数据结构练习题 第三章 栈、队列和数组 习题及答案备课讲稿
数据结构练习题第三章栈、队列和数组习题含答案

return(1);} } 12. 以下运算实现在链栈上的初始化,请在________________处用请适当句子予以填充。 Void InitStacl(LstackTp *ls){ ________________;} 13.` 以下运算实现在链栈上的进栈,请在处用请适当句子予以填充。 Void Push(LStackTp *ls,DataType x) { LstackTp *p;p=malloc(sizeof(LstackTp));
else return(0); } 16.必须注意,递归定义不能是“循环定义”。为此要求任何递归定义必须同时满足如下 条件: ①被定义项在定义中的应用(即作为定义项的出现)具有________________; ②被定义项在最小“尺度”上的定义不是________________的。 17. 队 列 简 称 ________________。 在 队 列 中 , 新 插 入 的 结 点 只 能 添 加 到 ________________,被删除的只能是排在________________的结点。 18. 队 列 以 线 性 表 为 逻 辑 结 构 , 至 少 包 括 ________________、 ________________、 ________________、________________ ________________、五种基本运算。 19.顺序队的出、入队操作会产生“________________”。 20.以下运算实现在循环队上的初始化,请在________________处用适当句子予以填充。 Void InitCycQueue(CycqueueTp *sq) { ________________;sq->rear=0;} 21. 以下运算实现在循环队上的入队列,请在________________处用请适当句子予以填 充。 Int EnCycQueue(CycquereTp *sq,DataType x) { if((sq->rear+1)%maxsize== ________________)
严蔚敏《数据结构(c语言版)习题集》答案第三章 栈与队列

第三章栈与队列3.15typedef struct{Elemtype *base[2];Elemtype *top[2];}BDStacktype; //双向栈类型Status Init_Stack(BDStacktype &tws,int m)//初始化一个大小为m的双向栈tws{tws.base[0]=(Elemtype*)malloc(sizeof(Elemtype));tws.base[1]=tws.base[0]+m;tws.top[0]=tws.base[0];tws.top[1]=tws.base[1];return OK;}//Init_StackStatus push(BDStacktype &tws,int i,Elemtype x)//x入栈,i=0表示低端栈,i=1表示高端栈{if(tws.top[0]>tws.top[1]) return OVERFLOW; //注意此时的栈满条件if(i==0) *tws.top[0]++=x;else if(i==1) *tws.top[1]--=x;else return ERROR;return OK;}//pushStatus pop(BDStacktype &tws,int i,Elemtype &x)//x出栈,i=0表示低端栈,i=1表示高端栈{if(i==0){if(tws.top[0]==tws.base[0]) return OVERFLOW;x=*--tws.top[0];}else if(i==1){if(tws.top[1]==tws.base[1]) return OVERFLOW;x=*++tws.top[1];}else return ERROR;return OK;}//pop3.16void Train_arrange(char *train)//这里用字符串train表示火车,'H'表示硬席,'S'表示软席{p=train;q=train;InitStack(s);while(*p){if(*p=='H') push(s,*p); //把'H'存入栈中else *(q++)=*p; //把'S'调到前部p++;}while(!StackEmpty(s)){pop(s,c);*(q++)=c; //把'H'接在后部}}//Train_arrange3.17int IsReverse()//判断输入的字符串中'&'前和'&'后部分是否为逆串,是则返回1,否则返回0{InitStack(s);while((e=getchar())!='&')push(s,e);while((e=getchar())!='@'){if(StackEmpty(s)) return 0;pop(s,c);if(e!=c) return 0;}if(!StackEmpty(s)) return 0;return 1;}//IsReverse3.18Status Bracket_Test(char *str)//判别表达式中小括号是否匹配{count=0;for(p=str;*p;p++){if(*p=='(') count++;else if(*p==')') count--;if (count<0) return ERROR;}if(count) return ERROR; //注意括号不匹配的两种情况return OK;}//Bracket_Test3.19Status AllBrackets_Test(char *str)//判别表达式中三种括号是否匹配{InitStack(s);for(p=str;*p;p++){if(*p=='('||*p=='['||*p=='{') push(s,*p);else if(*p==')'||*p==']'||*p=='}'){if(StackEmpty(s)) return ERROR;pop(s,c);if(*p==')'&&c!