力的分解典型例题

合集下载

力的合成与分解经典例题

力的合成与分解经典例题

力的合成与分解练习一、计算题1. 如图所示,一轻质三角形框架B处悬挂一定滑轮(质量可忽略不计)。

一体重为500N的人通过跨定滑轮的轻绳匀速提起一重为300N的物体。

(1)此时人对地面的压力是多大?(2)轻绳BD所受的力是多大?(3)斜杆BC所受的力是多大?2. 如图所示,倾角θ=37°、斜面长为1m的斜面体放在水平面上.将一质量为2kg的小物块从斜面顶部由静止释放,1s后到达底端,斜面体始终保持静止.重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小物块沿斜面下滑的加速度和到达底端时速度的大小;(2)小物块与斜面之间的动摩擦因数;(3)小物块运动过程中,水平面对斜面体的摩擦力大小和方向.3. 右图所示,ABC为一直角劈形物体,将其卡于孔中,劈的斜面AB=10cm,直角边AC=2cm.当用F=100N 的力沿水平方向推劈时,求劈的上侧面和下侧面产生的推力.4. 用细绳AC和BC吊一重物,绳与竖直方向夹角分别为30°和60°,如图,已知:物体重力为100N,求:(1)绳AC的弹力;(2)绳BC的弹力.5. 如图所示,在倾角α为37o的斜面上,一质量为m=10kg的光滑小球被竖直的木板挡住,处于静止状态,求:(1)斜面对小球的支持力为多大?(2)挡板对小球的支持力为多大?6. (12分)两物体M、m用跨过光滑定滑轮的轻绳相连,如图放置,M与水平面的滑动摩擦因数为μ.OA、OB与水平面的夹角分别为30°、60°,m重20N.M、m均处于静止状态.求:(1)OA、OB对O点的拉力的大小;(2)M受到的静摩擦力.(可以用分式表示)7. 如图,水平细杆上套一环A,环A与球B间用一不可伸长轻质绳相连,质量分别为M A=0.4kg和M B=0.3kg,由于B球受到水平风力作用,使环A与球B相对静止一起向右匀速运动。

高中物理--《力的合成和分解》典型例题(含答案)

高中物理--《力的合成和分解》典型例题(含答案)

高中物理--《力的合成和分解》典型例题(含答案)1.如图所示,质量为m的木块质量为M的三角形斜劈B上,现用大小均为F、方向相反的水平力分别推A和B。

A沿三角斜劈匀速上滑,B保持静止,则()A. 地面对B的支持力大小一定等于(M+m)gB. B与地面之间一定存在摩擦力C. B对A的支持力一定小于mgD. A与B之间一定存在摩擦力【答案解析】AA、将A、B看成整体,竖直方向上受力平衡,则可知地面对B的支持力的大小一定等于,故A正确;B、将A、B看成整体,由于平衡合力为零,故B与地面之间无摩擦力,故B错误;C、对A分析作出对应的受力分析图如图所示;根据平衡条件可知,支持力等于重力和推力在垂直斜面上的分力,由于不明确F的大小,故无法确定支持力与重力的关系,故C错误;D、由图可知,若重力和推力在沿斜面方向上的分力相同,则物体A可以不受B的摩擦力,故D错误。

点睛:先对A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;再对物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力。

