李凡长版 组合数学课后习题答案 习题5

李凡长版 组合数学课后习题答案 习题5
李凡长版 组合数学课后习题答案 习题5

第五章 P ólya 计数理论

1. 计算(123)(234)(5)(14)(23),并指出它的共轭类.

解:题中出现了5个不同的元素:分别是:1,2,3,4,5。即|S n |=5。

???

? ?????? ?????? ??=512345432152431543215413254321)

23)(14)(5)(234)(123(

???

? ?????? ??=51234543215214354321 ???

? ??=5341254321 )5)(34)(12(=

(5)(12)(34)的置换的型为1122而S n 中属于1122型的元素个数为15

21!1!2!

52

1=个其共轭类为

(5)(14)(23),(5)(13)(24),(1)(23)(45),(1)(24)(35), (1)(25)(34),(2)(13)(45),(2)(14)(35),(2)(15)(34), (3)(12)(45),(3)(14)(25),(3)(15)(24),(4)(12)(35), (4)(13)(25),(4)(15)(24)

2. 设D 是n 元集合,G 是D 上的置换群.对于D 的子集A 和B ,如果存在G ∈σ,

使得}|)({A a a B ∈=σ,则称A 与B 是等价的.求G 的等价类的个数.

解:根据Burnside 引理∑=

=n

i i a c G l 1

1)(1,其中c 1(a i )表示在置换a i 作用下保持不变的元素个数,则有 c 1(σI )=n;

设在σ的作用下,A 的元素在B 中的个数为i ,则

c 2(σ)=n -2i ;

若没有其他置换,则G 诱出来的等价类个数为l=i n i n n -=-+)]2([2

1

3. 由0,1,6,8,9组成的n 位数,如果把一个数调转过来读得到另一个数,则称这两

个数是相等的.例如,0168和8910,0890与0680是相等的.问不相等的n 位数有多少个?

解:该题可理解为相当于n 位数,0,1,6,8,9这5个数存在一定的置换关系

对于置换群G={g 1,g 2}

g 1为不动点置换,型为1n ;为5n ;

g 2置换:(1n )(2(n-1))(3(n-2))…(??

?

?????????22n n ) 分为2种情况:

(1) n 为奇数时2

12n ,但是只有中间的数字是0,1,8的时候,才可能调

转过来的时候是相同的,所以这里的剩下的中间数字只能是有3种。

即:个数为3×2

15

-n

(2) n 为偶数时 2

2n ,个数为 2

5n 该置换群的轮换指标为

n 为偶数时,等价类的个数l =2

32

52

1)55(21n

n n =+ n 为奇数时,等价类的个数l =)5

35(2

12

1-?+n n

4. 现有8个人计划去访问3个城市,其中有3个人是一家,另外有2个人是一家.

如果一家人必须去同一个城市,问有多少种方案?写出它们的模式. 解:令D={d 1,d 2,…,d 8},其中,d 1,d 2,d 3为一家,d 4,d 5为一家。R={c 1,c 2,c 3},w(c 1)=

α,w(c 2)=β,w(c 3)=γ.f :D →R 是一种安排方案。根据题意,做D 的一个5分划 {d 1,d 2,d 3},{d 4,d 5},{d 6},{d 7},d 8},

要求f 在每块中的元素取值相同。对于{d 1,d 2,d 3},可以取α3+β3+γ3模式;对于{d 4,d 5 },可以取α2+β2+γ2模式;对于{d 6},{d 7},{d 8},可以取α+β+γ模式.所以,总的模式为

(α3+β3+γ3)(α2+β2+γ2)(α+β+γ)3

5. 对正立方体6个面用红、蓝、绿3种颜色进行着色,问有多少种不同的方案?又问3种颜色各出现2次的着色方案有多少种? 解:正立方体6个面的置换群G 有24个元素,它们是:

(1) 不动的置换,型为16,有一个;

(2) 绕相对两面中心轴旋转90°,270°的置换,型为1241,有6个;旋

转180°的置换,型为1222,有3个; (3) 绕相对两顶点连线旋转120°,240°的置换,型为32,有8个; (4) 绕相对两边中点连线旋转180°的置换,型为23,有6个。 所以,该置换群的轮换指标为 P G (x 1,x 2,…,x 6)=)6836(24

