构 1.1主机显示器一体化设计。 1.2无风扇等散热装置。 1.3医用专业显示器:≥12”彩色XGA TFT显示器, 分辨率≥800*600,触屏及旋钮操作。 1.4整合式电源,无需电源适配器。 1.5三色报警显示灯独立于显示屏幕之外,适合于远距离观察。 1.6标配网络接口及联网功能。 *2.模块化设计 2.1基本参数测量模块:通用于所有监护仪,可储存≥8小时监护数据(监护数据、报警设置、病人信息等),并且断电情况下存储的数据可至少保存6小时不丢失,实现数据转运; 2.2兼容单参数插件模块 3.用户界面 3.1可自定义屏幕显示方式≧ 20种,波形和数值的大小、位置任意调节。 3.2波形冻结功能,可分别冻结单个波形,不影响其他实时波形的显示和全部参数的报警。 3.3(联网情况下)可在任意床边机上显示至少1个其他床位的隔床跨视窗口,包括实时波形&数值 4.测量性能及软件

4.1心电 *4.1.1具备12导联心电监护,可同屏12导联显示。 12导联实时ECG和12导联ST值同屏显示,实时更新。 4.1.2 12导联ST 环状图,以图形形式标记12导联ST值,并可显ST随时间变化的示趋势,实时更新,提供心肌缺血的部位及严重程度。 4.1.2诊断级心电监护带宽 0.05-150Hz 4.1.3标配≧23种心律失常分析,含房颤分析。 4.1.4 QT及QTc分析,实时显示数值。 4.1.5除颤后波形恢复时间小于2秒钟 4.2 呼吸:阻抗法 *4.3无创血压 4.3.1双参考点校正:血管内测量法和水银柱测量法。 4.3.2除手动,自动,快速测量模式外,需提供序列测量模式,即最多四个相继运行的测量周期,可以为每个周期配置测量的数量和间隔 4.4脉搏血氧饱和度 4.4.1指套式传感器 *4.4.2提供灌注指数显示,即以数值的形式提示指示外周小动脉充盈状态。 4.4.3采用先进的FAST血氧技术,防运动、低灌注血氧饱和度监测。 4.4.4可储存≧48小时趋势,并可以表格和图形形式进行回顾。

