函数信号发生器的设计

合集下载

函数信号发生器的设计

函数信号发生器的设计

6
R3
2k
Rp
10k
-12v
12v
7
U2
2
R2 20k
3
D1
1N5235B
迟滞比较 器 R1
10k
D2
1N5235B
12v
积分电路
7
4 1 5
UA741
单元电路
用差分放大器做三角波/正弦波变换电路
三角波/正弦波变换原理: 用差分对管的饱和与截止特性进行变换:差分放大器电流恒 定并要求:传输特性对称线性区尽可能窄;三角波的幅值Vm 应使输出接近晶体管的截止电压;
v O VO 3 VO 2 T / 14 v I
VIm 0.78 T /4
在T/7~3T/14区段内
VIm 0.42 T /4
在3T/14~T/4区段内
v O VOm VO 3 T / 28 v I VIm 0.13 T /4
正弦函数 转换方案1
基本结构是比例放 大器。只是使运放在不 同的时间区段(或输出 电平区段)内,具有不 同的比例系数。对不同 区段内比例系数的切换, 是通过二极管网络来实 现的。 vi vo
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正 弦波振荡器采用波形变换电路, 通过迟滞比较器变换为方波, 经积分器获得三角波输出。此电路的输出频率就是就是RC文 氏电桥振荡器的振荡频率.
有源正弦函数转换电路的转换原理如图 所示。
若设正弦 波在过零点处 的斜率与三角 波斜率相同, 即

函数信号发生器的设计说明

函数信号发生器的设计说明

函数信号发生器的设计说明设计说明:函数信号发生器一、引言二、设计目标1.实现多种基础波形的产生,包括正弦波、方波、三角波、锯齿波等。

2.实现复杂信号的产生,如脉冲信号、调频信号、调幅信号等。

3.提供可调节的信号频率、幅度、相位等参数。

4.具备高稳定性和低失真度的特点。

三、系统架构系统主要由以下模块组成:1.控制模块:负责接收输入的指令、参数,并对其他模块进行控制。

2.信号生成模块:负责产生各种类型的基础波形信号和复杂信号。

3.波形控制模块:负责对生成的信号进行频率、幅度、相位等参数的调节和控制。

4.输出模块:负责将生成的信号输出到外部设备。

四、关键技术1.时钟模块:使用高精度稳定的时钟源来提供基准时钟信号,用于信号的定时和同步。

2.数字信号处理芯片:通过运算、变换等算法实现各种基础波形信号的产生,可以实时调节频率、幅度等参数。

3.数字模拟转换模块:将数字信号转换为模拟信号,并输出到外部设备。

4.软件算法:基于不同的波形类型,设计相应的算法来生成信号,并实现参数的实时调节。

五、设计流程1.确定系统的整体架构和功能模块划分。

2.根据每个模块的功能需求和接口特点,选择合适的硬件和软件实现方案。

3.实现控制模块,包括指令的解析、参数的读取和传递等。

4.实现信号生成模块,根据不同的波形类型和参数要求,设计相应的算法实现信号的产生。

5.实现波形控制模块,设计参数的调整和控制界面,并与信号生成模块进行交互。

6.实现输出模块,将产生的信号转换为模拟信号,并输出到外部设备。

7.进行系统整体调试和测试,确保各个功能模块正常工作。

8.优化系统性能和稳定性,提高波形的准确度和控制精度。

六、预期效果本设计实现的函数信号发生器具备以下优势:1.具备多种基础波形和复杂信号的产生功能,可满足不同场合的需求。

2.通过软件算法,实现参数的实时调节和控制,提供灵活的操作界面。

3.采用高精度时钟源和数字信号处理芯片,保证信号的稳定性和精确度。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。

它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。

本文将介绍函数信号发生器的设计原理和实现方法。

一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。

振荡电路是由放大器、反馈电路和滤波电路组成的。

其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。

函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。

例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。

二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。

下面分别介绍这两种方法的实现步骤和注意事项。

1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。

具体步骤如下:(1)选择合适的集成电路。

NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。

(2)按照电路图连接。

根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。

同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。

(3)调节参数。

根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。

同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。

(4)测试验证。

连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。

术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。

变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。

因此,u1=nu i(n 为变压器的变比)。

整流电路的作用是将交流电压山变换成单方向脉动的直流U2。

整流电路主要有半波整流、全波整流方式。

以单相桥式整流电路为例,U2=0.9u1。

每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。

此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。

并联两颗LED灯分别指示正负电压。

2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。

2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。

合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案函数信号发生器是一种能够产生各种类型的电信号的测试设备。

