(完整word版)《算法分析与设计》期末考试复习题纲(完整版)要点
算法设计与分析■期末考试题整理.doc

算法设计与分析■期末考试题整理1、一个算法应有哪些主要特征?又穷性,确定性,可行性,0个或多个输入,一个或多个输岀2、分治法(Divide and Conquer)与动态规划(Dynamic Programming)有什么不同?分治算法会重复的求解公共了问题,会做许多不必要的T作,而动态规划对每个了问题Z 求解一次,将其结果存入一张表屮,从而避免了每次遇到各个了问题有从新求解。
3、试举例说明贪心算法对有的问题是有效的,而对一些问题是无效的。
贪心算有效性:最小生成树、哈弟曼、活动安排、单元最短路径。
无效反例:0——I背包问题,无向图找嚴短路径问题。
4、求解方程fi[l)=f(2)=l。
由f(n)=f(n-1 )+f(n-2) nJ'得f(n)-f(n-l)-f(n-2)=0M得方程的特征方程为/ _兀一1 = 0,设特征方程的2个根本分别为",兀2,则可得尤]=心=匕二2,则有- 21 4- V5 … 1 — yl~5 n/S) = C|(—y—) +C2(—y—)乂/•⑴= .f(2) “可得可得C] = a,c2 = hf(n) = a(^y+b(^)5、求解方稈T(n)=2T(n/2)+l, T(l)=l,设尸2匚r(n) = 2r(n/2) + l2T(n/2) = 22T(n/22) + 222T(/7/22)=23T(A?/23)+222iTS/2z) = 25S/2*) + 2"T上面所有式子相加,相消得T(n) = 2*7(1) + 2°+2,+22 + + 2^ -J-2*=2k +1* --------1-2=2A+, -16、编写一个Quick Sorting算法,并分析时间复杂性。
int part(int *a,int p,int r){int i,j,x,t;x=a[r];i=p-l;fbrOP;jv=r・l;j40{if(aU]<=x){汁+;t=a[i];a[i]=a[j];aU]=t;}}t=a[i+l];a[i+l]=a[r];a[r]=t;return 汁1;}void quicksort(int *a,int p,int r){intq;if(pvr){q=part(a,p,r);quicksort(a,p,q-l);quicksort(a,q+l,r);}快速排序时间复杂度最坏情况为OS?),平均为O(nlogn);7、利用Quick Sorting的原理,编写一个查找第k小元索的算法。
(完整word版)计算机算法设计与分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
《算法分析与设计》期末考试复习题纲(完整版)要点

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性.A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A。
渐进下界 B.渐进上界C.非紧上界 D。
紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C ).A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
算法设计与分析复习要点

·算法是指解决问题的方法和过程。
算法是由若干条指令组成的有穷序列。
·算法特性:输入、输出、确定性、有限性(执行时间和执行次数)(有五个空再加上可行性)。
·程序是算法用某种程序设计语言的具体实现,程序可不满足有限性的特性。
·程序调试只能证明程序有错,不能证明程序无错误!·算法复杂性= 算法所需要的计算机资源。
·算法的复杂性取决于:(1)求解问题的规模N;(2)具体的输入数据I;(3)算法本身的设计A。
·可操作性最好且最有实际价值的是最坏情况下的时间复杂性。
第二章递归与分治策略二分搜索技术:O(logn)大整数乘法:O(n log3)=O(n1.59)Strassen矩阵乘法:O(n log7)=O(n2.81) 棋盘覆盖:O(4k)合并排序和快排:O(nlogn)线性时间选择:O(n)最接近点对问题:O(nlogn) 循环赛日程表:O(n2)·分治法思想:将一个难以解决的问题分割成一些规模较小的相同问题,以便逐个击破,分而治之。
边界条件与递归方程是递归函数的两大要素。
递归优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
·分治法时间复杂度分析:T(n)<= O(1) n=n0aT(n/b)+f(n) n>n0若递归方式为减法:T(n) = O(a n)若递归方式为除法:f(n)为合并为原问题的开销:f(n)为常数c时:T(n)=O(n p)f(n)为线性函数:O(n) a<ba是子问题个数,b是递减的步长T(n)= O(nlog b n) a=bO(n p) a>b,p=log b af(n)为幂函数n x时:O(n x) a<f(b)T(n)= O(n p log b n) a=f(b)O(n p) a>f(b),p=log b a·证明算法的正确性:部分正确性、终止性。
《算法分析与设计》期末测验复习题纲(完整版)