='(') return ERROR;if(*p==']'&&c!='[') return ERROR;if(*p=='}'&&c!='{') return ERROR; //必须与当前栈顶括号匹配}}//forif(!StackEmpty(s)) return ERROR;return OK;}//AllBrackets_Test3.20typedef struct {. int x;int y;} coordinate;void Repaint_Color(int g[m][n],int i,int j,int color)//把点(i,j)相邻区域的颜色置换为color{old=g[i][j];InitQueue(Q);EnQueue(Q,{I,j});while(!QueueEmpty(Q)){DeQueue(Q,a);x=a.x;y=a.y;if(x>1)if(g[x-1][y]==old){g[x-1][y]=color;EnQueue(Q,{x-1,y}); //修改左邻点的颜色}if(y>1)if(g[x][y-1]==old){g[x][y-1]=color;EnQueue(Q,{x,y-1}); //修改上邻点的颜色}if(x<m)if(g[x+1][y]==old){g[x+1][y]=color;EnQueue(Q,{x+1,y}); //修改右邻点的颜色}if(y<n)if(g[x][y+1]==old){g[x][y+1]=color;EnQueue(Q,{x,y+1}); //修改下邻点的颜色}}//while}//Repaint_Color分析:本算法采用了类似于图的广度优先遍历的思想,用两个队列保存相邻同色点的横坐标和纵坐标.递归形式的算法该怎么写呢?3.21void NiBoLan(char *str,char *new)//把中缀表达式str转换成逆波兰式new{p=str;q=new; //为方便起见,设str的两端都加上了优先级最低的特殊符号InitStack(s); //s为运算符栈while(*p){if(*p是字母)) *q++=*p; //直接输出else{c=gettop(s);if(*p优先级比c高) push(s,*p);else{while(gettop(s)优先级不比*p低){pop(s,c);*(q++)=c;}//whilepush(s,*p); //运算符在栈内遵循越往栈顶优先级越高的原则}//else}//elsep++;}//while}//NiBoLan //参见编译原理教材3.22int GetValue_NiBoLan(char *str)//对逆波兰式求值{p=str;InitStack(s); //s为操作数栈while(*p){if(*p是数) push(s,*p);else{pop(s,a);pop(s,b);r=compute(b,*p,a); //假设compute为执行双目运算的过程push(s,r);}//elsep++;}//whilepop(s,r);return r;}//GetValue_NiBoLan3.23Status NiBoLan_to_BoLan(char *str,stringtype &new)//把逆波兰表达式str转换为波兰式new{p=str;Initstack(s); //s的元素为stringtype类型while(*p){if(*p为字母) push(s,*p);else{if(StackEmpty(s)) return ERROR;pop(s,a);if(StackEmpty(s)) return ERROR;pop(s,b);c=link(link(*p,b),a);push(s,c);}//elsep++;}//whilepop(s,new);if(!StackEmpty(s)) return ERROR;return OK;}//NiBoLan_to_BoLan分析:基本思想见书后注释.本题中暂不考虑串的具体操作的实现,而将其看作一种抽象数据类型stringtype,对其可以进行连接操作:c=link(a,b).3.24Status g(int m,int n,int &s)//求递归函数g的值s{if(m==0&&n>=0) s=0;else if(m>0&&n>=0) s=n+g(m-1,2*n);else return ERROR;return OK;}//g3.25Status F_recursive(int n,int &s)//递归算法{if(n<0) return ERROR;if(n==0) s=n+1;else{F_recurve(n/2,r);s=n*r;}return OK;}//F_recursiveStatus F_nonrecursive(int n,int s)//非递归算法{if(n<0) return ERROR;if(n==0) s=n+1;else{InitStack(s); //s的元素类型为struct {int a;int b;}while(n!