北师大版角平分线 PPT
合集下载
《角平分线》PPT课件 (公开课获奖)2022年北师大版 (3)

2、如以以以下图 ,从点O出发有
三条射线 ,那么图中有 个
角 ,它们分别是
.
C B
OA
D O AC B
(3)哈尔滨在北京的北 偏东大约多少度 ?
例 填空
1 4
___ ____
11700 ___ ___
3018
____
________
201536 ___________
想一想:
线 ,DE⊥AB ,垂足为E . 〔〔21〕〕求:证CD:A=B4c=mA,C求A+CC的D长;
稳固练习:
1、到三角形三边距离相等的点是三 角形〔 〕的交点 .
A、三条角平分线 B、三条中线
C、三条高线
D、三边中垂线
2、△ABC中 ,AC = BC ,∠C = 90° ,
AD平分∠CAB ,DE⊥AB ,CD = 2 ,
大家说
:AC平分∠BAD ,CE⊥AB ,CF⊥AD ,BC =CD;求证:BE =DF
1.4.2 角平分线
• 学习目标:
• 1、通过尺规作图 ,发现并推证三角形三条 角平分线交于一点 ,且此点到三角形三边距 离相等 .
• 2、能够综合运用角平分线定理及逆定理 解决有关的计算与证明 .
练一练 : 且如CE图=,BBFE.⊥求A证C:于点ED,C在F⊥∠BAABC于的F平, 分线上
A
D OE
B
C
1、如图1, D、E分别是AB、AC上的点.
是
∠ ABC与∠ DBC是不是同一个角?
是
∠BAC与∠ DAE是不是同一个角不是?
∠BAC与∠ ACB是不是同一个角?
2、如图2 ,图A 中共共有有10个多角少个角E ?D请分别表
北师大版七年级数学上角的比较及角平分线课件

B 角平分线的定义
从一个角的顶点出发的一条射线,把这个角分成
C
两个相等的角,这条射线叫做这个角的平分线.
几何语言
O
A
因为OC是∠AOB的角平分线,
所以∠AOC =∠BOC = 1 ∠AOB 2
或∠AOB =2∠BOC =2∠AOC
归类探究
例2 如图,已知点O为直线AB上一点,OM,ON分 别是∠AOC,∠BOC的平分线,求∠MON的度数.
O'
DA
3.若射线O'C在
∠AOB内部,那么
∠DO'C_<__∠AOB.
归类探究
例1 根据下图,回答下列问题:
(1)试比较∠AOB,∠AOD,∠AOE,∠AOC的大小,
并找出其中的锐角、直角、钝角、平角; (2)在图中找出角的三个等量关系.
[解析] ∠AOB是平角,∠AOC是钝角,∠AOD是直角,∠AOE是锐角,于是就可找到
解:(1)OA 的方向是北偏东 60°,OC 的方向是北偏东 45°. (2)∵OB 的方向是南偏东 60°,∴∠BOE=30°, ∴∠NOB=30°+90°=120°. ∵OA 平分∠NOB,∴∠NOA=12∠NOB=60°. ∵OC 平分∠NOE, ∴∠NOC=1∠NOE=45°,
2 ∴∠AOC=∠NOA-∠NOC=60°-45°=15°.
当堂测试
3.如图,将一副三角板叠放在一起,使直角的顶点重合于点 O,并 能绕点 O 自由旋转.若∠DOB=65°,则∠AOC 的度数为________.
当堂测试
4.[2018·河南]如图,直线 AB,CD 相交于点 O,∠EOB=90°,∠ EOD=50°,则∠BOC 的度数为_______.
八年级数学下册1.4.2角平分线课件新版北师大版

度数,可以求此角的度数。
3
应用三 解决实际问题
可以运用角平分线及其性质来解决直角 三角形、等腰三角形等问题。
角平分线的练习
练习一 画出角的平分线
练习用尺规等工具作出各种角的 平分线。
练习二 用角平分线定理 求角度
练习应用角平分线定理来求出角 的度数。
练习三 解决实际问题
练习将角平分线应用于解决不同 的实际问题。
总结
1 角平分线的重要性
角平分线是许多的几何问题的基础课件的学习,你是否已经对角平分线有了更好的理解?
3 知识点回顾
通过课件中的练习,你是否已经掌握了角平分线的基本定义、性质、作用、应用及求解 方法?
可用尺规作图法作出一条角的平 分线。
角平分线的作用
寻找角平分线
可以用尺规作图法求角平分线。
确定长度
若一个角的一条平分线已知其长度,则可以求出与此平分线相应两边的长度。
证明定理
可以用角平分线定理来证明一些定理。
角平分线的应用
1
应用一 求角平分线
通过尺规作图等方法求角平分线。
应用二 求角度大小
2
已知一个角的一条平分线与相应两边的
角平分线课件:北师大版 八年级数学下册1.4.2
本课件将深入讲解角平分线的定义、性质、作用、应用和练习,助你更好地 掌握这一知识点。
角平分线的定义
什么是角平分线
角平分线是指可以将一个角平分 成两个相等的角的线段。
角平分线的性质
作图
1.角平分线可以互相平分。
2.如果一个角的两条平分线相交, 则它们所截的弧上的点都在相同 的直线上。
北师大版数学八下1.4角平分线课件