《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
《算法设计与分析》考试题目及答案(DOC)

Typew cleft = c - cw; // 剩余容量
Typep b = cp;
// 结点的上界
// 以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
cleft -= w[i];
b += p[i];
i++;
} // 装满背包
if (i <= n) (b += p[i]/w[i] * cleft);
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) };
C. (g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有 n n0 有:0 f(n)<cg(n) };
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)
kT (n
O(1) / m)
f
(n)
n 1 n 1
通过迭代法求得
T(n)的显式表达式为:T (n)
nlogm k
logm n1
C.最优子结构性质与重叠子问题性质 D. 预排序与递归调用
7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。 A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先
8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间 树。
A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先
(完整版)算法设计与分析期末考试卷及答案a

flag=false
_
_
end if
_
__
end for
A[i] A[1]
w =i
return w, A end SPLIT
二.计算题和简答题(每小题
1.用O、、 表示函数f与g之间阶的关系,并分别指出下列函数中阶最低和最高 的函数:
(1)f (n)=100g(n)=100n
(2)f(n)=6n+nlog ng(n)=3n
算法EX1
输入:正整数n,n=2k。输出:⋯
ex1(n)
end EX1过程ex1(n) if n=1 then pro1(n)
else
栏
名姓
级年
_
_系
_院学
pro2(n)
ex1(n/2) end if
return
end ex1
3.用Floyd算法求下图每一对顶点之间的最短路径长度, 计算矩阵D0,D1,D2和D3,其中Dk[i, j]表示从顶点i到顶点j的不经过编号大于
i=find ( (1) )
if i>0 then output i
else output“no solution”
end SEARCH
过程find (low, high)
//求A[low..high]中使得A[i]=i的一个下标并返回,若不存在,
//则返回0。
if (2) then return 0
生专
_
订
马的周游问题:给出一个nxn棋盘,已知一个中国象棋马在
_
_
棋盘上的某个起点位置(x0, y0),求一条访问每个棋盘格点恰好
_
_
一次,最后回到起点的周游路线。 (设马走日字。)
算法设计与分析复习要点