=0){a=n;b=n/2;push(s,{a,b});n=b;}//whiles=1;while(!StackEmpty(s)){pop(s,t);s*=t.a;}//while}return OK;}//F_nonrecursive3.26float Sqrt_recursive(float A,float p,float e)//求平方根的递归算法{if(abs(p^2-A)<=e) return p;else return sqrt_recurve(A,(p+A/p)/2,e);}//Sqrt_recurvefloat Sqrt_nonrecursive(float A,float p,float e)//求平方根的非递归算法{while(abs(p^2-A)>=e)p=(p+A/p)/2;return p;}//Sqrt_nonrecursive3.27这一题的所有算法以及栈的变化过程请参见《数据结构(pascal版)》,作者不再详细写出.3.28void InitCiQueue(CiQueue &Q)//初始化循环链表表示的队列Q{Q=(CiLNode*)malloc(sizeof(CiLNode));Q->next=Q;}//InitCiQueuevoid EnCiQueue(CiQueue &Q,int x)//把元素x插入循环链表表示的队列Q,Q指向队尾元素,Q->next指向头结点,Q->next->next指向队头元素{p=(CiLNode*)malloc(sizeof(CiLNode));p->data=x;p->next=Q->next; //直接把p加在Q的后面Q->next=p;Q=p; //修改尾指针}Status DeCiQueue(CiQueue &Q,int x)//从循环链表表示的队列Q头部删除元素x{if(Q==Q->next) return INFEASIBLE; //队列已空p=Q->next->next;x=p->data;Q->next->next=p->next;free(p);return OK;}//DeCiQueue3.29Status EnCyQueue(CyQueue &Q,int x)//带tag域的循环队列入队算法{if(Q.front==Q.rear&&Q.tag==1) //tag域的值为0表示"空",1表示"满"return OVERFLOW;Q.base[Q.rear]=x;Q.rear=(Q.rear+1)%MAXSIZE;if(Q.front==Q.rear) Q.tag=1; //队列满}//EnCyQueueStatus DeCyQueue(CyQueue &Q,int &x)//带tag域的循环队列出队算法{if(Q.front==Q.rear&&Q.tag==0) return INFEASIBLE;Q.front=(Q.front+1)%MAXSIZE;x=Q.base[Q.front];if(Q.front==Q.rear) Q.tag=1; //队列空return OK;}//DeCyQueue分析:当循环队列容量较小而队列中每个元素占的空间较多时,此种表示方法可以节约较多的存储空间,较有价值.3.30Status EnCyQueue(CyQueue &Q,int x)//带length域的循环队列入队算法{if(Q.length==MAXSIZE) return OVERFLOW;Q.rear=(Q.rear+1)%MAXSIZE;Q.base[Q.rear]=x;Q.length++;return OK;}//EnCyQueueStatus DeCyQueue(CyQueue &Q,int &x)//带length域的循环队列出队算法{if(Q.length==0) return INFEASIBLE;head=(Q.rear-Q.length+1)%MAXSIZE; //详见书后注释x=Q.base[head];Q.length--;}//DeCyQueue3.31int Palindrome_Test()//判别输入的字符串是否回文序列,是则返回1,否则返回0{InitStack(S);InitQueue(Q);while((c=getchar()!='@'){Push(S,c);EnQueue(Q,c); //同时使用栈和队列两种结构}while(!StackEmpty(S)){Pop(S,a);DeQueue(Q,b));if(a!=b) return ERROR;}return OK;}//Palindrome_Test3.32void GetFib_CyQueue(int k,int n)//求k阶斐波那契序列的前n+1项{InitCyQueue(Q); //其MAXSIZE设置为kfor(i=0;i<k-1;i++) Q.base[i]=0;Q.base[k-1]=1; //给前k项赋初值for(i=0;i<k;i++) printf("%d",Q.base[i]);for(i=k;i<=n;i++){m=i%k;sum=0;for(j=0;j<k;j++) sum+=Q.base[(m+j)%k];Q.base[m]=sum; //求第i项的值存入队列中并取代已无用的第一项printf("%d",sum);}}//GetFib_CyQueue3.33Status EnDQueue(DQueue &Q,int x)//输出受限的双端队列的入队操作{if((Q.rear+1)%MAXSIZE==Q.front) return OVERFLOW; //队列满avr=(Q.base[Q.rear-1]+Q.base[Q.front])/2;if(x>=avr) //根据x的值决定插入在队头还是队尾{Q.base[Q.rear]=x;Q.rear=(Q.rear+1)%MAXSIZE;} //插入在队尾else{Q.front=(Q.front-1)%MAXSIZE;Q.base[Q.front]=x;} //插入在队头return