13

223222142161x x x x x x x ++++ 等价类的个数为

l =P G (3,3,…,3)=

)3638333363(24

1322236

?+?+??+?+=57 下面计算全部着色模式。这里,R={c 1,c 2,c 3},w(c 1)=r ,w(c 2)=b ,w(c 3)=g ,于是

F 的全部模式表

]

)(6)(8)()(3)()(6)[(241

3

22223332222244426g b r g b r g b r g b r g b r g b r g b r ++++++++++++++++++

其中,红色、蓝色、绿色各出现2次的方案数就是上述展开式中r 2b 2g 2项的系数,即

6)!

1!1!1!3623!2!2!2!6(241=?+?+ 6. 有一个3×3的正方形棋盘,若用红蓝两色对这9个方格进行着色,要求两个位

红色,其余为蓝色,问有多少种方案? 解: 其置换群为:

不动置换:型为 19,1个

沿中间格子及其对角线方向做旋转的置换:型为1323,4个 旋转90°和240°时的置换:型为1142 , 2个 旋转180°时的置换 型为1124, 1个

P(x)=[]

4

2243239)1)(1()1)(1(2)1()1(4)1(8

1x x x x x x x ++++++++++

我们设定x 为红色,1为蓝色,即转化为求x 2的系数 (1) 对应于19,(1+x )9中x 2项系数为C(9,2)=36; (2) 对应于1323,4(1+x)3(1+x 2)3中x 2项系数为:

4[C(3,2)C(3,0)+C(3,0)C(3,1)]=24;

(3) 对应于1142 2(1+x)(1+x 4)2中x 2项系数为0; (4) 对应于1124 (1+x)(1+x 2)4中x 2项系数为C(4,1)=4;

故x 2

的系数为 8)42436(8

1

=++

7. 对正六角形的6个顶点用5种颜色进行着色.试问有多少种不同的方案,旋转

使之重合作为相同处理.

解:对该正六角形的6的顶点的置换群有12个,它们分别是:

(1) 不动点置换,型为16,有1个;

(2) 旋转60°和300°的置换,型为61,有2个;旋转120°和240°的置换, 型为32,有2个; 旋转180°的置换型为23有1个; (3) 绕对角连线旋转180°的置换 ,型为1222,有3个; (4) 绕对边中点连线旋转180°的置换,型为23,有3个。

所以,该置换群的轮换指标为

P G (x 1,x 2,…,x 6)=)3322(12

13

2222123661x x x x x x ++++ 下面计算全部着色模式。这里,R={c 1,c 2,c 3,c 4,c 5},不妨设w(c 1)=r ,w(c 2)=b ,w(c 3)=g ,w(c 4)=p ,w(c 3)=y ,于是 F 的全部模式表

])(3))((3)(2)(2)[(12

1

32222222222222222233333666666y p g b r y p g b r y p g b r y p g b r y p g b r y p g b r ++++++++++++++++++++++++++++

其中,用这5种颜色着色的方案数就是上述展开式中r 2bgpy, rb 2gpy, rbg 2py,rbgp 2y, rbgpy 2项的系数之和,即

150)!

1!1!1!1!2!65(121=? 8. 在一个有7匹马的旋转木马上用n 种颜色着色,问有多少种可供选择的方案?

(旋转木马只能转动不能翻转) 解: 设想另一个正7边形与不动的正7边形完全重合,并且顶点标记相同,那

么绕中心旋转i 7

360

(1≤i ≤7)角度,使得能够与不动的正7边形重合。它

对应的置换是:71 共6个。故其轮换指标为 P G (x 1,x 2,…x n )=

)6(7

177

1x x + 计算全部着色模式为)]...(6)...[(7

17

7271721n n x x x x x x +++++++

n<7时为 )!7(!!7)!8(!6),7()]!1(7!...[1!1!771n n n n C n -?-=?--?