2.(多选题)位于坐标原点O的质点在F1、F2和F3三力的作用下保持静止,已知其中F1的大小恒定不变,方向沿y轴负方向的;F2的方向与x轴正方向的夹角为θ(θ<45°),但大小未知,如图所示,则下列关于力F3的判断正确的是()A.F3的最小值为F1cosθB.F3的大小可能为F1sinθC.力F3可能在第三象限D.F3与F2的合力大小与F2的大小有关【答案解析】AC【考点】合力的大小与分力间夹角的关系.【分析】三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线;题中第三个力F3与已知的两个力的合力平衡.【解答】解:A、三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线;通过作图可以知道,当F1、F2的合力F与F2垂直时合力F最小,等于F1cosθ,即力F3的最小值为F1cosθ.故A正确;B、θ<45°,故sinθ<cosθ,由前面分析知F3的最小值为F1cosθ,则不可能等于F1sinθ,故B错误;C、通过作图可知,当F1、F2的合力F可以在F1与F2之间的任意方向,而三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线,故力F3只能在F1与F2之间的某个方向的反方向上,可能在第三象限,故C正确;D、根据平衡条件:F3与F2的合力大小一定与F1等值反向,则与F2大小无关,故D错误;故选:AC.3.杂技表演的安全网如图甲所示,网绳的结构为正方形格子,O、a、b、c、d等为网绳的结点,安全网水平张紧后,质量为m的运动员从高处落下,恰好落在O点上.该处下凹至最低点时,网绳dOe、bOg均为120°张角,如图乙所示,此时O点受到向下的冲击力大小为2F,则这时O点周围每根网绳承受的张力大小为()A.F B. C.2F+mg D.【答案解析】A【考点】共点力平衡的条件及其应用;力的合成;力的合成与分解的运用.【分析】将运动员对O点的冲力进行分解:分解成四个沿网绳的分力,根据几何关系求解O点周围每根网绳承受的张力大小.【解答】解:将运动员对O点的冲力分解成四个沿网绳的分力,根据对称性,作出图示平面内力的分解图,根据几何关系得,O点周围每根网绳承受的张力大小F′=F.故A正确.故选A4.如图,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m的小球P.横杆右边用一根细线吊一相同的小球Q.当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,不计空气阻力,重力加速度为g,则下列说法正确的是()A.小车一定向右做匀加速运动B.轻杆对小球P的弹力沿轻杆方向C.小球P受到的合力不一定沿水平方向D.小球Q受到的合力大小为mgtanα【答案解析】D【考点】牛顿第二定律;力的合成与分解的运用.【分析】先对细线吊的小球分析进行受力,根据牛顿第二定律求出加速度.再对轻杆固定的小球应用牛顿第二定律研究,得出轻杆对球的作用力方向.【解答】解:A、对细线吊的小球研究,根据牛顿第二定律,得mgtanα=ma,得到a=gtanα,故加速度向右,小车向右加速,或向左减速,故A错误;B、由牛顿第二定律,得:mgtanβ=ma′,因为a=a′,得到β=α>θ,则轻杆对小球的弹力方向与细线平行,故B错误;C、小球P和Q的加速度相同,水平向右,则两球的合力均水平向右,大小F合=ma=mgtanα,故C错误,D正确.故选:D.5.关于合力和分力,下列说法不正确的是()A.1N和2N的两个共点力的合力可能等于2NB.两个共点力的合力一定大于任一个分力C.两个共点力的合力可能大于任一个分力,也可能小于任何一个分力D.合力与分力是等效替代关系,因此受力分析时不能重复分析【答案解析】B【考点】力的合成.【分析】解答此题时,要从合力与分力的关系:等效替代,进行分析.根据平行四边形定则分析合力与分力的大小关系:如果二力在同一条直线上,同方向二力的合力等于二力之和;同一直线反方向二力的合力等于二力之差.如果二力不在同一条直线上,合力大小介于二力之和与二力之差之间.【解答】解:A、1N和2N的两个共点力的最大合力为3N,最小合力为1N,故A正确;BC、力的合成遵守平行四边形定则,两个力的合力可以比分力大,也可以比分力小,也可以等于分力,故B不正确,C正确;D、合力是分力等效替代的结果,因此受力分析时不能重复分析,故D正确;本题选择不正确的,故选:B.6.质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则关于导体棒中的电流方向、大小分析正确的是()A.向外, B.向外, C.向里, D.向里,【答案解析】D【考点】共点力平衡的条件及其应用;力的合成与分解的运用;洛仑兹力.【分析】由导体棒所受重力和弹力方向以及左手定则,可知导体棒电流向里,对其受力分析,正交分解可得电流大小.【解答】解:对导体棒受力分析如图;BIL=mgtan60°,解得,由左手定则知电流方向向里,故选:D7.(多选题)均匀长棒一端搁在地面上,另一端用细线系在天花板上,如图所示受力分析示意图中,正确的是()A. B. C. D.【答案解析】ACD【考点】力的合成与分解的运用.【分析】均匀长木棒处于静止状态,抓住合力为零确定受力图的正误.【解答】解:A、因为重力mg和地面支持力FN的方向都在竖直方向上,若拉力F在竖直方向上,则地面对木棒就没有摩擦力作用(木棒对地面无相对运动趋势),故A正确;B、若拉力F的方向与竖直方向有夹角,则必然在水平方向上有分力,使得木棒相对地面有运动趋势,则木棒将受到地面的静摩擦力Ff,且方向与F的水平分力方向相反,才能使木棒在水平方向上所受合力为零,故B错误,C、D正确.故选ACD.8.(多选题)如图所示,倾角θ=30°的斜面上有一重为G的物体,在与斜面底边平行的水平推力作用下沿斜面上的虚线匀速运动,若图中φ=45°,则()A.物体所受摩擦力方向平行于斜面沿虚线向上B.物体与斜面间的动摩擦因数μ=C.物体所受摩擦力方向与水平推力垂直且平行斜面向上D.物体与斜面间的动摩擦因数μ=【答案解析】AD【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】本题具有一定的空间思维逻辑,画出受力分析图,然后进行受力分析,最后简化到斜面平面内的受力分析.【解答】解:A、C、对物块进行受力分析,如图所示:物块在重力G、斜面的支持力N、推力F、沿虚线方向上的摩擦力f共同作用下沿斜面上的虚线匀速运动,因为G,N,F三力的合力方向向下,故摩擦力f方向沿斜面虚线向上,所以物块向下运动,故A正确,C错误;B、D、现将重力分解为沿斜面向下且垂直于底边(也垂直于推力F)的下滑力G1、垂直与斜面的力G2,如图所示:其中G2恰好把N平衡掉了,这样可视为物体在推力F、下滑力G1、摩擦力f三个力作用下沿斜面上的虚线匀速运动,根据三力平衡特点,F与G1的合力必沿斜面向下,同时摩擦力f 只能沿斜面向上,故选项A 对BC错;根据几何关系,F与G1的合力:F合==G1,即f=G1,故物体与斜面间的动摩擦因数μ===,故B错误,D正确.故选:AD9.如图所示,斜面的倾角为30°,物块A、B通过轻绳连接在弹簧测力计的两端,A、B重力分别为10N、6N,整个装置处于静止状态,不计一切摩擦,则弹簧测力计的读数为()A.5N B.6N C.10N D.11N【答案解析】A【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】分析A的受力,求出A对弹簧的拉力,该拉力即为弹簧受到的拉力大小,也就是弹簧秤的示数.【解答】解:分析A的受力,弹簧对A的拉力等于A的重力沿斜面向下的分力,故F=Gsin30°=5N,故弹簧测力计的读数为5N.故A正确,BCD错误.故选:A.10.(多选题)如图所示,表面光滑的半圆柱体固定在水平面上,小物块在拉力F的作用下从B点沿圆弧缓慢上滑至A点,此过程中F始终沿圆弧的切线方向,则()A.小物块受到的支持力逐渐变大B.小物块受到的支持力先变小后变大C.拉力F逐渐变小D.拉力F先变大后变小【答案解析】AC【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对滑块受力分析,受重力、支持力和拉力,根据共点力平衡条件列式求解出拉力和支持力的数值,在进行分析讨论.【解答】解:解:对滑块受力分析,受重力、支持力和拉力,如图,根据共点力平衡条件,有:N=mgsinθF=mgcosθ其中θ为支持力N与水平方向的夹角;当物体向上移动时,θ变大,故N变大,F变小.故A、C正确,B、D错误.故选AC.。