OK;}//EnDQueueStatus DeDQueue(DQueue &Q,int &x)//输出受限的双端队列的出队操作{if(Q.front==Q.rear) return INFEASIBLE; //队列空x=Q.base[Q.front];Q.front=(Q.front+1)%MAXSIZE;return OK;}//DeDQueue3.34void Train_Rearrange(char *train)//这里用字符串train表示火车,'P'表示硬座,'H'表示硬卧,'S'表示软卧,最终按PSH的顺序排列{r=train;InitDQueue(Q);while(*r){if(*r=='P'){printf("E");printf("D"); //实际上等于不入队列,直接输出P车厢 }else if(*r=='S'){printf("E");EnDQueue(Q,*r,0); //0表示把S车厢从头端入队列}else{printf("A");EnDQueue(Q,*r,1); //1表示把H车厢从尾端入队列}}//whilewhile(!DQueueEmpty(Q)){printf("D");DeDQueue(Q);}//while //从头端出队列的车厢必然是先S后H的顺序}//Train_Rearrange。
数据结构练习题第三章栈、队列和数组习题及答案

第三章栈、队列和数组一、名词解释:1.栈、栈顶、栈底、栈顶元素、空栈2.顺序栈3.链栈4.递归5.队列、队尾、队头6.顺序队7.循环队8.队满9.链队10.随机存储结构11.特殊矩阵12.稀疏矩阵13.对称方阵14.上(下)三角矩阵二、填空题:1.栈修改的原则是_________或称________,因此,栈又称为________线性表。
在栈顶进行插入运算,被称为________或________,在栈顶进行删除运算,被称为________或________。
2.栈的基本运算至少应包括________、________、________、________、________五种。
3.对于顺序栈,若栈顶下标值top=0,此时,如果作退栈运算,则产生“________”。
4.对于顺序栈而言,在栈满状态下,如果此时在作进栈运算,则会发生“________”。
5.一般地,栈和线性表类似有两种实现方法,即________实现和________实现。
6.top=0表示________,此时作退栈运算,则产生“________”;top=sqstack_maxsize-1表示________,此时作进栈运算,则产生“________”。
7.以下运算实现在顺序栈上的初始化,请在________处用适当的句子予以填充。
int InitStack(SqStackTp *sq){ ________;return(1);}8.以下运算实现在顺序栈上的进栈,请在________处用适当的语句予以填充。
Int Push(SqStackTp *sq,DataType x){ if(sp->top==sqstack_maxsize-1}{error(“栈满”);return(0);}else{________________:________________=x;return(1);}}9.以下运算实现在顺序栈上的退栈,请在________________用适当句子予以填充。
数据结构练习题 第三章 栈、队列和数组 习题及答案

第三章栈、队列和数组一、名词解释:1.栈、栈顶、栈底、栈顶元素、空栈2.顺序栈3.链栈4.递归5.队列、队尾、队头6.顺序队7.循环队8.队满9.链队10.随机存储结构11.特殊矩阵12.稀疏矩阵13.对称方阵14.上(下)三角矩阵二、填空题:1.栈修改的原则是_________或称________,因此,栈又称为________线性表。
在栈顶进行插入运算,被称为________或________,在栈顶进行删除运算,被称为________或________。
2.栈的基本运算至少应包括________、________、________、________、________五种。
3.对于顺序栈,若栈顶下标值top=0,此时,如果作退栈运算,则产生“________”。
4.对于顺序栈而言,在栈满状态下,如果此时在作进栈运算,则会发生“________”。
5.一般地,栈和线性表类似有两种实现方法,即________实现和________实现。
6.top=0表示________,此时作退栈运算,则产生“________”;top=sqstack_maxsize-1表示________,此时作进栈运算,则产生“________”。
7.以下运算实现在顺序栈上的初始化,请在________处用适当的句子予以填充。
int InitStack(SqStackTp *sq){ ________;return(1);}8.以下运算实现在顺序栈上的进栈,请在________处用适当的语句予以填充。
Int Push(SqStackTp *sq,DataType x){ if(sp->top==sqstack_maxsize-1}{error(“栈满”);return(0);}else{________________:________________=x;return(1);}}9.以下运算实现在顺序栈上的退栈,请在________________用适当句子予以填充。
数据结构课后习题答案第三章

第三章栈和队列(参考答案)// 从数据结构角度看,栈和队列是操作受限的线性结构,其顺序存储结构// 和链式存储结构的定义与线性表相同,请参考教材,这里不再重复。