望远镜的主要技术参数

望远镜基本知识 1.望远镜的表示方法 望远镜的基本表示方法是:倍率x物镜口径(直径,mm),不同类型的望远镜的规格表示方法只有一些细小的差距,但都不脱离这个模式,下面一一说明: 1.1、固定倍率的望远镜(也是最常见的望远镜)的表示方法:倍率x物镜口径(直径,mm),比如7x35表示该种望远镜的倍率为7倍,物镜口径35毫米;10&#215;50表示该种望远镜的倍率为10倍,物镜口径为50毫米。 1.2、连续变倍望远镜规格的表示方法:连续变倍望远镜是用“最低倍率-最高倍率x物镜口径(直径mm)”来表示,如8-25x25表示该种望远镜的最低倍率是8倍、最高倍率是25倍、在8倍和25倍之间可以连续变换、口径是25毫米。 1.3、固定变倍望远镜的表示方法:低倍率/高倍率(/更高倍率)x物镜口径(直径mm),有时候也用最低倍率-最高倍率x物镜口径(直径mm)的表示方法,例如15/30*80指倍率为15倍和30倍固定变倍、口径为80毫米的望远镜。 1.4、防水望远镜的表示方法:一般在望远镜型号的后面加WP(Water proof),如8X30WP指倍率为8倍,物镜口径为30毫米的防水望远镜。 1.5、广角望远镜的表示方法:一般在望远镜型号的后面加WA(Wide Angle),如7X35WA指倍率为7倍,物镜口径35毫米的广角望远镜 一些经销商把前后两数字相乘的积当作望远镜的倍率来哄骗消费者是不道德的,更有一些经销商随意扩大两个数字来欺骗消费者,我曾经见过一款10x25的DCF望远镜,标注的规格竟是990x99990,天!990倍的、口径是99990mm的望远镜是什么概念? 2.望远镜的倍率指的是什么 望远镜的倍率是指一架望远镜的倍率是指望远镜拉近物体的能力,如使用一具7倍的望远镜来观察物体,观察到的700米远的物体的效果和肉眼观察到的100米远的物体的效果是相似的(当然,由于环境的影响效果要差一些)。很多人总认为倍率越高越好,一些经销商和厂家也以虚假的高倍来吸引、欺骗消费者,市场上有些望远镜竟然标为990倍!实际上,一架望远镜的合理倍率是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,带支架的的可以比手持的高些。倍率越大,稳定性也就越差,观察视场就越小、越暗,其带来的抖动也大增加,呼吸的气流和空气的波动对其影响也就越大。手持观测的双筒望远镜,7-10倍之间是最合适的,最好不要超过12倍,如果望远镜的倍率超过12倍,那么手持观察将会很不方便。世界各国军用的望远镜也大多以6-10倍为主,如我国的军用望远镜主要是7倍和8倍的,这是因为清晰稳定的成像是非常重要的。 3.望远镜的口径指的是什么 口径是指望远镜物镜的直径。口径越大,观测视场、亮度就越大,有利于暗弱光线下的观测,但口径越大体积就越大,一般可根据需要在21-50mm之间选用。近年来市场上也出现了一些口径为70mm、80mm、100mm的大口径望远镜产品,体积很大且配有支架。 4.什么是望远镜的视场 视场(Field of view)是指在一定的距离内观察到的范围的大小。视场越大,观测的范围就越宽广越舒适,视场一般用千米处视界(可观测的宽度)和换算成角度(angle of view)来表示,常见的有三种表示方法:一是直接用角度,如angle of view:9&#176;;二是千米处的可视范围,如Field of view:158m/1000m;三是千码

汽车行驶的基本原理

0.4 汽车行驶的基本原理 0.4.1 汽车行驶的驱动力与行驶阻力 1.汽车的驱动力F t (图0-14) 地面对驱动轮产生反作用力F t推动汽车前进,F t称为汽车的驱动力。 F t=T t/r 式中T t——作用于驱动轮上的转矩(N·m); r——车轮半径(m)。 2.汽车的行驶阻力F 汽车行驶时需要克服各种阻力. F=F f+F w+F i+F j (1)滚动阻力F f 由车轮滚动时轮胎与路面发生变形而产生的。 F f=W t?f 式中F f ——滚动阻力(N); W t——车轮载荷(N); f——滚动阻力系数。 滚动阻力系数与轮胎结构、轮胎气压、车速和路面性质等有关。 (2)空气阻力F w 汽车行驶时受到空气作用力在行驶方向上的分力称为空气阻力。它由空气阻力由压力阻力与摩擦阻力两部分组成。 压力阻力是空气作用在汽车外表面上的法向压力的合力在行驶方向的分力。 摩擦阻力是由于空气的粘性在车身表面产生的摩擦作用的阻力。 影响空气阻力的因素主要有汽车形状、迎风面积和车速。在汽车行驶的速度范围内,空气阻力与车速的平方成正比,当车速很高时,空气阻力是行驶阻力的主要部分。 (3)坡度阻力F i 当汽车上坡行驶时,汽车重力沿坡道的分力称为汽车坡度阻力。 F i=Gsinα 式中G——汽车重力,G=mg(N); α——坡度角。 道路的坡度是以坡高h与底长s之比来表示,即 i=h/s=tgα 我国公路标准规定,高速公路平原微丘区最大坡度为3%,山岭重丘区为5%;一般四级路面山岭重丘区最大坡度为9%。当坡度不大时,cosα≈1,sinα≈tagα=i,则 F i≈Gi (4)加速阻力 汽车加速行驶时,需要克服汽车质量加速运动时的惯性力,这就是加速阻力。汽车的质量越大,加速阻力越大。 3.汽车行驶方程及驱动条件 汽车行驶的动力方程 F t=F f+F w+F i+F j 当汽车驱动力等于滚动阻力、空气阻力和坡度阻力之和时,汽车匀速行驶;当驱动力大于后三者时,汽车才能起步或加速行驶;当驱动力小于后三者时,则汽车无法起步或减速行驶。