它广泛应用于电子和通信领域的研发和生产过程中,用于测试电路的各种性能参数。

为了设计一个高性能、高精度的函数信号发生器,我们可以采取以下方案。

首先,选择合适的信号发生器芯片。

常用的信号发生器芯片有DDS(直接数字合成)芯片和信号调制芯片。

DDS芯片具有数字处理能力强、干扰小的优点,可以产生高精度、宽频带的各种信号波形。

信号调制芯片则可以实现各种调制方式,如AM、FM、PM等。

根据需要,我们可以选择适合的芯片。

其次,设计合理的电路结构。

函数信号发生器的电路结构一般包括时钟发生电路、数字信号处理电路和模拟输出电路。

时钟发生电路用于产生高精度的时钟信号,为后续的数字信号处理提供基准。

数字信号处理电路利用DDS芯片或信号调制芯片产生各种类型的信号波形,并对波形进行加工、调制等。

模拟输出电路将数字信号转换为模拟信号,用于输出到被测设备。

接下来,需要设计合适的控制界面。

函数信号发生器通常配备有操作面板和显示屏,用于用户对信号发生器进行设置和监控。

操作面板需要设计合理的按键和旋钮,方便用户操作。

显示屏可以显示当前的设置参数和输出波形,保证用户对信号的监测。

此外,为了提高信号发生器的性能,我们可以考虑增加一些附加功能。

例如,可以增加RS232、USB等接口,实现信号发生器与计算机之间的数据交互,方便用户对信号发生器进行远程控制和数据采集。

还可以增加自动测试功能,根据用户设定的测试要求,自动产生相应的信号波形并进行测试。

最后,需要进行严格的测试和调试。

在设计完成后,需要对整个信号发生器进行严格的测试和调试,确保各个模块之间正常工作,信号的输出符合要求。

可以利用示波器、频谱仪等测试仪器对信号进行检测和分析,校准信号发生器的性能参数。

综上所述,设计一个高性能、高精度的函数信号发生器,需要选择合适的芯片、设计合理的电路结构和控制界面、增加附加功能,并进行严格的测试和调试。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。