3.1 1 2 3 4 2 1 3 4 3 2 1 4 4 3 2 11 2 4 3 2 1 4 3 3 2 4 11 32 4 23 14 3 4 2 11 3 42 234 11 4 32 2 43 1设入栈序列元素数为n,则可能的出栈序列数为C2n n=(1/n+1)*(2n!/(n!)2)3.2 证明:由j<k和p j<p k说明p j在p k之前出栈,即在k未进栈之前p j已出栈,之后k进栈,然后p k出栈;由j<k和p j>p k说明p j在p k之后出栈,即p j被p k压在下面,后进先出。
由以上两条,不可能存在i<j<k使p j<p k<p i。
也就是说,若有1,2,3顺序入栈,不可能有3,1,2的出栈序列。
3.3 void sympthy(linklist *head, stack *s)//判断长为n的字符串是否中心对称{ int i=1; linklist *p=head->next;while (i<=n/2) // 前一半字符进栈{ push(s,p->data); p=p->next; }if (n % 2 !==0) p=p->next;// 奇数个结点时跳过中心结点while (p && p->data==pop(s)) p=p->next;if (p==null) printf(“链表中心对称”);else printf(“链表不是中心对称”);} // 算法结束3.4int match()//从键盘读入算术表达式,本算法判断圆括号是否正确配对(init s;//初始化栈sscanf(“%c”,&ch);while (ch!=’#’) //’#’是表达式输入结束符号switch (ch){ case ’(’: push(s,ch); break;case ’)’: if (empty(s)) {printf(“括号不配对”); exit(0);}pop(s);}if (!empty(s)) printf(“括号不配对”);else printf(“括号配对”);} // 算法结束3.5typedef struct // 两栈共享一向量空间{ ElemType v[m]; // 栈可用空间0—m-1int top[2] // 栈顶指针}twostack;int push(twostack *s,int i, ElemType x)// 两栈共享向量空间,i是0或1,表示两个栈,x是进栈元素,// 本算法是入栈操作{ if (abs(s->top[0] - s->top[1])==1) return(0);// 栈满else {switch (i){case 0: s->v[++(s->top)]=x; break;case 1: s->v[--(s->top)]=x; break;default: printf(“栈编号输入错误”); return(0);}return(1); // 入栈成功}} // 算法结束ElemType pop(twostack *s,int i)// 两栈共享向量空间,i是0或1,表示两个栈,本算法是退栈操作{ ElemType x;if (i!=0 && i!=1) return(0);// 栈编号错误else {switch (i){case 0: if(s->top[0]==-1) return(0);//栈空else x=s->v[s->top--];break;case 1: if(s->top[1]==m) return(0);//栈空else x=s->v[s->top++]; break;default: printf(“栈编号输入错误”);return(0);}return(x); // 退栈成功}} // 算法结束ElemType top (twostack *s,int i)// 两栈共享向量空间,i是0或1,表示两个栈,本算法是取栈顶元素操作{ ElemType x;switch (i){case 0: if(s->top[0]==-1) return(0);//栈空else x=s->v[s->top]; break;case 1: if(s->top[1]==m) return(0);//栈空else x=s->v[s->top]; break;default: printf(“栈编号输入错误”);return(0);}return(x); // 取栈顶元素成功} // 算法结束3.6void Ackerman(int m,int n)// Ackerman 函数的递归算法{ if (m==0) return(n+1);else if (m!=0 && n==0) return(Ackerman(m-1,1);else return(Ackerman(m-1,Ackerman(m,n-1))} // 算法结束3.7(1) linklist *init(linklist *q)// q是以带头结点的循环链表表示的队列的尾指针,本算法将队列置空{ q=(linklist *)malloc(sizeof(linklist));//申请空间,不判断空间溢出q->next=q;return (q);} // 算法结束(2) linklist *enqueue(linklist *q,ElemType x)// q是以带头结点的循环链表表示的队列的尾指针,本算法将元素x入队{ s=(linklist *)malloc(sizeof(linklist));//申请空间,不判断空间溢出s->next=q->next; // 将元素结点s入队列q->next=s;q=s; // 修改队尾指针return (q);} // 算法结束(3) linklist *delqueue(linklist *q)//q是以带头结点的循环链表表示的队列的尾指针,这是出队算法{ if (q==q->next) return (null); // 判断队列是否为空else {linklist *s=q->next->next; // s指向出队元素if (s==q) q=q->next; // 若队列中只一个元素,置空队列else q->next->next=s->next;// 修改队头元素指针free (s); // 释放出队结点}return (q);} // 算法结束。