力的合成与分解典型例题

力的合成与分解典型例题

【典型例题】
例1. 已知两个共点力的合力为F,现保持两力之间的夹角<90°时合力F一定减少
为锐角(0°<为钝角(90°<
例2. 如图甲所示,用细线悬挂一个均质小球靠在光滑的竖直墙面上,若把细线的长度增长些,则球对线的拉力T、对墙面的压力N的变化情况正确的是()
A. T、N都增大
B. T、N都减小
C. T减小,N增大
D. T增大,N减小
球对线的拉力T和对墙面的压力N的大小分别等于
细线加长时,角减小,增大,减小,所以球对线的拉力T和对墙面的压力N都减小。

例3. 如图所示,在同一平面有三个共点力,它们夹角都是120°,大小分别为F1=20N,F2=30N,F3=40N,求三力合力。

,使,如图a所示。

先把这三个力分解到轴上,再求它们在轴上的分力之和。

设合力F与x轴负向的夹角为
轴、的斜面上,斜面对木块的支持力和摩擦力的合力方向应该是()A. 沿斜面向下 B. 垂直于斜面向上
C. 沿斜面向上
D. 竖直向上
5、两个共点力同向时合力为a,反向时合力为b,当两个力垂直时,合力大小为()
A.
C. N C. 20,是斜面受到的摩擦力
C. ,是斜面受到的正压力
D. 斜面受到的摩擦力
B. D.
10、质量为m的物体置于倾角为α的斜面上,为使小球静止,现加一垂直于水平面的挡板,如图。

求小球对斜面、挡板的弹力各多大?
以上是利用力的分解来处理的,本题也可以利用力的合成来求解。

高中物理必修1力的分解 例题解析

高中物理必修1力的分解 例题解析

力的分解 例题解析【例2】为了把陷在泥泞里的汽车拉出来,司机用一条结实的绳子把汽车拴在一棵大树上.开始时汽车和大树相距12 m ,然后在绳的中点用400 N 的拉力F 沿与绳垂直的方向拉绳,结果中点被拉过0.6 m ,如图3-5-3所示.假设绳子的伸长可以忽略不计,求此时汽车受到的拉力大小.图3-5-3解析:以绳的中点为节点,对其受力分析:两段绳的拉力F 1、F 2,按力的作用效果将力F沿两段绳的方向分解,F 1=F 2,作出力的平行四边形,根据数学知识可得:图3-5-4sin θ=0.6/6=0.1,F 1=sin 2F =2000 N 即汽车受到的拉力的大小为2000 N .点评:力的分解时,应根据力的作用效果进行分解才有实际意义,因此,首先应引导学生分析力的效果,这是力的分解的关键.【例3】如图3-5-5所示,重10 N 的木块放在倾角为30°斜面上,木块与斜面间的动摩擦因数μ=31当木块受到一个平行于斜面的推力F (F >0)作用后,可在斜面上做匀速直线运动,则F 的方向可能是………………………………………( )图3-5-5A .沿斜面向下,与重力下滑分力方向一致B .水平向右或向左C .水平偏上任何角度D.水平偏下任何角度解析:物体在斜面上运动,不沿斜面方向的力只有重力和支持力,可以得到物体受的支持力N=G cos30°,若其在斜面上滑动,滑动摩擦力f=μG cos30°=5 N.由于物体所受到的重力、支持力、摩擦力与推力并非在一个平面内,所以将其受力图画成俯视图,即沿垂直于斜面的方向观察,看到物体所受到的力.这样,画出物体受到的沿斜面方向的力如图3-5-6所示.其中αα′为水平线,G′=G sin 30°=5 N,表示物体沿斜面下滑的分力.图3-5-6要保证物块在斜面上做匀速直线运动,则要求G′与推力F的合力大小等于f=5 N.由平行四边形法则可知,当G′与F成锐角或直角时,无论F取值如何,F与G′的合力大小总大于G′,即大于f,物体不可能做匀速直线运动,所以选项ABD错误.当F水平向上时,F与G′成钝角,对于某一角度和F的恰当取值,可能使其与G′的合力大小等于f,则物体在斜面上沿F与G′合力的方向做匀速直线运动.故选项C正确.点评:此题求解的难点是画出物体在垂直于斜面方向上的俯视图;此题求解的关键是运用力的平行四边形定则讨论两个力的夹角变化时其合力大小的变化.此题还要求会正确求解滑动摩擦力.。