9. 一个圆圈上有n 个珠子,用n 种颜色对珠子着色,要求颜色数目不少于n 的方

案数是多少? 解:(1)不动点置换有一个;

(2)绕中心旋转i n

360(1≤i ≤n )角度,使得能够与不动的环重合。它对应

的置换是:n 1 共(n -1)个;

(3)把n 为奇数、偶数分两种情况分析: i)

n 为奇数时:沿一颗珠子和其他剩余珠子的平分线绕180°,对应的置换是211

2

1-n 共

n 个;

ii) n 为偶数时:沿珠子平分线绕180°,对应的置换是2

2n ,共2

n 个。 故其轮换指标为

P G (x 1,x 2,…x n )= ))1((2121211-+-+n n n

x nx x n x n

(n 为奇数时); P G (x 1,x 2,…x n )= )2

)1((32221n n n

x n x n x n +-+(n 为偶数时); 10. 骰子的6个面上分别标有1,2,…,6,问有多少种不同的骰子? 解:下面有3种方法求解:

方法1 6个面分别标上不同的点数,相当于用6种不同的颜色对它着色,

并且每种颜色出现且只出现一次,共有6!种方案。但这种方案经过正立方体的旋转可能会发生重合,全部方案上的置换群G 显然有24个元素。由于每个面的着色全不相同,只有恒等置换σI 保持6!种方案不变,即c 1(σI )=6!,c 1(p)=0(p ≠σI )。由Burnside 引理知 ∑=

∈G c G l ππ)(11=30)00!6(24

1

=+++ 方法2 在习题5中已求出关于正立方体6个面的置换群轮换指标,如果用m 种颜色进行着色,则不同的着色方案数为

)8123(24

1

2346m m m m l m ?+?+?+=

严格的说,l m 是至多用m 种颜色着色的方案数。我们可以计算出l 1=1,l 2=10,l 3=57,l 4=240,l 5=800,l 6=2226。现令n i 表示恰好用i 种颜色着色的方案数,则由容斥原理知 n 1=l 1=1

812122=???

?

??-=n l n

3013231233=???? ??-???? ??-=n n l n 6814243412344=???

? ??-???? ??-???? ??-=n n n l n 7515253545123455=???

? ??-???? ??-???? ??-???? ??-=n n n n l n

3016263646561234566=???

? ??-???? ??-???? ??-???? ??-???? ??-=n n n n n l n 方法3 令R={c 1,c 2,…,c 6},w(c i )=w i (1≤i ≤6)。正立方体6个面上的置换

群G 的轮换指标为

P G (x 1,x 2,…,x 6) =)6836(24

13

223222142161x x x x x x x ++++ 于是F 的全部模式表为

)

)(,,)(,)((62∑∑∑∈∈∈R

r R

r R

r G r w r w r w P

])(6)(8)()(3))((6)[(2413

26212363122

621261464161661w w w w w w w w w w w w w w ++++++++++++++++++=

其中,w 1w 2w 3w 4w 5w 6项的系数就是用6种颜色对6个面着色的方案数,等于

30!

1!1!1!6241=? 11. 将两个相同的白球和两个相同的黑球放入两个不同的盒子里,问有多少种不

同的方法?列出全部方案.又问每盒中有两个球的方法有多少种? 解: 令D={w 1,w 2,b 1,b 2},R={盒1,盒2},四个球往两个盒子里放的放法是F :D

→R 。由于w 1,w 2是两个相同的白球,b 1,b 2是两个相同的黑球,由此确定出D 上的置换群为

G={σI ,(w 1w 2),(b 1b 2),(w 1w 2)(b 1b 2)}

其轮换指标为 P G (x 1,x 2,x 3,x 4) =

)2(4

12222141x x x x ++ 于是F 上的等价类个数为

l =P G (2,2,2,2)=

9)22222(4

1224

=+??+ 这9个不同方案分别为

(?,wwbb), ( w,wbb), (b,wwb), (ww,bb), (wb,wb), (wwbb, ?), (wbb,w), (wwb,b), (bb,ww)

令w(盒1)=x ,w(盒2)=y ,则F 上的全部模式表为

P G (x+y,x 2+y 2,x 3+y 3,x 4+y 4) =))()()(2)((4

12222224y x y x y x y x ++++++ =x 4+2x 3y+3x 2y 2+2xy 3+y 4

盒1与盒2中各放两个球的方案数是x 2y 2项的系数,即为3。具体方案为

(ww,bb), (wb,wb), (bb,ww)