大学数据结构习题参考答案-第3章栈队列作业参考答案

20XX年复习资料大学复习资料专业:班级:科目老师:日期:第3章作业参考答案1.1,4,3,5,2)能,IOIIIOOIOO;(1,4,2,3,5)不能,因为4先于3和2出栈,4出栈时,2和3都在栈中,且2压在3之下,故只能3先出栈才能2出栈。
*若借助栈由输入序列1,2, … , n得到输出序列为p1, p2, …, p n,则在输出序列中不可能出现这样的情形:存在着i<j<k使p j<p k<p i。
2. 借助栈T,删除栈S中元素值为k的元素。
4.//定义双向栈类template <class ElemType>//声明一个类模板class DSqStack{public: //双向栈类的各成员函数DSqStack(int m = 20XXXX0);~DSqStack();bool Empty(int i) const;ElemType & Top(int i) const;void Push(const ElemType &e,int i);void Pop(int i);private: //双向栈类的数据成员ElemType *base; //基地址指针int top[2]; //栈顶指针int size; //向量空间大小};//构造函数,分配m个结点的顺序空间,构造一个空的双向栈。
template <class ElemType>DSqStack <ElemType>::DSqStack(int m){top[0] = -1;top[1] = m;base = new ElemType[m];size = m;}//DSqStack//析构函数,将栈结构销毁。
template <class ElemType>DSqStack <ElemType>::~DSqStack(){if (base != NULL) delete[] base;}//~SqStack//判栈是否为空,若为空,则返回true,否则返回false。
数据结构第三章栈和队列练习及答案

一、选择题一、选择题1、栈中存取数据的原则()、栈中存取数据的原则()A 、先进先出B 、先进后出C 、后进后出D 、随意进出、随意进出2、队列中存取数据的原则()、队列中存取数据的原则() A 、先进先出 B 、后进先出 C 、先进后出 D 、随意进出、随意进出3、插入和删除只能在一端进行的线性表,称为()、插入和删除只能在一端进行的线性表,称为()A 、队列B 、循环队列C 、栈D 、循环栈、循环栈4、在栈中,出栈操作的时间复杂度为()、在栈中,出栈操作的时间复杂度为()A 、O (1)B 、O (log 2n )C 、O (n )D 、O (n 2)5、设长度为n 的链队列用单循环链表表示,若只设头指针,则入队操作的时间复杂度为的链队列用单循环链表表示,若只设头指针,则入队操作的时间复杂度为()() A 、O (1) B 、O (log 2n ) C 、O (n ) D 、O (n 2)6、设长度为n 的链队列用单循环链表表示,若只设头指针,则出队操作的时间复杂度为的链队列用单循环链表表示,若只设头指针,则出队操作的时间复杂度为()() A 、O (1) B 、O (log 2n ) C 、O (n ) D 、O (n 2)7、一个线性表的第一个元素的存储地址是100,每个元素的长度是2,则第5个元素的地址是()是() A 、110 B 、108 C 、100 D 、1208、一个栈的入栈序列是a,b,c,d,e ,则栈的不可能的输出序列是(),则栈的不可能的输出序列是()A 、edcbaB 、decbaC 、dceabD 、abcde9、若已知一个栈的入栈序列是1,2,3,……,n ,其输出序列是p1,p2,p3,……,pn ,若p1=n ,则pi 为()为()A 、iB 、n=iC 、n-i+1D 、不确定、不确定10、判断一个栈ST (最多元素m0)为空的条件是())为空的条件是()A 、ST->top==0B 、ST->top==-1C 、ST->top!=m0D 、ST->top==m0 11、判断一个栈ST (最多元素m0)为满的条件是())为满的条件是()A 、ST->top!=0B 、ST->top==0C 、ST->top!=m0D 、ST->top==m0 12、判断一个循环队列QU (最多元素为m0)为空的条件是())为空的条件是() A 、QU.front==QU.rear B 、QU.front!=QU.rearC 、QU.front==(QU.rear+1)%m0D 、QU.front!=(QU.rear+1)%m013、判断一个循环队列QU (最多元素为m0)为满的条件是())为满的条件是()A 、QU.front==QU.rearB 、QU.front!=QU.rearC 、QU.front==(QU.rear+1)%m0D 、QU.front!=(QU.rear+1)%m0 14、循环队列用数组存放其元素值A[0,m-1],已知其头尾指针分别是rear 和front ,则当前队列的元素个数是()队列的元素个数是()A 、(rear-front+m)%mB 、rear-front+1C 、rear-front-1D 、rear-front 15、栈和队列的共同特点是()、栈和队列的共同特点是()A 、都是先进后出B 、都是先进先出、都是先进先出C 、只允许在端点处插入和删除D 、没有共同点、没有共同点二、填空题二、填空题1、设长度为n 的链队列用单循环链表表示,若只设头指针,则入队和出队操作的时间复杂度分别为(O(N))和(O(1));若又设尾指针,则入队和出队操作的时间复杂度分别为(O(1))和(O(1))。