力的分解典型例题

力的分解典型例题

力的分解典型例题
如果几个力产生的效果跟原来的一个力产生的效果相同,这几个力就叫做原来那个力的分力.求一个已知力的分力叫力的分解,力的分解是力的合成的逆运算,遵循平行四边形定则,也就是已知对角线求两个邻边的问题.显然,如果没有附加条件,则可有无数个答案.所以,力的分解关键在于根据具体情况确定某一已知力的实际作用效果.以下两种情况可以得到确定的分力.第一,根据力的实际效果能够确定两个分力的方向,则可得到两个分力的大小;第二,根据力的实际效果能够确定一个分力的方向和大小,则可得到另一个分力的方向和大小.
如在图所示的支架悬挂一个重力为的灯.支架的重力不计.已知、、
的长分别为、、,求支架两杆所受的力.
解:在支架的端悬挂电灯后,使支架的两根杆受到力的作用.由于支架的、
两端与墙壁是绞链连结,因此作用在杆上的力是沿杆的方向.但杆受的是拉力还是压力,
需要通过实践来判断.可以设想,若将杆换成弹簧,则弹簧会被拉长,表示此杆受
的是拉力.若将杆换成弹簧,则弹簧会被压缩,说明此杆受的是压力.这就是灯对
支架端拉力的两个分力所产生的实际效果.判断出两个分力的方向,那么根据平行四
边形定则很容易得出杆受到沿杆向外的拉力:
杆受到沿杆向内的压力
在力的分解中,若已知合力的大小、方向和另一分力的方向,则其解要进行讨论.
如图所示,一个大人沿与河岸成θ角的方向拉纤,要使平行河岸的船行方向上得到
一个合力,则另一岸的一个小孩如何用力最小.
这道题已知合力的大小方向和另一分力的方向,要求另一分力最小,由作
图法可知有唯一解;垂直时,最小.。