监护仪的原理及使用维护

监护仪的原理及使用维护 监护仪是医院不可缺少的重要设备,通过24小时对各种生理参数的监测及分析,在病人的生理机能参数超出某一数值时发出警报,提醒医护人员或病人家属进行抢救的一种监护系统。根据本院工作实践,我把近年来遇到的监护仪临床应用中遇到的问题进行归纳和总结,并提出一些切实可行的维护保养方法和措施,以便保障临床使用和延长机器使用寿命。 一、监护仪的工作原理及硬件构成 监护仪的工作原理一般都是通过传感器感应各种生理变化,然后放大器把信息强化再转换成电信息,这是数据分析软件就会对数据进行计算、分析和编辑,最后在显示屏中的各个功能模块显示出来,或根据需要打印出来。当监测的数据超出设定的指标时,就会激发报警系统,发出报警信号,提醒医护人员。 监护仪的硬件构成一般包括测量服务器(包括生理感受器,信号放大器,数据模拟处理,数据分析处理,数据输出接口等)、数据记录和报警系统。 二、临床使用中经常遇到的问题及解决方法 我们从设备维修中发现最主要的有三类问题,它们分别是: 1、心电参数问题及解决方法 心电参数是心电监护仪最基本的监测参数之一,主要依据心脏的生物电的电活动的综合矢量在体表各方面上的投影,形成了3个肢体加压

导联和6个导联心电信号监测和分析。体表心电的投影分量大小一般只有几百微伏到需要具有高输入阻抗的信号放大,为了消除工频干扰和其他高频噪声源,在心电信号放大电路中应该充分考虑共模噪声的抑制,充分考虑通频带的设置,在心电特征识别的方法上将主要考虑心电QRS波的监测和异常波的剔除,正确计算心率,同时还需要考虑心律失常的特性识别, ST段的测量提供了实时的心电监护数据。故障一:报警显示导联脱落。 分析原因:(1)电极脱落;(2)导联线与电极连接脱落;(3)干线与导联线脱落,干线与主机端口脱落。前2种最为多见。 处理方法:更换电极。电极连接不良可引起任何形式的心电图干扰,因此,应用电极时力求做好电极放置部位皮肤的清洁和接触良好。故障二:基线游走不定。通常是间断性的,也可是连续性的。 分析原因:间断性的常由电极、拉线、电线连接不良造成,连续性游走常由呼吸费力造成,因此须密切观察患者病情,查找原因及时作出相应的处理。 故障三:心电图人为干扰。 原因分析:可由患者肌肉移动等人为干扰造成6OHz以上高频噪音等引起。 处理方法:尽量解除患者身体不适,保持环境舒适,使患者处于安静状态。 故障四:有心电图未显示心率。 分析原因:选择心率来源是PLETH而无心率,可能为血氧探头未接或

多参数监护仪(全介绍)