12. 将2个红球和2个蓝球放在正六面体的顶点上,问有多少种不同的方案? 解: 正立方体8个点的置换群G 有24个元素,它们是:

(1) 不动的置换,型为18,有1个;

(2) 绕相对两面中心轴旋转90°,270°的置换,型为42,有6个;旋转

180°的置换,型为24,有3个; (3) 绕相对两顶点连线旋转120°,240°的置换,型为1232,有8个; (4) 绕相对两边中点连线旋转180°的置换,型为24,有6个。 所以,该置换群的轮换指标为

P G (x 1,x 2,…,x 6)=)986(24

14

223212481x x x x x +++

下面计算全部着色模式。这里,假设除了红色和蓝色外我们放绿球,则R={c 1,c 2,c 3},w(c 1)=r ,w(c 2)=b ,w(c 3)=g ,于是 F 的全部模式表

])(9)()(8)(6)[(24

1

42222333224448g b r g b r g b r g b r g b r +++++++++++++ 其中,红色、蓝色各出现2次的方案数就是上述展开式中r 2b 2g 4项的系数,即

=?+)!

2!1!1!49!4!2!2!8(24122 13. 长为n 的透明的方格,用红、蓝、黄、绿4种颜色进行着色,试问有多少种不

同的方案? 解:问题相当于用r,b,y,g 构成长为n 的字符串,将从左向右的字符顺序和从右向

左的字符顺序看作时相同的,例如,yggrbr 和rbrggy 看作是相同的。

群G :???

? ??--????

??121121

2121 n n n n n n 根据 Pólya 定理,不同的方案数应为:

N =

)44(2

121??

????++n n

14. 用两种颜色对正六面体的6个面、8个顶点进行着色,问有多少种不同方案?

转动使之一致作为一类处理. 解:对正六面体的6个面的置换群设为G ,G 的循环指数多项式为:

P(G)=2

3322221421618636S S S S S S S ++++

设正六面体8个顶点的置换群为H ,H 的循环指数多项式为

P(H)=2

321422481896S S S S S +++

P(G ⊕H)=P(G)P(H)=

}896}{ 8636 {)

24(123214

2248123322221421612

S S S S S S S S S S S S +++++++

}

647248848543662427183485436 6896 {)

24(1432143422

4232381233221722432328123224162212422212

2101432414422134211012381426124611412S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S +++++++++++++++++++=

所求的不同等价类数为

}2829262{}282623262{5761

442823436?+?+?+??+?+?+?+? }2814424256{}3248484864{576

1

+++?++++?=

230552240576

1

=??=

15. 一个正八面体,用红、蓝两色对6个顶点进行着色;用黄、绿两种颜色对8

个面进行着色,试求其中4个顶点为红,两个顶点为蓝,黄和绿的面各4面的方案数. 注:正八面体可以看作是正方体的对偶,每一面用中心代表一个顶点,相交于一

个顶点的3个面对应过3个中心的三角形,由此构成的6个顶点,8个面的几何图形。即可得到我们需要的正八面体的形状。 解:通过刚才我们的提示可以得到如下结论:可以把问题转换成对于正六面体的

顶点和面的着色问题,转换成为要求给这个正六面体着色:用红、蓝两色对6个面进行着色;用黄、绿两种颜色对8个顶点进行着色,试求其中4个面为红,2个面为蓝;黄和绿的顶点各4个的方案数.

对正六面体的6个面的置换群设为G ,G 的循环指数多项式为:

P(G)=2

3322221421618636S S S S S S S ++++

设正六面体8个顶点的置换群为H ,H 的循环指数多项式为

P(H)=2

321422481896S S S S S +++

P(G ⊕H)=P(G)P(H)=

}896}{ 8636 {)

24(123214

2248123322221421612

S S S S S S S S S S S S +++++++ 所求的不同等价类数为

])(8)(6)()(3)()(6)[(24

1

23332222224426b r b r b r b r b r b r b r +++++++++++ ])(9)()(8)(6)[(24

1

42223322448g y g y g y g y g y ++++++++?