力的合成与分解典型例题分析

力的合成与分解典型例题分析

力的合成与分解典型例题分析【例1】 长度为5 m 的细绳的两端分别系于竖立于地面上相距为4 m 的两杆的顶端A 、B .绳上挂一个光滑的轻质挂钩,其下连着一重为12 N 的物体如图1-1所示,平衡时,绳中的张力为多大?ABO图1-1解析:设重物平衡时悬点为O ,延长AO 交B 杆于C 点,从C 点向A 杆作垂线CD 交A 杆于D 点,如图1-2所示.因为CD =4 m ,AOB 是一条绳,挂钩光滑,所以挂钩两侧绳AO 段与BO 段的拉力必然相等,与竖直线的夹角也相等,因而OB =OC ,故AC =5 m.设∠A =α,则sin α=AC AD =54,cos α=53,取O 点为研究对象,将重物对O 点的拉力沿AO 、BO 延长线分解,由平衡条件得:图1-22F cos α=G F =αcos 2G=53212⨯ N=10 N.说明:分析此类问题时要注意,光滑的轻质挂钩、滑轮两侧绳的拉力大小相等.【例2】 有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡(如图1-3).现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和细绳上的拉力F 的变化情况是ABOP Q图1-3A.F N 不变,F 变大B.F N 不变,F 变小C.F N 变大,F 变大D.F N 变大,F变小解析:解法一:设PQ 与OA 的夹角为α,则对P 有:mg +F sin α=F N ,对Q 有:F sin α=mg ,所以F N =2mg ,F =mg /sin α.正确选项为B.解法二:将P 、Q 两环看作一个整体,在竖直方向上两环只受重力和OA 杆对P 环的支持力F N ,所以F N =2mg ,即F N 不变.以Q 环为研究对象,绳的拉力的竖直分力等于Q 环的重力,即F sin α=mg ,所以F 越来越小.说明:在解决物体之间的相互作用时,常常采用隔离法和整体法.若不涉及物体之间的作用可用整体法,若要求物体之间的相互作用需再用隔离法.【例3】 (2001年全国,12)如图1-4所示,质量为m 、横截面为直角三角形的物块ABC ,∠ABC =α,AB 边靠在竖直墙面上,F 是垂直于斜面BC 的推力.现物块静止不动,则摩擦力的大小为_______.N图1-4图1-5解析:选物块为研究对象进行受力分析如图1-5所示.应用正交分解法将F 分解到水平方向和竖直方向,物块静止不动,由平衡条件有:F f =mg +F sin α.说明:物体静止不动,意味着物块与墙面之间的作用力是静摩擦力,只能根据共点力的平衡条件求摩擦力.※【例4】 如图1-6所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在此过程中下面木块移动的距离为m m k k 1122图1-6A.11k gm B.12k gmC.21k gmD.22k gm 解析:整个系统处于平衡状态时,以m 1和m 2整体为研究对象,由平衡条件得k 2弹簧的弹力是k 2x 1=(m 1+m 2)g当m 1被提离上面的弹簧时,k 2弹簧的弹力是 k 2x 2=m 2 g故木块m 2移动的距离是 x 1-x 2=221k g m m )(+-22k g m =21k gm .正确选项为C.【例5】 (2001年全国理科综合,19)如图1-7所示,在一粗糙水平面上,有两个质量分别为m 1、m 2的木块1和2,中间用一原长为l 、劲度系数为k 的轻弹簧连接起来,木块与地面间的动摩擦因数为μ.现用水平力向右拉木块2,当两木块一起匀速运动时,两木块之间的距离为12图1-7A.l +kμm 1g B.l +kμ(m 1+m 2)gC.l +kμm 2 g D.l +kμ(2121m m m m +)g解析:以木块1为研究对象,它受四个力的作用:重力m 1g 、支持力F N 、弹簧的弹力F 及滑动摩擦力F f ,由平衡条件得F =F fF N =m 1g又由于F =kx F f =μF N 联立求得x =kμm 1g 所以,匀速运动时两木块之间的距离为l +x =l +kμm 1g 正确选项为A※【例6】有点难度哟!(2004年全国重点中学临考仿真试卷)一块砖静止在斜面上,设想它由两半块砖P 和Q 两部分组成,如图1-8所示,则这两半块砖对斜面的压力大小相比较A.P 较大B.Q 较大C.两者相等D.无法判定图1-8PQ图1-9解析:整块砖在斜面上保持静止,即处于平衡状态,它共受到三个力的作用,其中重力G 的作用点为重心O 点,方向竖直向下,在图上作出它的示意图,它与斜面交点为C 点;砖受到的静摩擦力f 一定在接触面上,方向沿斜面向上;另一个力则是斜面对它的支持力F N ,F N 的方向垂直于斜面向上.根据三力平衡原理,G 、f 、F N 这三个力必是共点力.这个点只能是C 点,因此受力示意图如图1-9所示.支持力F N 实际是“面作用力”,即是发生在砖与斜面的整个接触面上,画出的箭头代表的是整个接触面上的支持力的合力.如果整个接触面上的支持力是均匀分布的,其合力的作用点应在接触面的中心位置,但现在在C 点,即在中间偏下的位置,这说明斜面对砖的下半部的支持力(即P )大于对上半部(即Q )的支持力.根据牛顿第三定律,P 对斜面的压力较大,故A 项正确.一、选择题(共10小题,每小题5分.每小题中只有一个选项是符合题目要求的)1.如图1-10所示,质量均为m 的a 、b 两木块叠放在水平面上,a 受到斜向上与水平面成θ角的力F 作用,b 受到斜向下与水平面成θ角的力F 作用,两力在同一竖直平面内,此时两木块保持静止.则图1-10A.b 对a 的支持力一定等于mgB.水平面对b 的支持力可能大于2mgC.a 、b 之间一定存在静摩擦力D.b 与水平面之间可能存在静摩擦力解析:以整体为研究对象,a 、b 所受拉力F 合力为零,故地面对b 的支持力F N =2mg ,地面对b 没有摩擦力作用.以a 为研究对象,拉力F 使a 有相对于b 向右运动的趋势,故a 、b 间一定存在摩擦力.b 对a 的支持力小于重力mg .