算法设计与分析的复习要点第一章:算法问题求解基础算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
一.算法的五个特征:1.输入:算法有零个或多个输入量;2.输出:算法至少产生一个输出量;3.确定性:算法的每一条指令都有确切的定义,没有二义性;4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现;5.有穷性:算法必须总能在执行有限步之后终止。
二.什么是算法?程序与算法的区别1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。
三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。
四.系统生命周期或软件生命周期分为:开发期:分析、设计、编码、测试;运行期:维护。
五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。
六.算法分析:是指对算法的执行时间和所需空间的估算。
算法的效率通过算法分析来确定。
七.递归定义:是一种直接或间接引用自身的定义方法。
一个合法的递归定义包括两部分:基础情况和递归部分;基础情况:以直接形式明确列举新事物的若干简单对象;递归部分:有简单或较简单对象定义新对象的条件和方法八.常见的程序正确性证明方法:1.归纳法:由基础情况和归纳步骤组成。
归纳法是证明递归算法正确性和进行算法分析的强有力工具;2.反证法。
第二章:算法分析基础一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。
二.会证明5个渐近记法。
(如书中P22-25例2-1至例2-9)三.会计算递推式的显式。
(迭代法、代换法,主方法)四.会用主定理求T(n)=aT(n/b)+f(n)。
(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征:1.正确性:算法的执行结果应当满足预先规定的功能和性能要求;2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试;3.效率:算法应有效使用存储空间,并具有高的时间效率;4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
A.LCS问题 B.批处理作业问题C.0-1背包问题 D.哈夫曼编码问题13.用回溯法求解最优装载问题时,若待选物品为m种,则该问题的解空间树的结点个数为()。
A.m! B.2m+1C.2m+1-1 D.2m14.二分搜索算法是利用( A )实现的算法。
A.分治策略 B.动态规划法C.贪心法 D.回溯法15.下列不是动态规划算法基本步骤的是( B )。
P44A.找出最优解的性质 B.构造最优解C.算出最优解(应该是最优值) D.定义最优解16.下面问题( B )不能使用贪心法解决。
A.单源最短路径问题 B.N皇后问题C.最小花费生成树问题 D.背包问题17.使用二分搜索算法在n个有序元素表中搜索一个特定元素,在最好情况和最坏情况下搜索的时间复杂性分别为( A )。
P17A.O(1),O(logn) B.O(n),O(logn)C.O(1),O(nlogn) D.O(n),O(nlogn)18.优先队列式分支限界法选取扩展结点的原则是( C )。
P162A.先进先出 B.后进先出C.结点的优先级 D.随机19.下面不是分支界限法搜索方式的是( D )。
P161A.广度优先 B.最小耗费优先C.最大效益优先 D.深度优先20.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A.最小堆 B.最大堆C.栈 D.数组21.下列关于计算机算法的描述不正确的是(C)。
P1A.算法是指解决问题的一种方法或一个过程B.算法是若干指令的有穷序列C. 算法必须要有输入和输出D.算法是编程的思想22.下列关于凸多边形最优三角剖分问题描述不正确的是( A )。
A.n+1个矩阵连乘的完全加括号和n个点的凸多边形的三角剖分对应B.在有n个顶点的凸多边形的三角剖分中,恰有n-3条弦C.该问题可以用动态规划法来求解D.在有n个顶点的凸多边形的三角剖分中,恰有n-2个三角形23.动态规划法求解问题的基本步骤不包括( C )。
P44A.递归地定义最优值B.分析最优解的性质,并刻画其结构特征C.根据计算最优值时得到的信息,构造最优解 (可以省去的) D.以自底向上的方式计算出最优值24.分治法所能解决的问题应具有的关键特征是( C )。
P16A .该问题的规模缩小到一定的程度就可以容易地解决B .该问题可以分解为若干个规模较小的相同问题C .利用该问题分解出的子问题的解可以合并为该问题的解D .该问题所分解出的各个子问题是相互独立的25. 下列关于回溯法的描述不正确的是( D )。
P114A .回溯法也称为试探法B .回溯法有“通用解题法”之称C .回溯法是一种能避免不必要搜索的穷举式搜索法D .用回溯法对解空间作深度优先搜索时只能用递归方法实现26. 常见的两种分支限界法为( D )。
P161A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO )分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO )分支限界法与优先队列式分支限界法;二、填空题1. f(n)=3n 2+10的渐近性态f(n)= O( n 2),g(n)=10log3n 的渐近性态g(n)= O( n )。
2. 一个“好”的算法应具有正确性、 可读性 、 健壮性 和高效率和低存储量需求等特性。
3. 算法的时间复杂性函数表示为 C=F(N,I,A) ,分析算法复杂性的目的在于比较求解同意问题的两个不同算法的效率 的效率。
4. 构成递归式的两个基本要素是 递归的边界条件 和 递归的定义 。
5. 单源最短路径问题可用 分支限界法 和 贪心算法 求解。
6. 用分治法实现快速排序算法时,最好情况下的时间复杂性为 O(nlogn) ,最坏情况下的时间复杂性为 O(n^2) ,该算法所需的时间与 运行时间 和 划分 两方面因素有关。
P267. 0-1背包问题的解空间树为 完全二叉 树;n 后问题的解空间树为 排列 树;8. 常见的分支限界法有队列式(FIFO )分支限界法和优先队列式分支限界法。
9. 回溯法搜索解空间树时常用的两种剪枝函数为 约束函数 和 剪枝函数 。
10. 分支限界法解最大团问题时,活结点表的组织形式是 最大堆 ;分支限界法解单源最短路径问题时,活结点表的组织形式是 最小堆 。
三、算法填空题1. 递归求解Hanoi 塔问题/阶乘问题。
例1 :阶乘函数n! P12 阶乘的非递归方式定义: 试写出阶乖的递归式及算法。