所得的r 4b 2y 4g 4的系数即为所求:

??

????++?+?????????+++?+?!2!2!49)!1!1!2!1!1!2(8!1!1!26!4!4!8241!1!2!36)1!1!21(316!2!4!6241!=2×7=14 所以符合题意的方案数为14种。

16. 用P ólya 定理求多重集合=∞?∞?∞? 12{,,,}n M a a a 的r 圆排列数. 解:可转化为有r 颗珠子的项链可以着n 种颜色的方法数。

(1)不动点置换有1个;

(2)绕中心旋转i r

360(1≤i ≤r )角度,使得能够与不动的环重合。它对应的置换是:r 1 共(r -1)个; (3)把r 为奇数、偶数分两种情况分析:

i)

r 为奇数时:沿一颗珠子和其他剩余珠子的平分线绕180°,对应的置换是2

1

1

2

1-r 共r 个;

ii) r 为偶数时:沿珠子平分线绕180°,对应的置换是2

2r ,共2

r 个。

故其轮换指标为

P G (x 1,x 2,…x n )= ))1((2121211-+-+r r r

x rx x r x r

(r 为奇数时); =))1((212

1-?+-+r r

n

rn n r n r

=))1((212

1++-+r r

rn

n r n r

P G (x 1,x 2,…x n )= )2

)1((32221r r r

x r x r x r +-+(r 为偶数时); =)2

)1((322r

r n r

n r n r +-+

17. 求n 个顶点的简单图有多少个?

解:简单图指的是过两个顶点没有多于一条的边,而且不存在圈的图形。问题相

当于对n 个无标志顶点的完全图的)1(2

-n n 条边,用两种颜色进行着色,求不同方案数的问题。比如两种颜色x,y ,令着上色y 的边从图中消去,得到一

n 个顶点的简单图。

例如3个顶点的无向图,有

G={(v 1)(v 2)(v 3),(v 1v 2v 3),(v 3v 2v 1),(v 1)(v 2v 3),(v 2)(v 1v 3),(v 3)(v 1v 2)} P(x,y)=)](2))((3)[(6

133223y x y x y x y x ++++++

=x 3+y 3+xy 2+x 2

v 2 v 3

从P(x,y)可知,对上图的三角形的边着色,其中3条边都用x 着色的有1;同样

用x 着色两条的、着色一条的、无一条着色的方案各为1(多项式各项的系数)。把用y 着色的边消除得到以下的图形。

再看n=4的情况.令e 1=(v 1v 2),e 2=(v 2v 3),e 3=(v 3v 4),e 4=(v 4v 1),e 5=(v 1v 3),e 6=(v 2v 4),则{v 1,v 2,v 3,v 4}上的每个置换确定了{e 1,e 2,e 3,e 4,e 5,e 6}上的置换,后者构成边集合上的置换群G . G 中有16型的置换1个,1222型的置换9个,32型的置换8个,2141型的置换6个.G 的轮换指标为:

P G (x 1,x 2,…,x 6)=

)689(24

1422

3222161x x x x x x +++ 令R={x, y},w(x)=r, w(y)=1则 P G (r+1,r 2+1,…, r 6+1)=

))1)(1(6)1(8)1()1(9)1[(24

1

42232226+++++++++r r r r r r =r 6+r 5+2r 4+3r 3+2r 2+r+1

故4个结点的简单图共有11个,如图所示:

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

组合数学课后答案

作业习题答案 习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 方法二: 对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。 2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.9将一个矩形分成(m +1)行112m m +?? + ??? 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有12m +?? ??? 种,这样一列中两个同色单元格的位置组合共有 12m m +?? ??? 种情况 (3)现在有112m m +?? + ??? 列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

组合数学课后标准答案

组合数学课后标准答案

————————————————————————————————作者:————————————————————————————————日期:

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

排列组合典型例题

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

组合数学题目及标准答案

组合数学 例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。问共有多少种不同的安全状态? 解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。 用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。这种对应显然是一对一的。因此,安全状态的总数等于这8个数的全排列总数8!=40320。 例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。证明n 偶数。 证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。 例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。 证 设n +1个数是a 1, a 2, ···, an +1。每个数去掉一切2的因子,直至剩下一个奇数为止。组成序列r 1, r 2,, ···, rn +1。这n +1个数仍在[1 , 2n ]中,且都是奇数。而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。若ai >aj ,则ai 是aj 的倍数。 例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k h ,使得 ah+1+…+ ak= 39 证 令Sj= ,j =1 , 2 , …,100。显然 ∑=j i i a 1 ∑=h i i a 1

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

李凡长版-组合数学课后习题答案-习题3

李凡长版-组合数学课后习题答案-习题3

第三章递推关系 1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n. 2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求 f(n)满足的递推关系. 解:设a n-1a n-2 …a 1 是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1) 表示。 a n 可以有两种情况: 1)不管上述序列中是否有2,因为a n 的位置在最左边,因此0 和1均可选; 2)当上述序列中没有1时,2可选; 故满足条件的序列数为 f(n)=2f(n-1)+2n-1 n 1, f(1)=3 解得f(n)=2n-1(2+n). 3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足 的递推关系. 解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。 则有 h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2) 将(1)得到的h(n)=(2n+4n)/2代入(2),可得 n+4n)/2-2f(n), 4.求满足相邻位不同为0的n位二进制序列中0的个数f(n). 解:这种序列有两种情况: 1)最后一位为0,这种情况有f(n-3)个; 2)最后一位为1,这种情况有2f(n-2)个; 所以 f(1)=2,f(2)=3,f(3)=5. 5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n). 解:最后两位是“00”的序列共有2n-2个。 f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能; f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能; 依此类推,有 17

高中数学排列组合题型总结与易错点提示25587汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1 m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合 要求的元素占了这两个位置. 先排末位共有13 C C 1 4 A 3 4 C 1 3 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得113434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花

不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 2 2 480A A A 种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈 节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55 A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46 A 不同的方法,由分步计数原理,节目的不同顺序共有5456 A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单, 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高中数学排列组合中的典型例题与分析(三)

排列与组合的八大典型错误、 24种解题技巧 三大模型 一、知识点归纳 二、基本题型讲解 三、排列组合解题备忘录 1.分类讨论的思想 2.等价转化的思想 3.容斥原理与计数 4.模型构造思想 四、排列组合中的8大典型错误 1.没有理解两个基本原理出错 2.判断不出是排列还是组合出错 3.重复计算出错 4.遗漏计算出错 5.忽视题设条件出错 6.未考虑特殊情况出错 7.题意的理解偏差出错 8.解题策略的选择不当出错 五、排列组合24种解题技巧 1.排序问题 相邻问题捆绑法 相离问题插空排 定序问题缩倍法(插空法) 定位问题优先法 多排问题单排法 圆排问题单排法 可重复的排列求幂法 全错位排列问题公式法 2.分组分配问题 平均分堆问题去除重复法(平均分配问题) 相同物品分配的隔板法 全员分配问题分组法 有序分配问题逐分法 3.排列组合中的解题技巧 至多至少间接法 染色问题合并单元格法 交叉问题容斥原理法 构造递推数列法 六.排列组合中的基本模型 分组模型(分堆模型) 错排模型 染色问题

七.排列组合问题经典题型与通用方法 (一)排序问题 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种 B、48种 C、36种 D、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种 解析:除甲乙外,其余5个排列数为5 5A 种,再用甲乙去插6个空位有2 6A 种,不同的排法种数是5 2 563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即 5 51602 A =种,选 B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有1 3A 种,4名同学在其余4个位置上有4 4A 种方法;所以共有1 4 3472A A =种。 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种 (2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共 66720A =种,选C . (2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有2 4A 种,某1个元素排在后半段的四个位置中选一个有1 4A 种,其余5个元素任排5个位置上有5 5A 种,故共有1 2 5 4455760A A A =种排法. 16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

组合数学 课后答案

习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

2.2任取11个整数,求证其中至少有两个数的差是10的整 数倍。 证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有 两个点,由它们所连线段的中点的坐标也是整数。 2.3证明: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通 过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.5一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果? 证明: 根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

相关文档
最新文档