选项C 正确.答案:C2.如图1-11所示,物块A 静止在水平桌面上,水平力F 1=40 N 向左拉A ,它仍静止.现再用水平力F 2向右拉物块A ,在F 2从零逐渐增大直到把A 拉动的过程中,A 受到的静摩擦力大小将如何变化?方向如何?图1-11①先减小后增大至最大 ②先增大后减小到零 ③先左后右 ④先右后左以上说法正确的是 A.①③B.②④C.①④D.②③解析:当F 2<F 1时,A 受的静摩擦力向右,且F f =F 1-F 2,随着F 2增大,摩擦力减小;当F 2>F 1时,A 受的摩擦力向左,且F f =F 2-F 1,随着F 2增大,摩擦力也增大直到达到最大静摩擦力.故C 选项正确.答案:C3.如图1-12,在粗糙水平面上放一三角形木块a ,物块b 在a 的斜面上匀速下滑,则ab图1-12A.a 保持静止,而且没有相对于水平面运动的趋势B.a 保持静止,但有相对于水平面向右运动的趋势C.a 保持静止,但有相对于水平面向左运动的趋势D.因未给出所需数据,无法对a 是否运动或有无运动趋势作出判断解析:以a 、b 整体为研究对象,因为a 、b 均处于平衡状态,所以整体的受力满足平衡条件.由于整体在水平方向不受外力,故a 相对于水平面没有运动趋势.答案:A4.在图1-13中,AO 、BO 、CO 是三条完全相同的细绳,并将钢梁水平吊起,若钢梁足够重时,绳A 先断,则图1-13A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO总先断解析:当θ=120°时,三绳的拉力互成120°角,三力大小相等,当θ<120°时,F AO>F BO=F CO,此时AO绳先断,故C选项正确. 答案:C5.物体在三个共点力的作用下处于平衡状态,如图1-14所示,已知F1和F2垂直,F2与F3间的夹角为120°,则三个力的大小之比F1∶F2∶F3及F1逆时针转90°角后(F1大小及F2、F3大小和方向均不变)物体所受的合外力的大小分别为2图1-14A.2∶1∶3,2F1B.2∶2∶3,F1-F2+F3C.3∶1∶2,2F1D.4∶5∶3,2F1解析:根据平衡条件,F1、F2、F3构成一个矢量三角形,如图所示,由正弦定理得F1∶F2∶F3=sin60°∶sin30°∶sin90°=3∶1∶223F2与F3的合力大小F23=F1,方向与F1的方向相反,当F1转过90°后,F23与F1垂直,合力为2F1.故C选项正确.答案:C6.三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图1-15 所示,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳ABCO图1-15A.必定是OAB.必定是OBC.必定是OCD.可能是OB,也可能是OC解析:取节点O为研究对象,O点受OA、OB、OC的张力处于平衡状态,三张力的合力必为零,其力矢量组成封闭的直角三角形,OA是斜边受力最大,必先断.正确选项为A.答案:A7.如图1-16所示,位于斜面上的物块M在沿斜面向上的力F 作用下,处于静止状态.关于斜面作用于物块的静摩擦力,下列说法错误的是图1-16A.方向一定沿斜面向上B.方向可能沿斜面向下C.大小可能等于零D.大小可能等于F解析:当F<mg sinθ时,物块受到的摩擦力沿斜面向上;当F=mg sinθ时,摩擦力为零;当F>mg sinθ时,摩擦力沿斜面向下;当F=21mg sinθ时,摩擦力跟力F相等,所以A选项错误.答案:A8.如图1-17所示,重物G用OA和OB两段等长的绳子悬挂在半圆弧的架子上,B点固定不动,A端由顶点C沿圆弧向D移动.在此过程中,绳子OA上的张力将图1-17A.由大变小B.由小变大C.先减小后增大D.先增大后减小解析:用图解法解.由于受重物的拉力F才使OA、OB受到拉力,因此将拉力F分解.又OB绳固定,则F B的方向不变.由平行四边形定则知,F B一直变大,F A先减小后增大.答案:C9.跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G1,圆顶形降落伞伞面的重力为G2,有8条相同的拉线(拉线重量不计),均匀分布在伞面边缘上,每根拉线和竖直方向都成30°角.那么每根拉线上的张力大小为A.1231GB.12321)(GG+C.821GG+D.41G解析:设每根拉线的张力大小为F,每根线张力的竖直分力为F cos30°由平衡条件得8F cos30°=G1F=123G1. 答案:A10.(2005年上海市高三物理复习调研)如图1-18所示,M、N为装在水平面上的两块间距可以调节的光滑竖直挡板,两板间叠放着A、B两个光滑圆柱体.现将两板间距调小些,这时与原来相比,下述结论中正确的是BA MN图1-18A.N 板对圆柱体A 的弹力变小B.圆柱体A 对圆柱体B 的弹力变大C.水平面对圆柱体B 的弹力变大D.水平面对圆柱体B 的弹力变小解析:以圆柱体A 为研究对象,其受力如图所示,圆柱体B 对圆柱体A 的支持力F 1的竖直分力F y 大小一定,等于重力,两板间距调小时,角α变小,使F 1变小,从而使F 1的水平分力F x 变小,N 板对圆柱体A 的弹力F 2与F x 是一对平衡力,故N 板对圆柱体A 的弹力变小,选项A 正确.以A 、B 两个光滑圆柱体整体为研究对象,竖直方向上的整体重力和水平面对圆柱体B 的弹力大小相等,故水平面对圆柱体B 的弹力不变.x答案:A二、填空题(共5小题,每小题5分)11.如图1-19,质量为m 的木块在置于水平桌面的木板上滑行,木板静止,它的质量为M .已知木块与木板间、木板与桌面间的动摩擦因数均为μ,那么木板所受桌面给的摩擦力大小等于_______.图1-19解析:木块和木板间的滑动摩擦力大小为F1f =μmg木板水平方向受到木块对它向左的滑动摩擦力F 1f 和地面对它向右的静摩擦力F2f ,它们是一对平衡力,故有F2f =F1f =μmg .答案:μmg12.(2000年春季高考,15)1999年11月20日,我国发射了“神舟”号载人飞船,次日载人舱着陆,实验获得成功,载人舱在将要着陆之前,由于空气阻力作用有一段匀速下落过程.