数据结构与算法(C语言篇)第3章 习题答案[3页]
![数据结构与算法(C语言篇)第3章 习题答案[3页]](https://img.taocdn.com/s3/m/13d25cd2760bf78a6529647d27284b73f342364e.png)
习题答案1.填空题(1)栈(2)队列(3)后进先出(4)先进先出2.选择题(1)A (2)C (3)D (4)D、A (5)C (6)B3.思考题(1)栈是一种运算受限制的线性表,其只允许在表的一端进行插入和删除操作,俗称堆栈。
允许进行操作的一端称为“栈顶”,而另一个固定端称为“栈底”,栈中的数据在进行入栈和出栈时,遵循后进先出的原则。
队列同样是一种运算受限制的线性表,是限制在两端进行插入和删除操作的线性表。
允许进行插入操作的一端称为“队尾”,而允许进行删除操作的一端称为“队头”,队列中的数据在进行入队和出队时,遵循先进先出的原则。
4.编程题(1)//入栈//参数1为栈顶指针(头结点指针),参数2为插入的数据int linkstack_push(linkstack_t *s, datatype_t value){linkstack_t *temp;//使用malloc函数为新插入的结点申请内存空间temp = (linkstack_t *)malloc(sizeof(linkstack_t));//为新插入的结点赋值temp->data = value;//用头插法实现入栈temp->next = s->next;s->next = temp;return 0;}//判断栈是否为空int linkstack_empty(linkstack_t *s){return s->next == NULL ? 1 : 0; //判断下一个结点是否为空}//出栈datatype_t linkstack_pop(linkstack_t *s){linkstack_t *temp;datatype_t value;if(linkstack_empty(s)){printf("linkstack empty\n");return -1;}//头删法表示出栈,后入先出temp = s->next;s->next = temp->next;//保存出栈的数据value = temp->data;//释放出栈的结点的内存空间free(temp);temp = NULL;//返回出栈的数据return value;}(2)//入队//参数1为存放队列头尾结点指针的结构体地址,参数2为新入队的数据int linkqueue_enter(linkqueue_t *lq, datatype_t value){ linknode_t *temp;//使用malloc函数为头结点申请内存空间temp = (linknode_t *)malloc(sizeof(linknode_t));//采用尾插法的设计思想temp->data = value; //为新结点赋值temp->next = NULL; //将新结点的指针指向NULLlq->rear->next = temp; //入队,将新结点加入队列尾部lq->rear = temp; //移动rear指针,指向新加入的结点 return 0;}//判断队列是否为空int linkqueue_empty(linkqueue_t *lq){//当front与rear指向同一个结点时,判断队列为空return lq->front == lq->rear ? 1 : 0;}//出队//从头结点开始删除,包括头结点datatype_t linkqueue_out(linkqueue_t *lq){linknode_t *temp;datatype_t value;if(linkqueue_empty(lq)){printf("linkqueue empty\n");return -1;}temp = lq->front; //获取删除结点//移动front指针到下一个结点lq->front = lq->front->next;//获取下一个结点的数据value = lq->front->data;free(temp); //释放需要删除结点的内存空间 temp = NULL; //避免出现野指针//返回结点数据return value;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构练习题第三章栈、队列和数组习题及答案第三章栈、队列和数组一、名词解释:1.栈、栈顶、栈底、栈顶元素、空栈2.顺序栈3.链栈4.递归5.队列、队尾、队头6.顺序队7.循环队8.队满9.链队10.随机存储结构11.特殊矩阵12.稀疏矩阵13.对称方阵14.上(下)三角矩阵二、填空题:1.栈修改的原则是_________或称________,因此,栈又称为________线性表。
在栈顶进行插入运算,被称为________或________,在栈顶进行删除运算,被称为________或________。
2.栈的基本运算至少应包括________、________、________、________、________五种。
3.对于顺序栈,若栈顶下标值top=0,此时,如果作退栈运算,则产生“________”。
