被一些数整除的数的特征是什么
能被7,11,13整除的数的特征的原理

能被7,11,13整除的数的特征的原理能被7, 11, 13整除的数的特征的原理解析引言当我们进行数学运算时,我们可能会遇到一些特殊的数,它们能够被7,11和13整除。
这些特殊的数在数论中有着重要的地位,同时也有着一些有趣的特征。
本文将深入探讨这些数的特点及其原理。
1. 数的整除性质•整除定义:当一个数除以另一个数时,如果能够得到一个整数,那么我们称这个数能够被另一个数整除。
•整除特性:如果一个数能够同时被两个或更多个数整除,那么它也能够被这些数的乘积整除。
2. 7的整除特征•规则1:能被7整除的数,其个位数的十进制表示减去2倍的十位数的十进制表示,结果能够被7整除。
–例如,35是7的倍数,35 - (2 * 3) = 29,29被7整除。
•规则2:能被7整除的数,将其个位数的数字去掉,再用去掉的数字减去2倍的余数,结果能够被7整除。
–例如,56是7的倍数,5 - (2 * 6) = -7,-7被7整除。
3. 11的整除特征•规则1:能被11整除的数,将奇数位上的数字之和与偶数位上的数字之和相减,结果能够被11整除。
–例如,121是11的倍数,(1+1) - 2 = 0,0被11整除。
•规则2:能被11整除的数,将数从右往左数每一位数字依次相加或减,结果能够被11整除。
–例如,363是11的倍数,3 - 6 + 3 = 0,0被11整除。
4. 13的整除特征•规则1:能被13整除的数,将个位数的数字乘以4,再将结果与剩余数字相减,结果能够被13整除。
–例如,13是13的倍数,1 * 4 - 3 = 1,1被13整除。
•规则2:能被13整除的数,将数从右往左数每一位数字依次乘以进制的幂次方,并将结果相加或相减,结果能够被13整除。
–例如,169是13的倍数,1 * 13^2 + 6 * 13^1 - 9 = 0,0被13整除。
5. 组合规则如何判断一个数能否被7、11和13整除呢?我们可以将上述规则进行组合使用。
能被7-11-13整除的数的特征

能被7,11,13整除的数的特征被7、11、13整除的数,是三个质数的积,它们分别是7、11、13。
那么,能被7、11、13整除的数具有什么特征呢?下面将介绍一些常见的数学知识和规律。
1、数位相间差别为2的倍数一个数的数位相间差别为2的倍数,它能被11整除。
例如,1234,数位相间差别为2的倍数为:(2-1)+(4-3)=2,2是2的倍数,所以1234能被11整除。
2、个位是5或0的数个位数是5或0的数,它们能被5整除。
如果它们的其他数位上的数位相间差别为2的倍数,那么它们能被11整除。
例如,如45605,数位相间差别为2的倍数为:(5-0)+(6-5)+(5-4)+(0-6)=(-5)+1+1+(-6)=-9,-9是11的倍数,所以45605能被11整除。
3、将一个数从最后一位开始,每隔三位数位相同的,这个数就能被37整除比如说,123456123456,将这个数从最后一位开始,每隔三位数位相同,即为:$123, 456, 123, 456$,每组数的和为:$123+456+123+456=1158$。
1158是37的倍数,所以123456123456能被37整除。
4、将一个数的最后一位去掉,然后减去这个数的五倍,如果所得结果能被7整除,则这个数能被7整除例如,427,去掉最后一位,得42,42减去5倍的7即为:$42-5×7=7$,7能被7整除,所以427能被7整除。
5、将一个数的最后一位去掉,然后减去这个数的9倍,如果所得结果能被13整除,则这个数能被13整除例如,376,去掉最后一位,得37,37减去9倍的3即为:$37-9×3=10$,10不能被13整除,所以376不能被13整除。
6、将一个数分为两段,其中一段减去另一段,得到的差能被7整除,则这个数能被7整除例如,3714,将它分为两段,得到37和14,37减去14得到23,23能被7整除,所以3714能被7整除。
整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。
(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。
例如:10、72、34、56、98都能被2整除。
(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。
例如:180、315都能被5整除。
(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。
例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。
4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。
能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。
一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。
(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。
例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。
975的末尾两倍数是75,75是25的倍数,所以975能被25整除。
如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。
如700、2800都能同时被4 和25整除。
(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。
例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。
9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。
如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。
如1000、3000、78000等。
(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。
例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。
能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习

能被2、3、4、5、6、7、8、9等数整除的数的特征能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被整除的数的特征