若空气阻力与速度的平方成正比,比例系数为k ,载人舱的质量为m ,则此过程载人舱的速度为_______.解析:载人舱受空气阻力为F f =kv 2受的重力是mg ,因它做匀速运动,由平衡条件有kv 2=mg ,得v =k mg /.答案:k mg /13.在图1-20中,给出六个力F 1、F 2、F 3、F 4、F 5、F 6,它们作用于同一点O ,大小已在图中标出.相邻的两个力之间的夹角均为60°,它们的合力大小为_______ N ,方向为_______.F 0N =40N 23图1-20解析:F 3与F 6的合力F 36=20 N ,沿F 6的方向;F 2与F 5的合力F 25=20 N ,方向沿F 5的方向;F 1与F 4的合力F 14=20 N ,方向沿F 1的方向.如图所示,F 25与F 14的合力大小等于20 N ,方向与F 6的方向相同,所以,这6个力的合力大小为40 N ,方向与F 6的方向相同.2514答案:40 与F 6同向14.用一根橡皮筋将一物块竖直悬挂,此时橡皮筋伸长了x 1,然后用同一根橡皮筋沿水平方向拉同一物体在水平桌面上做匀速直线运动,此时橡皮筋伸长了x 2.那么此物块与桌面间的动摩擦因数μ=_______.解析:由于物块匀速运动,故橡皮筋的拉力F 2的大小与摩擦力大小相等.故μ=NF F =12F F =12x x . 答案:12x x 15.如图1-21所示,物重30 N ,用OC 绳悬挂在O 点,OC 绳能承受的最大拉力为203 N ,再用一绳系OC 绳的A 点,BA 绳能承受的最大拉力为30 N.现用水平力拉BA ,可以把OA 绳拉到与竖直方向的最大夹角为_______.图1-21解析:根据平衡条件,OA 绳的拉力F OA 、AB 绳的拉力F AB 及重物的重力G 构成一矢量三角形,如图所示,若AB 的拉力达到最大值,则AO 绳的拉力F OA =302 N >203 N ,则AO 绳将被拉断,所以,α最大时AO 绳的拉力达到最大F OA =203 N ,则cos α=OA F G =32030=23,α=30°.A B答案:30°三、计算题(共5小题,共45分)16.(8分)如图1-22所示,在倾角θ=30°的粗糙斜面上放一物体,重力为G .现在用与斜面底边平行的力F =G /2推物体,物体恰能斜向下做匀速直线运动.则物体与斜面之间的动摩擦因数是多少?图1-22解析:在垂直于斜面的方向上,物体所受的支持力F N 与重力的分力G cos θ平衡,即F N =G cos θ=23G 在斜面内,物体所受的推力F 、摩擦力F f 及重力的分力G sin θ平衡,如图所示.sinfF FG由平衡条件得F f =22G 则物体与斜面间的动摩擦因数为μ=NfF F =36.答案:3617.(8分)如图1-23所示,质量为m 的物体靠在粗糙的竖直墙上,物体与墙之间的动摩擦因数为μ.若要使物体沿着墙匀速运动,则与水平方向成α角的外力F 的大小如何?图1-23解析:当物体沿墙匀速下滑时,受力如图(a )所示,建立如图所示的坐标系,由平衡条件得F 1sin α+F 1f =mg①1N F =F 1cos α② 又有F 1f =μ1N F③由①②③解得F 1=αμαcos sin +mg图(a )图(b )当物体匀速上滑时,受力如图(b )所示,建立如图所示的坐标系,由平衡条件得F 2sin α=F 2f +mg④ 2N F =F 2cos α⑤ 又有F 2f =μ2N F⑥由④⑤⑥解得F 2=αμαcos sin -mg.答案:αμαcos sin -mg 或αμαcos sin +mg18.(9分)如图1-24所示,两根固定的光滑硬杆OA 、OB 成θ角,在杆上各套一轻环P 、Q ,P 、Q 用线相连.现用一恒力F 沿OB 方向拉环Q ,则当两环稳定时,轻线上的张力为多大?图1-24解析:由于杆是光滑的,所以P 环只受两个力作用:杆的弹力和绳的拉力,稳定时这两个力合力为零,它们等大反向,所以稳定时绳一定垂直于OA 杆.Q 环共受三个力作用:绳的拉力F ',杆的弹力F N 及恒力F ,由平衡条件得:F =F 'sin θ,则绳的拉力F '=θsin F. 答案:θsin F19.(10分)如图1-25所示,小球质量为m ,用两根轻绳BO 、CO 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为60°的力F ,使小球平衡时,两绳均伸直且夹角60°.则力F 的大小应满足什么条件?BC图1-25解析:本题为静力学类问题,并有临界条件需分析,当力F 太小时,CO 线会松弛,当F CO =0时物体受力如图(a ),则F min sin60°×2=mg , 所以F min =33mg 当力F 太大时,OB 线会松弛,当F OB =0时 受力如图(b )所示m a x图(a )图(b )所以F max =︒30cos mg=332mg综上所述F 应满足的条件为:33mg ≤F ≤332mg . 答案:33mg ≤F ≤332mg 20.(10分)测定患者的血沉,在医学上有助于医生对病情作出判断,设血液是由红血球和血浆组成的悬浮液.将此悬浮液放进竖直放置的血沉管内,红血球就会在血浆中匀速下沉,其下沉速率称为血沉.某人的血沉v 的值大约是10 mm/h.如果把红血球近似看作是半径为R 的小球,且认为它在血浆中下沉时所受的粘滞阻力为F =6πηRv .在室温下η≈1.8×10-3 Pa ·s.已知血浆的密度ρ0≈1.0×103 kg/m 3,红血球的密度ρ≈1.3×103 kg/m 3.试由以上数据估算红血球半径的大小.(结果取一位有效数字即可)解析:红血球在血浆中匀速下沉时受三个力作用:重力G 、浮力F 浮和粘滞阻力FG =ρ·34πR 3g ,F 浮=ρ0·34πR 3g 由平衡条件得F +F 浮=G 6πηRv +ρ0·34πR 3g =ρ·34πR 3g 解得R =3)(02ρρη-g v=3×333103.060031021010108.1⨯⨯⨯⨯⨯⨯⨯-- m=3×10-6 m.答案:3×10-6 m。