2.已知:如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,
使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相
等.
A
A
D
O
C B
D C
O
B
1.如图,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D, 交AC于点E,连接BE,求证:BE平分∠ABC 证明:
1、判断题 (1)∵ AD平分∠BAC(已知)
∴ BD = DC ( × )
(2)∵ DC⊥AC于C,DB⊥AB于B (已知)
∴ BD = DC ( × )
B
A
D
C
A B
D
C
(3)∵ AD平分∠BAC, DC⊥AC于C ,DB⊥AB于B (已知)
∴ BD = DC ( √ )
A
不必再证全等
B
D C
∴点P即为所求
O
A
P
D
C B
四、课堂小结 角平分线性质定理 定理 角平分线上的点到这个角的两边的距离相等
角平分线判定定理
定理
在一个角形内部,到角的两边的距离相等 的点在这个角的平分线上
探究二:
定理 角平分线上的点到这个角的两边的距离相等
条件
结论
你能写出这个定理的逆命题?
逆命题:一个角的内部,到角的两边距离相等的点在这个角的平分线上
真命题 ? 假命题 ?
角平分线性质定理的逆命题
一个角的内部,到角的两边距离相等的点在这个角的平分线上
条件
结论
已知: 点P为∠AOB内一点 PD丄OA, PE丄OB,垂足分别 为D、E , PD=PE.
小结: 角平分线性质判定定理 在角的内部,到角的两边距离相等的点在这个角的平分线上
8年级 数学北师大版 下册课件第1章《4 角平分线》

线,DE⊥AB,垂足为E.
(1)如果CD=4cm,AC的长;
A
(2)求证:AB=AC+CD.
E
C
D
B
典例精讲
解:(1)∵AD是△ABC的角平分线,DE⊥AB,DC⊥AC
∴DE=CD=4
又∵AC=BC ∠C=90°
A
∴ ∠B=45°
∴ ∠BDE=45°
E
∴ BE=DE=4
在等腰RT△BDE中,由勾股定理得
利用以上两个性质可得线段相等
作业布置
1.必做题:课本P31随堂练习、P32 习题1-3题
2.选做题:
如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,
F在AC上,BD=DF,
A
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
F E
C
D
B
随堂练习
如图 ,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息, 要使凉亭到草坪三条边的距离相等,凉亭的位置应选在什么位置?
∵点 P 在∠AOB 的平分线上 ∵ PD⊥OA,PE⊥OB
PD⊥OA , PE⊥OB。
PD=PE
,
∴ PE=PD
∴OP 平分 ∠AOB 。
探究新知
如图 ,是一块三角形的草坪,现要在草坪上建一凉亭供大家休 息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在什么 地方?
A
B
C
探究新知
活动1 分别作出△ABC的三条角平分线
同理 PE=PF ∴PD=PE=PF
D
NN
PP
MM F
又∵PF⊥AC,PD⊥AB
B B
∴点P在∠A的平分线上。
第1课时 角平分线PPT课件(北师大版)

解:在△BDF和△CDE中,∠BFD=∠CED=90°,∠FDB=∠EDC, BD=CD,∴△BDF≌△CDE(AAS),∴DF=DE,又∵DF⊥AB,DE⊥AC ,∴AD平分∠BAC
14.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D, 现要修建一个货站P到两条公路OA,OB的距离相等,且到两工厂C,D的 距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹, 写出结论)
距离相等),在Rt△BDE和Rt△CDF中,BD=CD,DE=DF, ∴Rt△BDE≌Rt△CDF(HL),∴BE=CF
知识技能: 1.根据角平分线性质定理可证明三角形全等,一组线段相等,一组角 相等; 2.根据角平分线性质定理的逆定理可证明角平分线、某一点在角平分 线上. 易错提示:角平分线的性质定理及判定定理互逆,使用时注意“在角的 内部”.
解:DF=EF.理由:∵OC是∠AOB的平分线,∴∠AOC=∠BOC, 又∵PD⊥OA,PE⊥OB,∴PD=PE,∵OP=OP, ∴Rt△POD≌Rt△POE(HL),∴OD=OE,又∵∠DOF=∠EOF,OF=OF
,∴△DOF≌△EOF(SAS),∴DF=EF
13.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于 点D,若BD=CD,求证:AD平分∠BAC.
15.如图,已知BD是∠ABC的平分线,AB=BC,点P在射线BD上, PM⊥AD于点M,PN⊥CD于点N.
求证:PM=PN.
解:在△ABD和△CBD中,AB=CB,∠ABD=∠CBD,BD=BD, ∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,又∵∠ADB+∠ADP=∠CDB +∠CDP=180°,∴∠ADP=∠CDP,∴DP平分∠ADC,又∵PM⊥AD,
14.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D, 现要修建一个货站P到两条公路OA,OB的距离相等,且到两工厂C,D的 距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹, 写出结论)
距离相等),在Rt△BDE和Rt△CDF中,BD=CD,DE=DF, ∴Rt△BDE≌Rt△CDF(HL),∴BE=CF
知识技能: 1.根据角平分线性质定理可证明三角形全等,一组线段相等,一组角 相等; 2.根据角平分线性质定理的逆定理可证明角平分线、某一点在角平分 线上. 易错提示:角平分线的性质定理及判定定理互逆,使用时注意“在角的 内部”.
解:DF=EF.理由:∵OC是∠AOB的平分线,∴∠AOC=∠BOC, 又∵PD⊥OA,PE⊥OB,∴PD=PE,∵OP=OP, ∴Rt△POD≌Rt△POE(HL),∴OD=OE,又∵∠DOF=∠EOF,OF=OF
,∴△DOF≌△EOF(SAS),∴DF=EF
13.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于 点D,若BD=CD,求证:AD平分∠BAC.
15.如图,已知BD是∠ABC的平分线,AB=BC,点P在射线BD上, PM⊥AD于点M,PN⊥CD于点N.
求证:PM=PN.
解:在△ABD和△CBD中,AB=CB,∠ABD=∠CBD,BD=BD, ∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,又∵∠ADB+∠ADP=∠CDB +∠CDP=180°,∴∠ADP=∠CDP,∴DP平分∠ADC,又∵PM⊥AD,
北师大版数学七年级下册第3课时三角形的中线、角平分线课件(17张P)