下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。

硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。

可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。

2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。

根据频率范围选择合适的振荡器、计数器等电路元件。

3.精度:考虑信号的精度要求,如频率精度、相位精度等。

可以通过使用高精度的时钟源和自动频率校准电路来提高精度。

4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。

可以使用滤波电路、反馈电路等技术来改善波形质量。

5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。

软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。

2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。

可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。

3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。

对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。

4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。

存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。

5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。

总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。

在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。

二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。

它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。

函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。

三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。

2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。

(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。

(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。

(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。

(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。

四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。

2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。

3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。

五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。

实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好的波形质量。随着信号频率的提高,需要提高 数字量输入的速率,或减少波形点数。波形点数 的减少,将直接影响函数信号波形的质量,而数 字量输入速率的提高也是有限的。因此,该方案 比较适合低频信号,而较难产生高频信号(如> 1MHz)。
模数结合的实现方案,一般是用模拟电路产 生函数信号波形,而用数字方式改变信号的频率 和幅度。如采用D/A转换器与压控电路改变信号 的频率,用数控放大器或数控衰减器改变信号的 幅度等,是一种常见的电路方式。
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正弦波振荡器采用波形 变换电路, 通过迟滞比较器变换为方波,经积分器获得三角波输出。此电路的输出 频率就是就是RC文氏电桥振荡器的振荡频率.
正弦波/方波/三角波变换电路
采用RC振荡器产生正弦波,
频率:fo =1/[2πC(R1RP1)0.5]
通过比较器变换同频率方波, 再通过积分器变换同A 频率三角波。
B
C
R4
R5
12v
2k
470
7
50%
RV3 3
2
10k
4
1
5
U2
6 UA741
uo2
RV4
15k
100%
D3
1N5235B
迟滞比较 器 R1
SW1 C2
10u
SW-SPDT C1
1uf
Rp
-12v
10k
D1
1N5235B
7
4
1
U2
2 6
3
UA741
5
D2
12v
1N5235B
积分电路
A
uo2
B
C
D
10k
单元电路
用差分放大器做三角波/正弦波变换电路
三角波/正弦波变换原理: 用差分对管的饱和与截止特性进行变换:差分放大器电流恒 定并要求:传输特性对称线性区尽可能窄;三角波的幅值Vm 应使输出接近晶体管的截止电压;
一、设计任务书 1、设计内容:设计一个低频函数信号发生器 2、性能与技术指标 1)同时输出三种波形:方波、三角波、正弦波 2)频率范围:10Hz ~10KHz连续可调. 3)方波幅值±10V。
4)正弦波幅值±10V,失真度小于1.5%。 5)三角波幅值20V;各种输出波形幅值均 连续可调。
低频函数信号发生器的设计
RC振荡函数信号发生器
振荡器 正弦波
SW1
SW-SPDT
R1' R1
10k 1k
R3 D1
10k 1N4001
uo1
D2
1N4001
80%
R C1 调 0.1u 频 率 RV1
C2
10k 0.1u
15%
RVB
10k
R2
3k
7
4
1
5
-12v
U1
2 6
3 UA741
12v
RP2调反馈 起振限幅
频率:150-1500hz
正弦波uo1
方波uo2
RC
正弦波振荡器
过迟压滞 比较器
积分器
三角波
uo3
单元电路
RC文氏电桥正弦波振荡电路
D1 D2
R1 R3
文氏电桥振荡器:fo=1/2πRC;
1k
10k
1N4007 1N4007
u1OP
正反馈电路:RC串并选频网络决
-12v
定RC振荡器的振荡频率fo。
C1
RVB
U1
5
1
4
32%
V=-0.00572449
R7 R8
15k
15k
R8(2) V=6.97652
ห้องสมุดไป่ตู้Q1
2N2926
Q2
2N2926
C1
Re
R4
R5
100u 6.8k
Rp2 100
30k
V=-0.638869 RV3(2)
100
Q3
Rp1 10k
-12v
2N2926
R9
3k
C3
0.1u
C2
100u
A B C D
uo3 V=-1.3461
R11
6.8k
RV3(1) V=-0.638995
Q4
2N2926
RP3
Re4
10k
3k
用运放构成以RC振荡器为基础的函数信号发生器: 信号频率: fo =1/[2πC(R1*RP2)0.5], 三角波电压:uo=uiwT/(4RC)
设计实验电路参数注意:采用RC振荡正弦波/方波/三角波输出方案, 首先必须计算的文氏电桥振荡频率外, 其次还要计算作方波三角波变换积分电路的参数,使其积分电路的R3C3之积 > 正弦波振荡电路的R1C1之积!否则,可能影响三角波形的正常输出!
积分器
差分 放大器
正弦波
uoz
方波/三角波产生电路:由迟滞比较器与积分器首尾相串联构成。 电路输出频率fo =R2/(4R1RpC);三角波输出电压: Uo2=Vz*R1/R2
方波/三角波产生电路 频率fo =R2/(4R1RpC)
-12v
5
1
4
2
U1
3 UA741
6
7
12v
uo1
R3
2k
R2 20k
0.1u
负反馈电路:R1和R2决定起振条
2
件,调节波形与稳幅控制。
10k
6
3
R3并联D1.D2:正向非线性电阻
RV1 C2
7
起振时:电阻大负反馈小;
9%
R2
0.1u
3k
UA741
振荡幅值大时:电阻小负反馈大,
10k
整形限幅。
改变R 调频率
电路调整的关键是:负反馈电路中的电位器RW的 调节, RW过大:输出方波! RW过小:电路不起 振!
二、总体方案讨论
频率调节
幅度调节
振荡部分
输出电路
输出
频率指示
幅度指示
函数信号发生器的原理框图
➢ 信号产生部分的多种实现方案
▪ 模拟电路实现方案 ▪ 数字电路实现方案 ▪ 模数结合的实现方案
数字电路的实现方案,一般可事先在存储器 里存储好函数信号波形,再用D/A转换器进行逐 点恢复。这种方案的波形精度主要取决于函数 信号波形的存储点数、D/A转换器的转换速度、 以及整个电路的时序处理等。其信号频率的高 低,是通过改变D/A转换器输入数字量的速率来 实现的。这种方案在信号频率较低时,具有较
12v
调负反馈 起振限幅
调频振荡器 : fo
1
2C R1R2
方案二
用迟滞比较器与反相积分器首尾相串联构成方波-三角波产生电路,然后,采用差 分放大器,作为三角波—正弦波变换电路利用差分对管的饱和与截止特性进行变 换,此电路的输出频率就是就是方波-三角波产生电路的频率.
方波uof
三角波uo3
迟滞 比较器
单元电路
差分放大器电路 主要由Q1Q2等
构成。其中Re用于 减小差放的线性 区,Rp2对称性调 节,C3滤波电容。
恒流源由Q3.Q4. Re3. Re4与Rp3构成,为 差分放大器提供恒定 电流。 Io=Ri= =Vee-0.7/(Rp3+Re4)
AM
FM
12V
+
-
R7(2) V=8.28483
SW2 Q1(B)
相关文档
最新文档