例2:判断3546725能否被13整除?
能被17整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1675282能不能被17整除。
167528-2×5=167518
16751-8×5=16711
1671-1×5=1666
166-6×5=136
到这里如果你仍然观察不出来,就继续……
6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30-13=17,17÷17=1;所以1675282能被17整除。
能被19整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断499+6+8=23
偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。这种方法叫“奇偶位差法”。
能被13整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果数字仍然太大不能直接观察出来,就重复此过程。
如:381957
能被5整除的数个位上的数为0或5,
能被7整除的数的特征
若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果数字仍然太大不能直接观察出来,就重复此过程。
能被9整除的数的特征是所有位数的和是9的倍数
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
能被234567等数整除的数的特征

能被234567等数整除的数的特征一个数能否被2、3、4、5、6、7等数整除,取决于这个数的特征和性质。
在本文中,我们将探讨以下几个关键因素来确定一个数能否被这些数整除的特征。
1.末位数字:一个数能否被2整除取决于它的末位数字。
如果一个数的末位数字是0、2、4、6或8,那么它可以被2整除。
如果一个数的末位数字是0或5,那么它可以被5整除。
因此,如果一个数能被2和5同时整除,它也能被10整除。
3.末位数字和:如果一个数的末位数字和倒数第二位数字组成的两位数能被4整除,那么这个数也能被4整除。
例如,数字152的倒数第二位数字是5,末位数字是2,它们组成的两位数52能被4整除,所以152也能被4整除。
4.末位数字:一个数能否被5整除取决于它的末位数字。
如果一个数的末位数字是0或5,那么它可以被5整除。
5.可被2整除的数中,末位数字是0或5的数,再判断这个数能否被3整除。
如果能被3整除,则说明这个数也能被6整除。
例如,数字30能被2整除,末位数字是0,它也能被3整除,所以30能被6整除。
6.数字和:一个数能否被6整除取决于它各个位数上数字之和。
如果一个数各个位数上的数字之和能被3整除,并且末位数字是0、2、4、6或8,那么它也能被6整除。
7.数字重复:一个数能否被7整除取决于它的数字组成是否存在循环数字。
如果一个数的数字组成中存在循环数字,那么这个数可以被7整除。
例如,数字17的数字组成是1和7,它们是重复的,所以17能被7整除。
综上所述,一个数能否被2、3、4、5、6、7等数整除的特征是:它的末位数字必须是0、2、4、5、6、8中的一个;它的数字和必须能被3整除;如果末位数字和倒数第二位数字组成的两位数能被4整除,那么该数也能被4整除;它的数字组成中存在循环数字。
数的整除

2. 与3有同种倍数特征的数据: 9的倍数的特征:一个数的各个数位上的数的和 是9的倍数,这个数就是9的倍数。 例:4536是9的倍数吗? 解答:(4+5+3+6)÷9=2,是9的倍数, 所以4536是9的倍数。
3. 其他一些数据的倍数的特征:
7的倍数的特征:把一个数的末尾数字割去,从留下的 数中减去所割去的数字的2倍,这样继续 做下去,如果最后的结果是7的倍数,那么 原来这个数就是7的倍数。 例:判断:4151能否被7整除?
判断1884924与2560437, 能否被27或37整除。 能被27(或37)整除的数的特征:对于任何一个 自然数,从个位开始,每三位为一节将其分成若 干节,然后将每一节上的数连加,如果所得的和 能被27(或37)整除,那么这个数一定能被27 (或37)整除。
判断1884924与2560437,能 否被27或37整除。 解:1884924=1,884,924, 1+884+924=1809。 因为,1809能被27整除,不能被37整除。 所以,1884924能被27整除,但不能被37整除。
所有六位数是:123654、321654
5. 一个整数乘以17后,乘积的后四位数是2002, 这样的整数中最小的是多少? 解答:用□2002除以17,要求整数中最小的 是多少?这个数字最小就是12002。 12002÷17=706, 符合题目要求的最小的整数是706。
ABC分别是几时,使得七位数A6474BC能分别 被8、9和25整除。 分析:本体可以利用能被8、9和25整除的数的特 征,以及整除的性质3来解决。 ① 能被8整除的数的特征:一个数的末三位能被8整除。 ② 能被9整除的数的特征:一个数各个数位上的数字 之和能被9整除。 ③ 能被25整除的数的特征:一个数的末两位能被25整除。
能被4、6、7、8、11、13整除的数的特征

能被4、6、7、8、11、13整除的数的特征一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被6整除的数的特征三、能被6整除的数的特征末尾是0、2、4、6、8且各位上数字的和能被3整除能被6整除的数的特征既要符合能被2整除的数的特征,又要符合能被3整除的数的特征三、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题。
如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被一些数整除的数的特征是什么
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3
整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-32=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-92=595 , 59-52=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9
整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为
止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。