组合数学(第四版)课后习题答案03
组合数学引论课后习题答案

组合数学引论课后习题答案组合数学引论课后习题答案组合数学是一门研究离散结构和计数问题的数学学科,它在计算机科学、密码学、统计学等领域中有着广泛的应用。
在学习组合数学的过程中,课后习题是巩固知识、提高技能的重要环节。
本文将为大家提供一些组合数学引论课后习题的答案,希望能对大家的学习有所帮助。
1. 问题:有6个不同的球,要将其放入3个不同的盒子中,每个盒子至少放一个球,一共有多少种放法?解答:这是一个将球放入盒子的问题,可以使用组合数学中的排列组合方法求解。
首先,我们可以确定每个盒子中至少放一个球,所以可以将问题转化为将剩下的3个球放入3个盒子中的问题。
对于每个球来说,都有3个选择,即放入第一个盒子、放入第二个盒子或放入第三个盒子。
因此,总的放法数为3^3=27种。
2. 问题:有8个人,其中4个人是男性,4个人是女性,要从中选出一个小组,要求男性人数和女性人数相等,一共有多少种选法?解答:这是一个选择问题,可以使用组合数学中的组合方法求解。
首先,我们需要确定男性和女性的人数必须相等,所以可以将问题转化为从4个男性和4个女性中各选取相同数量的人的问题。
对于男性来说,可以从4个人中选择0个、1个、2个、3个或4个。
对于每种选择,女性也需要选择相同数量的人。
因此,总的选法数为C(4,0) * C(4,0) +C(4,1) * C(4,1) + C(4,2) * C(4,2) + C(4,3) * C(4,3) + C(4,4) * C(4,4) = 1 + 16 + 36 + 16 + 1 = 70种。
3. 问题:有10个人,要从中选出一个小组,要求这个小组中至少有3个人,一共有多少种选法?解答:这是一个选择问题,可以使用组合数学中的组合方法求解。
首先,我们需要确定小组中至少有3个人,所以可以将问题转化为从10个人中选取3个、4个、5个...直到10个人的问题。
对于选取3个人的情况,可以从10个人中选择3个,即C(10,3)。
组合数学第3章答案

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。
解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.×3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m -j+1(2)(1)1 j 1(3)...(1) 1 12m l l n ml n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn m n mk m n --=--。
设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =(...(1))1 2 =(1) m m m ln A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫⎪⎝⎭∑(2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k kk l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭∑(3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i个的方案数。
组合数学(第四版)课后习题答案

第2章 鸽巢原理2.4 练习题1、关于本节中的应用4,证明对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋(情形=k 21是在应用4中处理的情况)。
能否判断:存在连续若干天,在此期间国际象棋大师将恰好下完22局棋?证明:设i a 表示在前i 天下棋的总数若正好有i a =k ,则命题得证。
若不然,如下:∵共有11周,每天至少一盘棋,每周下棋不能超过12盘∴有 771≤≤i ,且13217721≤<<<≤a a a {}21,,2,1 ∈∀k 有kk a k a k a k +≤+<<+<+≤+13217721 观察以下154个整数:ka k a k a a a a +++77217721,,,,,,, 每一个数是1到k +132之间的整数,其中153132≤+k 由鸽巢原理,这154个数中至少存在两个相等的数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
综上所述,对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋。
□当k =22时,132+k =154,那么以下154个整数22,,22,22,,,,77217721+++a a a a a a在1到154之间。
ⅰ)若这154个数都不相同则它们能取到1到154的所有整数,必然有一个数是22∵2222>+i a ,771≤≤i ∴等于22的数必然是某个i a ,771≤≤i则在前i 天,这位国际象棋大师总共下了22盘棋。
ⅱ)若这154个数中存在相同的两个数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
组合数学 课后答案 PDF 版

循环群也是群,所以群的定义不用再证,只需证明对于任意a, b G, G是循环群,有a * b b * a成立,因为循环群中的元素可写成a=xm 形式 所以等式左边xm × x n x m n , 等式右边x n xm=x m n, a b b a,即所有 的循环群都是ABEL群。
因为 H 是 G 的子群, 所以在 H 中的一个 (b m ) r 一定在 G 中对应一个 a m 使得
(b m ) r a m ,
所以有 b rm a m ,则 rm 一定是 m 的倍数,所以则 H 的阶必除尽 G 的阶。 4.9 G 是有限群,x 是 G 的元素,则 x 的阶必除尽 G 的阶。
N-1 N-2
N
1
2 3
……
……
图N! C N!
如图: N 个人围成一个圆桌的所有排列如上图所示。一共 N!个。
……
…
6
…………………………
… …
……
… …
…
…
旋转 360/i,i={n,n-1,n-2,……1}; 得到 n 种置换 当且仅当 i=1 的置换(即顺时针旋转 360/1 度:P1=(c1)(c2)……(cn!);) 时有 1 阶循环存在 (因为只要圆桌转动,所有圆排列中元素的绝对位置都发生了 变化,所以不可能有 1 阶循环存在) 。 不同的等价类个数就是不同的圆排列个数,根据 Burnside 引理,
4.18 若以给两个 r 色球,量个 b 色的球,用它装在正六面体的顶点,试问有多 少种不同的方案。 解:单位元素(1) (2) (3) (4) (5) (6) (7) (8) ,格式为(1)8. 绕中轴旋转 90。的置换非别为(1234) (5678) , (4321) (8765) 2 格式为(4) ,同格式的共轭类有 6 个。
组合数学课后习题答案