力的分解例题

力的分解例题

例题1:物体重量为100N ,试求解轻竿所受的弹力?
A
B C B
B
B
1
A
B
F 1
B
F 1
例2、表面光滑重力不计的尖劈,劈尖夹角为θ,现施加竖直向下的力F
例3、小船用绳牵引,水的阻力不变,在小船匀速靠近的过程中,试分析船受到的拉力、浮力、合力的变化情况?
F 2F 1
例4、A与B的质量分别为M1、M2 ,B由右向左缓慢移动的过程中,试分析B对地面的压力以及地面对B的滑动摩擦力的变化情况?
例5、如图所示,木块处于斜面上,斜面体未被固定但始终处于静止状态,木
块质量为2kg,斜面体质量为4 kg ,g取10N/kg,试求:
①若木块也静止,斜面体对地面的压力为多大?此时地面是否对斜面施加了静摩
图二:木块匀速下滑
图三:斜面体的斜边光滑。

力的分解典型例题五种解法

力的分解典型例题五种解法

力的分解典型例题五种解法力的分解的解题思路:力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题,因此其解题基本可表示为思路物理抽象(作平行四边形)数学计算(求分力)实际问题根据力的对力的计算转化作用效果为边角的计算例题:如图所示,物体的重力G=100N,试求绳AB,BC所受力的大小.方法1: 力的分解(如图一)FAB=F2=G/tg53。

=100N ×3/4 = 75NFBC=F1=G/sin53。

= 100N × 5/4 = 125NFBC=F1=G/sin53。

= =100N 5/4=125NC53。

FBCFABA B F253。

F1G=100N(如图一)其中任意两个力的合力跟第三个力大小相等,方向相同,是一对平衡力。

C方法二: 力的合成(三个力作用下物体处于平衡状态如图二)FBC=F1=G/ sin 53。

= 100N × 5/4=125NFAB=F合=G/tg53。

= 100N × 3/4=75N53。

FBCFABA B 53。

F合G=100N(图二)C 方法三: 力的合成(如图三)53。

F合=G=100NFBC= F合/ sin 53。

= 100N × 5/4 = 125NFAB=F合/tg53。

= 100N × 3/4 = 75NF合53。

FBCFABA BG=100N(图三)方法四: 力的合成(如图四)F合 = FBC(平衡力)FAB = G/tg53。

= 100N × 3/4 = 75NFBC = F合=G/ sin 53。

= 100N × 5/4 = 125N 。

C53。

FBCFABA B53。

F合G=100N(图四)方法5: 力的合成(如图五)以B点为坐标原点建立直角坐标系。

由于FBC不在坐标轴把它分解到X轴和Y轴分别是FBCX , FBCY在X轴FBCX = FAB在Y轴 FBCY= G=100NFBC = FBCY/ sin 53。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力的分解典型例题
如果几个力产生的效果跟原来的一个力产生的效果相同,这几个力就叫做原来那个力的分力.求一个已知力的分力叫力的分解,力的分解是力的合成的逆运算,遵循平行四边形定则,也就是已知对角线求两个邻边的问题.显然,如果没有附加条件,则可有无数个答案.所以,力的分解关键在于根据具体情况确定某一已知力的实际作用效果.以下两种情况可以得到确定的分力.第一,根据力的实际效果能够确定两个分力的方向,则可得到两个分力的大小;第二,根据力的实际效果能够确定一个分力的方向和大小,则可得到另一个分力的方向和大小.
如在图所示的支架悬挂一个重力为的灯.支架的重力不计.已知、、
的长分别为、、,求支架两杆所受的力.
解:在支架的端悬挂电灯后,使支架的两根杆受到力的作用.由于支架的、
两端与墙壁是绞链连结,因此作用在杆上的力是沿杆的方向.但杆受的是拉力还是压力,
需要通过实践来判断.可以设想,若将杆换成弹簧,则弹簧会被拉长,表示此杆受
的是拉力.若将杆换成弹簧,则弹簧会被压缩,说明此杆受的是压力.这就是灯对
支架端拉力的两个分力所产生的实际效果.判断出两个分力的方向,那么根据平行四
边形定则很容易得出杆受到沿杆向外的拉力:
杆受到沿杆向内的压力
在力的分解中,若已知合力的大小、方向和另一分力的方向,则其解要进行讨论.
如图所示,一个大人沿与河岸成θ角的方向拉纤,要使平行河岸的船行方向上得到
一个合力,则另一岸的一个小孩如何用力最小.
这道题已知合力的大小方向和另一分力的方向,要求另一分力最小,由作
图法可知有唯一解;垂直时,最小.。

相关文档
最新文档