递归式为: 边界条件 12)2()1(!⨯⨯⨯-⨯-⨯= n n n n 00)!1(1!>=⎩⎨⎧-=n n n n n递归方程递归算法:int factorial (int n){ if (n==0) return 1; 递归出口return n * factorial (n-1); 递归调用}例2:用递归技术求解Hanoi塔问题,Hanoi塔的递归算法。
P15其中Hanoi (int n, int a, int c, int b)表示将塔座A上的n个盘子移至塔座C,以塔座B为辅助。
Move(a,c)表示将塔座a上编号为n的圆盘移至塔座c上。
void hanoi (int n, int a, int c, int b){if (n > 0){hanoi(n-1, a, b, c);move(a,c);hanoi(n-1, b, c, a);}}2.用分治法求解快速排序问题。
快速排序算法 P25 、作业、课件第2章(2)42页-50页template<class Type>void QuickSort (Type a[], int p, int r){if (p<r) {int q=Partition(a,p,r);QuickSort (a,p,q-1);QuickSort (a,q+1,r);}}Partition函数的具体实现template<class Type>int Partition (Type a[], int p, int r){int i = p, j = r + 1;Type x=a[p];// 将< x的元素交换到左边区域// 将> x的元素交换到右边区域while (true) {while (a[++i] <x && i<r);while (a[- -j] >x);if (i >= j) break;Swap(a[i], a[j]);}a[p] = a[j];a[j] = x;return j;}3.用贪心算法求解最优装载问题。
最优装载问题 P95 课件第4章(2)第3-8页template<class Type>void Loading(int x[], Type w[], Type c, int n){int *t = new int [n+1];Sort(w, t, n);for (int i = 1; i <= n; i++) x[i] = 0;for (int j = 1; j <= n && w[t[j]] <= c; j++) {x[t[i]] = 1; c -= w[t[j]];}}4.用回溯法求解0-1背包/批处理作业调度 /最大团问题,要会画解空间树。
例1:用回溯法求解0-1背包P133课件第5章(2)第24-38页template<typename Typew,typename Typep>class Knap{private:Typep Bound(int i); //计算上界void Backtrack(int i);Typew c; //背包容量int n; //物品数Typew *w; //物品重量数组Typep *p; //物品价值数组Typew cw; //当前重量Typep cp; //当前价值Typep bestp; //当前最优价值};void Knap<Typew,Typep>::Backtrack(int i){ if(i>n) { bestp=cp; return; }if(cw+w[i]<=c) //进入左子树{ cw+=w[i];cp+=p[i];Backtrack(i+1);cw-=w[i];cp-=p[i]; }if(Bound(i+1)>bestp) //进入右子树Backtrack(i+1);}Typep Knap<Typew,Typep>::Bound(int i){Typew cleft=c-cw; //剩余的背包容量Typep b=cp; //b为当前价值//依次装入单位重量价值高的整个物品while(i<=n&&w[i]<=cleft){ cleft-=w[i]; b+=p[i]; i++; }if(i<=n) //装入物品的一部分b+=p[i]*cleft/w[i];return b; //返回上界}class Object //物品类{friend int Knapsack(int *,int *,int,int);public:int operator <(Object a) const{return (d>=a.d);}int ID; //物品编号float d; //单位重量价值};Typep Knapsack( Typep p[],Typew w[],Typew c,int n){ //为Typep Knapsack初始化Typew W=0; //总重量Typep P=0; //总价值Object* Q=new Object[n]; //创建物品数组,下标从0开始 for(int i=1;i<=n;i++) //初始物品数组数据{ Q[i-1].ID=i;Q[i-1].d=1.0*p[i]/w[i];P+=p[i]; W+=w[i];}if(W<=c) //能装入所有物品return P;if(W<=c) //能装入所有物品return P;QuickSort(Q,0,n-1); //依物品单位重量价值非增排序Knap<Typew,Typep> K;K.p=new Typep[n+1];K.w=new Typew[n+1];for(int i=1;i<=n;i++){ K.p[i]=p[Q[i-1].ID]; K.w[i]=w[Q[i-1].ID]; }K.cp=0; K.cw=0; K.c=c;K.n=n; K.bestp=0; K.Backtrack(1);delete[] Q; delete[] K.w;delete[] K.p; return K.bestp;}例2:批处理作业调度课件第5章(2)P2-5问题描述,课本P125-127解空间:排列树算法描述:class Flowshop{static int [][] m, // 各作业所需的处理时间[] x, // 当前作业调度[] bestx, // 当前最优作业调度[] f2, // 机器2完成处理时间f1, // 机器1完成处理时间f, // 完成时间和bestf, // 当前最优的完成时间和n; // 作业数static void Backtrack(int i){if (i > n){ for (int j = 1; j <= n; j++) bestx[j] = x[j]; bestf = f; } elsefor (int j = i; j <= n; j++) {f1+=m[x[j]][1];//第j个作业在第一台机器上所需时间f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2];f+=f2[i];if (f < bestf) //约束函数{ Swap(x[i], x[j]); Backtrack(i+1); Swap(x[i], x[j]); } f1 - =m[x[j]][1];f - =f2[i];}}例3:最大团问题,要会画解空间树。