第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。
8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。
故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。
组合数学参考答案(卢开澄第四版)60页

组合数学参考答案(卢开澄第四版)60页1.1题从{1,2,……50}中找两个数{a,b},使其满足(1)|a-b|=5;(2)|a-b|?5;解决方案:(1):从| A-B |=5?A-B=5或A-B=5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。
当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对序列总数=94+96+5201.2题5个女生,7个男生进行排列,(a)若女生在一起有多少种不同的排列?(b)女生两两不相邻有多少种不同的排列?(c)两男生a和b之间正好有3个女生的排列是多少?解决方案:(a)五个女孩可以被视为一个单元,总共八个单元可以全部安排。
安排号码是:8!×5!,(b)男孩用X,空缺用y。
把男孩放在第一位。
总共有8个空缺在其中任取5个得到女生两两不相邻的排列数:c(8,5)×7!×5!(c)先取两个男生和3个女生做排列,情况如下:6.若a,b之间存在0个男生,a,b之间共有3个人,所有的排列应为p6=c(5,3)*3!*8!*21.若a,b之间存在1个男生,a,b之间共有4个人,所有的排列应为p1=c(5,1)*c(5,3)*4!*7!*22.若a,b之间存在2个男生,a,b之间共有5个人,所有的排列应为p2=c(5,2)*c(5,3)*5!*6!*23.若a,b之间存在3个男生,a,b之间共有6个人,所有的排列应为p3=c(5,3)*c(5,3)*6!*5!*24.若a,b之间存在4个男生,a,b之间共有7个人,所有的排列应为p4=c(5,4)*c(5,3)*7!*4!*25.若a,b之间存在5个男生,a,b之间共有8个人,所有的排列应为p5=c(5,5)*c(5,3)*8!*3!*2因此,排列的总数是上述六种情况的总和。
组合数学第三章课后习题答案

3.1题(宗传玉)某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇3次,每五人各相遇2次,每六人各相遇一次,1人也没有遇见的有5次,问某甲共参加了几次会议解:设A i为甲与第i个朋友相遇的会议集,i=1,…,6.则故甲参加的会议数为:28+5=33.3.2题(宗传玉)求从1到500的整数中被3和5整除但不被7整除的数的个数.解:设A3:被3整除的数的集合A5:被5整除的数的集合A7:被7整除的数的集合所以3.3.题(宗传玉)n个代表参加会议,试证其中至少有2人各自的朋友数相等。
解:每个人的朋友数只能取0,1,…,n-1.但若有人的朋友数为0,即此人和其他人都不认识,则其他人的最大取数不超过n-2.故这n个人的朋友数的实际取数只有n-1种可能.,所以至少有2人的朋友数相等.3.4题(宗传玉)试给出下列等式的组合意义.解:(a) 从n 个元素中取k 个元素的组合,总含有指定的m 个元素的组合数为)()(kn mn m k m n --=--。
设这m 个元素为a 1,a 2,…,a m ,Ai 为不含a i 的组合(子集),i=1,…,m.()∑∑∑==∈⊄==⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-+⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛-=ml l m l l m i i lj i lk l n k m A k n k n m n k l n l j 01),(),...,(1m1i i i i i 1)1(A A A A 111213.5题(宗传玉)设有三个7位的二进制数:a1a2a3a4a5a6a7,b1b2b3b4b5b6b7,c1c2c3c4c5c6c7.试证存在整数i 和j,1≤i≤j≤7,使得下列之一必定成立:a i=a j=b i=b j,a i=a j=c i=c j,b i=b j=c i=c j.证:显然,每列中必有两数字相同,共有种模式,有0或1两种选择.故共有·2种选择.·2=6.现有7列,.即必有2列在相同的两行选择相同的数字,即有一矩形,四角的数字相等.3.6题(宗传玉)在边长为1的正方形内任取5个点试证其中至少有两点,其间距离小于证:把1×1正方形分成四个(1/2)×.则这5点中必有两点落在同一个小正方形内.而小正方形内的任两点的距离都小于.3.7题(王星)在边长为1的等边三角形内任取5个点试证其中至少有两点,期间距离小于1/2.证:把边长为1的三角形分成四个边长为1/2的三角形,如上图:则这5点中必有两点落在同一个小三角形中.小三角形中任意两点间的距离都小于1/2.3.8题(王星)任取11个整数,求证其中至少有两个数它们的差是10的倍数。
组合数学讲义及答案 3章 递推关系