位置关系?
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
初中数学《角平分线》课件-完美版【北师大版】2

解:如图,过点 O 作 OE⊥AB 于 E,OF⊥AC 于 F, 连接 OA. ∵点 O 是∠ABC, ∠ACB 的平分线的交点, ∴OE=OD,OF=OD,即 OE=OF=OD=3.
∴S△ABC=S△ABO+S△BCO+S△ACO = AB·OE+ BC·OD+ AC·OF = ×3×(AB+BC+AC) = ×3×20 =30.
14. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC, DE⊥AB 于点 E,点 F 在 AC 上,且 BD=DF. (1)求证:CF=EB; (2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
三级拓展延伸练
13. 如图所示,若 AB∥CD,AP,CP 分别平分 ∠BAC 和∠ACD,PE⊥AC 于点 E,且 PE=3 cm, 求 AB 与 CD 之间的距离.
(2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
(2)AF+BE=AE.理由如下: ∵在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL). ∴AC=AE. ∴AF+FC=AE,即AF+BE=AE.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
∴S△ABC=S△ABO+S△BCO+S△ACO = AB·OE+ BC·OD+ AC·OF = ×3×(AB+BC+AC) = ×3×20 =30.
14. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC, DE⊥AB 于点 E,点 F 在 AC 上,且 BD=DF. (1)求证:CF=EB; (2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
三级拓展延伸练
13. 如图所示,若 AB∥CD,AP,CP 分别平分 ∠BAC 和∠ACD,PE⊥AC 于点 E,且 PE=3 cm, 求 AB 与 CD 之间的距离.
(2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
(2)AF+BE=AE.理由如下: ∵在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL). ∴AC=AE. ∴AF+FC=AE,即AF+BE=AE.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互动三:巩固作法
1、请大家画一个钝角,然后作 它的角平分线,与同桌互说作法。
2、请大家作一个平角的角平分 线,你有什发现?
互动四:课堂延伸
1、作出一对邻补角的角平分
线。 B
M
N
A
O
C
猜一猜这两条射线的位置关系如何?
互动四:课堂延伸
2、作一对对顶角的平分线,它 们又有何关系呢? A
C
M
O
N
B
D
互动四:课堂延伸
快乐的生活, 快乐的学习数学, 体会数学的快乐, 数学会让你快乐的生活更加快乐!
爱好出勤奋
勤奋出天才!
布置做作中业学
关系你的还角知?道作那出些学它有们中特的作殊角位平置分
线,并想想这些角的角平分线 有何特殊位置关系?
角平分线的作法
互动一:寻找作法
工人师傅常用角尺平分一个任意角,做法 如下:如图,∠AOB是一个任意角,在边 OA,OB上分别取OM=ON,移动角尺, 使角尺两边相同的刻度分别与M、N重合。 过角尺顶点C的射线OC便是∠AOB的平分 线。为什么?
3、试一试:
你还知道那些有特殊位置关系 的角?作出它们的角平分线, 想想这些角的角平分线有何位 置关系?
4、想一想
如果过角平分线上一点向角的 两边作垂线,这两条垂线段有 何关系?
本节课收获
1. 通过本节课学习,你知道了什么? 你学会了什么? 2.今天的学习中,你最大的收获是 什么?你还有什么不明白的?
互动二:明确作法
现在我们一起来完成用尺规作一个锐 角的平分线。已知:∠AOB,求作: ∠AOB的平分线。
பைடு நூலகம்
作法:
1、以O为圆心,以适当的长为半径 画弧,交OA于M,交OB于N;
2长、为分半别径以画M弧、,N两为弧圆在心∠,A以O大B的于内12 部MN交的于 点C;
3、画射线OC,射线OC就是∠AOB的平 分线。