多参数监护仪原理

目录 第一部分、多参数监护仪发展回顾、现状及展望..................................5--7 1、监护仪的发展阶段 2、未来的监护仪 3、信息系统 4、网络协议 5、经典监护仪特征 6、便携机与分体机的区别 第二部分、监护仪技术............................................................................8--9 1、监护仪的测量范围 2、监护仪监测的生理参数 3、监护仪的测量方法及分类 4、人体生理参数的特点 5、监护仪的分类 6、监护仪的发展趋势 7、普通监护仪的结构图 第三部分、心电监护基础知识............................................................10--18 1、心电图—ECG的历史 2、心脏的基本解剖特点 3、心脏的基本生理特征 4、心电图---ECG定义 第四部分、心电(ECG)的测量...........................................................19--21 1、心电信号 2、心电监护设备的标准要求 3、心电设备的结构 4、心电电极的连接和关系 5、心电功能板的结构 6、呼吸波的测量(阻抗法) 第五部分、血压监护基础知识............................................................22--27 1、血压定义 2、无创血压 3、血压的单位 4、正常血压范围 5、血压的生理变异 6、影响血压因素 7、无创血压测量技术 8、NBP无创血压临床应用 9、测量无创压时的注意事项 10、高血压概念 11、血压的波动 12、动态血压 13、有创血压测量(IBP) 临床应用 14、心排量定义

汽车行驶的基本原理

汽车知识轻松入门一——汽车行驶的基本原理 大家好,为了能让大家在我们的太平洋汽车网中学习到更多,更系统化的汽车知识,使各位汽车爱好者,无论是在看车还是在玩车、用车的过程中能够成为这方面的“专家”,我们将连续的推出“汽车知识轻松入门”的系列专题,以期能够深入浅出的带大家逐步了解汽车的原理以及各部分的构造。 一、汽车行驶的基本原理 我们知道汽车要运动,就必须有克服各种阻力的驱动力,也就是说,汽车在行驶中所需要的功率和能量是取决于它的行驶阻力。 因此,我们首先要了解的就是阻力。有些人大概会问了,我们只要给汽车装个大功率的发动机就好了,还用得着管它什么阻力么?如果是这样就会面临几个问题:1、究竟多大功率的发动机才可以呢?没有一个对比参照物,我们如何确定我们需要多大功率呢;2、汽车的设计是先设计了汽车的总成,比如底盘,车体等等的部分之后,才设计和选用发动机的,如果不知道这部汽车将面对的阻力,那么我们根本没办法设计出实用的汽车;3、就算有了非常大功率的发动机(足够可否任何在地面行驶时的阻力),并且已经装上了合适的车体,在使用中也会因为行驶性、油耗,排放,保养,维修等问题而使你无法正常使用它。由此可见,我们要了解汽车的动力性,首先就是要知道我们所遇阻力有哪些。 一般,汽车的行驶阻力可以分为稳定行驶阻力和动态行驶阻力。 稳定行驶阻力包括了车轮阻力、空气阻力以及坡度阻力。 1、车轮阻力 我们所说的车轮阻力其实是由轮胎的滚动阻力、路面阻力还有轮胎侧偏引起的阻力所构成。 当汽车在行驶时会使得轮胎变形,而不是一直保持静止时的圆形,而由于轮胎本身的橡胶和内部的空气都具有弹性,因此在轮胎滚动是会使得轮胎反复经历压缩和伸展的过程,由此产生了阻尼功,即变形阻力。经过试验表明,当汽车超过45m/s(162km/h)时轮胎变形阻力就会急剧增加,这不仅要求有更高的动力,对轮胎本身也是极大的考验。而轮胎在路面行驶时,胎面与地面之间存在着纵向和横向的相对局部滑动,还有车轮轴承内部也会有相对运动,因此又会有摩擦阻力产生。由于我们是被空气所包围的,只要是运动的物体就会受到空气阻力的影响。这三种阻力:变形阻力、摩擦阻力还有轮胎空气阻力的总和便是轮胎的滚动阻力了。在40m/s(144km/h)以下的速度范围内,变形阻力占了轮胎的滚动阻力的90%-95%,摩擦阻力占2%-10%,而轮胎空气阻力所占的比率极小。 而路面阻力就是轮胎在各种路面上的滚动阻力,由于各种路面不同,而产生的阻力也不同,在这里就不详细研究了。还有便是轮胎侧偏引起的阻力,这是由于车轮的运动方向与受到的侧向力产生了夹角而产生的。

相关文档
最新文档