后两项求和:
m 1 m 1 2m j 2 j r r r + m 1 r j j 0
m2 m 1
=r
2m 2 j j 0
j j r = r
n 2 2
§3.2 常系数线性递推关系
常系数的线性递推关系:
a n c1 a n1 c 2 a n 2 c k a n k 0,
或
c k
0
(3.2.1)
an c1an 1 c2 an 2 ck an k f n , ( ck 0 )
(3.2.2) 分别称为 k 阶齐次递推关系和 k 阶非齐次递推关系。 其中 f(n) 称为自由项。 显 然 , 式 ( 3.2.1 ) 至 少 有 一 个 平 凡 解 a n 0n 0,1,2, ,而人们更关心的是它的非零解。
n k k k r ,求{an}所满足的递推关 k 0
n n n n - 1 n - 2 2 r r +…+ 2 r 2 n 为偶数: a n = n 0 1 2 2
a n 2a n1 1 , a 1 1
3/75
(3.1.3)
《组合数学》
第三章 递推关系
求解
a n = 2n 1
例3.1.2 (Lancaster 战斗方程)两军打仗,每支军队在每 天战斗结束时都清点人数,用 a0 和 b0 分别表示在战斗打响前 第一支和第二支军队的人数,用 an 和 bn 分别表示第一支和第 二支军队在第 n 天战斗结束时的人数,那么,an-1-an 就表示 第一支军队在第 n 天战斗中损失的人数,同样,bn-1-bn 表示 第二支军队在第 n 天战斗中损失的人数。 假设:一支军队所减少的人数与另一支军队在每天战斗开 始前的人数成比例,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由定理3.4.4 6个没有区别的车放在 6 6 棋盘上,使没有两个车能够互相攻击的放置方法有6!种。 2个红车4个蓝车,那么放置方法是
(6!) 2 =6!×15种。 2!4!
1010 210 510
同ⅰ),由乘法原理, 1010 有11×11 = 121个因子,且互异 那么, 1010 有121个互异正因子 □
8、6男6女围坐一个圆桌。如果男女交替围坐,可有多少种围坐的方式?
—第1页—
SY0721129 刘佳
解:先把6个男人循环排队,有5!种方式
再把6个女人依次插入男人的循环队列中,要求每两个男人之间插一个女的,那么有6!种 方式 由乘法原理,共有5!×6!种方式 □
解:因为有1个A,2个D,1个R,2个E,个S
9! 个。 2!2!3! 8! 8! 8! 8! 8! 8-排列的个数是 种。 2!2!3! 2!3! 2!2!3! 2!3! 2!2!2!
所以,字母的排列共有
□
—第3页—
种。 □ ⅱ) 将8个车放在 12 12 棋盘上,使没有两个车能够互相攻击的放置方法有
12 12 8 8 8 8! 3 种。
□
21、单词ADDRESSES的字母有多少排列?这9个字母有多少8-排列?
—第2页—
SY0721129 刘佳
SY0721129 刘佳
第3章 排列与组合 3.6 练习题
4、下列各数各有多少互异正因子? ⅰ) 3 5 7 11
4 2 6
ⅱ) 620 ⅲ) 10
10
解:ⅰ)已知3、5、7、11都是素数 在 34 5 2 7 6 11 中包含着4个3、2个5、6个7、1个11的乘积 选择因子3的个数的方法有5种,分别是选择0个、1个、2个、3个、4个 同理,选择因子5的方法有3种,选择因子7的方法有7种,选择因子11的方法有2种 由乘法原理, 34 5 2 7 6 11 有5×3×7×2 = 210个因子,且互异 那么, 34 5 2 7 6 11 有210个互异正因子 □ ⅱ)先把 620 因式分解,得 620 = 2 2 5 31 同ⅰ),由乘法原理,620有3×2×2 = 12个因子,且互异 那么,620有12个互异正因子 □ ⅲ)先把 1010 因式分解,得
□
19、给定8个车,其中5个红车,3个蓝车。 ⅰ) 将8个车放在 8 8 棋盘上,使没有两个车能够互相攻击的放置方法有多少? ⅱ) 将8个车放在 12 12 棋盘上,使没有两个车能够互相攻击的放置方法有多少?
解:ⅰ) 由定理3.4.4
8 8个没有区别的车放在 8 8 棋盘上,使没有两个车能够互相攻击的放置方法有 8! 3