电池管理(BMS)系统整体设计(上)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SOC过高
SOC超过阀值
100%
95%
持续上报故障至故障解除
SOC过低
SOC低于阀值
10%
15%
持续上报故障至故障解除
温度过高
温度超过阀值
50℃
45℃
持续上报故障至故障解除,同时控制 启动热管理;发生故障时,若动 力主线还未接通则禁止接通
温度不均衡
最高温度与最 低温度 之差超 过阀值 单体电压与平 均电压 之差超 过阀值
持续上报故障至故障解除
总电压300V 整车接到故障警告3次以上 (含),控制电机停止 对电池回充,直至故障 解除 整车接到故障警告3次以上 (含),整车控制停机, 并提示司机停车充电 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 50%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 70%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 70%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充电流的80%控 制电机对电池回充,直 至故障解除;
500欧/V * V (电池组电压) *1.5
500欧/V * V (电池组电压) *2
整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令
接到整车断电控制命令后, 启动高压切断流程;未接到 整车命令时,持续上报故障 至故障解除;发生故障时, 若动力主线还未接通则禁止 接通
单体或总电压 过高
硬件设计 ——温度采集

(5)电压采集电路设计
在整车实际工况中,随着电池组充放电的进行, 电池组的电压不断变化,单体电池之间电压的 一致性也会大大影响电池组的性能,所以也有 必要检测每个单体电池的电压。采用专用的电 压采集芯片对单体电池电压进行模数转换后, 通过光耦将数字信号传至MCU。单体电池电压 的检测精度为10mV
5℃Байду номын сангаас
3℃
持续上报故障至故障解除,同时控制启 动热管理
电压不均衡
55mV
40mV
持续上报故障至故障解除,同时控制均 衡电池(均衡在检测到电池差异 时就会启动,不以故障出现为条 件)
SOC偏高
SOC超过阀值
95%
90%
持续上报故障至故障解除
SOC偏低
SOC低于阀值
15%
20%
整车接到故障警告3次以上 (含),按照BMS上传 的最大放电电流的80% 控制电机输出,提示司 机尽快停车充电;
单体电压或总 电压超过阀值
单体电压3.65V
单体电压: 3.60V
整车接到故障警告3次以上 (含),控制电机停止对电池 回充,直至故障解除
持续上报故障至故障解除
单体电压2.0V 单体或总电压 过低 单体电压或总 电压低 于阀值 总电压:240V
单体电压2.5V
整车接到故障警告3次以上 (含),整车控制停机, 并提示司机停车充电
初始化系统
电压检测
均衡控制
温度检测
热管理
数据计算处理 与故障判断 数据存储
232通信
CAN通信
故障诊断及保护控制策略
故障名称 描述 故障阀值 故障解除阀值 整车处理方式 BMS处理方式 BMS 温度控制 系统失效 BMS 风扇及 加热控 制失效 检测异常 检测正常 整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令 接到整车断电控制命令后,启动高压 切断流程;未接到整车命令时,持续 上报故障至故障解除;发生故障时, 若动力主线还未接通则禁止接通
开始
等待模拟量采集完毕
计算最大、最小充放电电流
计算最大、最小充放电功率
计算最高、最低温度
计算最大、最小模块电压
是 满足计算SOC条件否? 计算SOC
估算电池组性能指标
系统软件设计——从控模块

从控模块
上电后先完成系统初始化,对一些重要的参数进行赋 值,对相关的外设进行配置和初始化。初始化完成后, 在主循环里执行电压检测、均衡控制、温度检测、热管 理等子程序。
硬件设计 ——RS232收发模块

(9)RS232收发模块电路设计
RS232收发模块采用芯片MAX232转换电平,采 用标准电路进行通信。 RS232收发模块,用于进行电池组管理系统程 序的标定、参数的修正。 RS232收发模块波特率为19.2kbps
系统软件设计——主控模块

主控模块
系统上电后,首先进行系统的初始化,对一些 重要的参数进行赋值,对相关的外设进行配置和初 始化。初始化完成后,进入主循环,在主循环里循 环执行电流检测和SOC计量,总电压与绝缘检测, 数据处理与故障判断,数据存储,232通讯、CAN0 通讯、CAN1通讯和CAN2通讯这些子程序。
绝缘检测模块用来测试判定动力电池组与车体 绝缘是否达标,通过测量直流母线与电底盘之间的 电压,计算得到系统的绝缘电阻值。
硬件设计 ——CAN收发模块

(8)CAN收发模块电路设计
采用CAN收发器来进行MCU与动力总成控制系 统及其他控制器之间CAN通信。CAN通信采用了共 模扼流圈滤波等技术,通信抗干扰能力强,通信比 较稳定。CAN通信能够用于动力总成控制系统与 MCU间的数据通信及程序的标定与诊断。CAN收发 器波特率为250kbps,数据结构采用扩展帧(29位 ID值)。
入口
初始化系统
电流检测与SOC计量
总电压与绝缘检测
数据处理与 故障判断
数据存储
处理232通讯
处理CAN0 (内部通信) 处理CAN1 (整车控制器) 处理CAN2 (监控终端、充电机)
系统软件设计——数据处理与SOC估算

数据处理与SOC估算
承担了电池管理系统核心的计算工作,包括电池 组的SOC,最高、最低温度,最大、最小充放电功率, 最大、最小充放电电流,最大、最小模块电压等数据 的分析计算。 SOC的估算在安时计量方法的基础上,采用电池 的OCV-SOC曲线对SOC进行修正。
BMS故障
BMS 自检硬 件出现 故障
检测异常
检测正常
整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令
接到整车断电控制命令后,启动高压 切断流程;未接到整车命令时,持续 上报故障至故障解除;发生故障时, 若动力主线还未接通则禁止接通
绝缘等 级低
电池组输出与 底盘绝缘电阻 小于阀值
持续上报故障至故障解除
充电电流过大
充电电流超过 阀值
BMS上报的最 大充电电 流的 110%
BMS上报的最 大充电电 流的90%
整车接到故障警告3次以上 (含),按照BMS上传 的最大充电电流的80% 控制电机充电,直至故 障解除;
持续上报故障至故障解除
放电电流过大
放电电流超过 阀值
BMS上报的最 大放电电 流110%
硬件设计 ——温度采集

(6)温度采集电路设计
电池组温度也是影响电池组性能的重要参数,电 池组温度过高或过低会造成电池组不可逆转破坏。本 系统采用数字式温度传感器,把每个温度传感器的地 线、数据线、电源线进行合并,采用一根数据总线来 进行通信,温度检测精度为1℃。
硬件设计 ——绝缘模块

(7)绝缘模块电路设计
BMS上报的最 大充电电 流的90%
整车接到故障警告3次以上 (含),按照BMS上传 的最大充电电流的80% 控制电机输出,直至故 障解除;
持续上报故障至故障解除
充电温度过低
温度低于阀值
0℃
5℃
整车接到故障警告3次以上 (含),控制电机停止 对电池回充,直至故障 解除
持续上报故障至故障解除,同时控制启 动热管理
结 语
我们对电池管理系统的硬件进行了专门设计,对其软 件进行了程序编写,在此基础上对电池管理系统进行了 相关台架匹配测试及整车运行验证,证明本电池管理系 统达到了设计要求,性能可靠。
相关文档
最新文档