4.对于顺序栈而言,在栈满状态下,如果此时在作进栈运算,则会发生“________”。
5.一般地,栈和线性表类似有两种实现方法,即________实现和________实现。
6.top=0表示________,此时作退栈运算,则产生“________”;top=sqstack_maxsize-1表示________,此时作进栈运算,则产生“________”。
7.以下运算实现在顺序栈上的初始化,请在________处用适当的句子予以填充。
int InitStack(SqStackTp *sq){ ________;return(1);}8.以下运算实现在顺序栈上的进栈,请在________处用适当的语句予以填充。
Int Push(SqStackTp *sq,DataType x){ if(sp->top==sqstack_maxsize-1}{error(“栈满”);return(0);}else{________________:________________=x;return(1);}}9.以下运算实现在顺序栈上的退栈,请在________________用适当句子予以填充。
Int Pop(SqStackTp *sq,DataType *x){if(sp->top==0){error(“下溢”);return(0);}else{*x=________________;________________;return(1);}}10. 以下运算实现在顺序栈上判栈空,请在________________处用适当句子予以填充。
Int EmptyStack(SqStackTp *sq){if(________________) return(1);else return(0);}11.以下运算实现在顺序栈上取栈顶元素,请在________________处用适当句子予以填充。
Int GetTop(SqStackTp *sq,DataType *x){if(________________) return(0);else{*x=________________;return(1);}}12. 以下运算实现在链栈上的初始化,请在________________处用请适当句子予以填充。
Void InitStacl(LstackTp *ls){ ________________;}13.` 以下运算实现在链栈上的进栈,请在处用请适当句子予以填充。
Void Push(LStackTp *ls,DataType x){ LstackTp *p;p=malloc(sizeof(LstackTp));________________;p->next=ls;________________;}14.以下运算实现在链栈上的退栈,请在________________处用请适当句子予以填充。
Int Pop(LstackTp *ls,DataType *x){LstackTp *p;if(ls!=NULL){ p=ls;*x=________________;ls=ls->next;________________;return(1);}else return(0);}15. 以下运算实现在链栈上读栈顶元素,请在________________处用请适当句子予以填充。
Int Get Top(LstackTp *ls,DataType *x){ if(ls!=NULL){ ________________;return(1);}else return(0);}16.必须注意,递归定义不能是“循环定义”。
为此要求任何递归定义必须同时满足如下条件:①被定义项在定义中的应用(即作为定义项的出现)具有________________;②被定义项在最小“尺度”上的定义不是________________的。
17.队列简称________________。
在队列中,新插入的结点只能添加到________________,被删除的只能是排在________________的结点。
18.队列以线性表为逻辑结构,至少包括________________、________________、________________、________________________________、五种基本运算。
19.顺序队的出、入队操作会产生“________________”。
20.以下运算实现在循环队上的初始化,请在________________处用适当句子予以填充。
Void InitCycQueue(CycqueueTp *sq){ ________________;sq->rear=0;}21. 以下运算实现在循环队上的入队列,请在________________处用请适当句子予以填充。
Int EnCycQueue(CycquereTp *sq,DataType x){ if((sq->rear+1)%maxsize== ________________){error(“队满”);return(0);else{ ________________;________________ ________________;return(1);}22. 以下运算实现在循环队上的出队列,请在________________处用适当句子予以填充。
Int OutCycQueue(CycquereTp *sq,DataType *x){if(sq->front== ________________){error(“队空”);return(0);}else{ ________________;________________;return(1);}}23. 以下运算实现在循环队上判队空,请在________________处用适当句子予以填充。
Int EmptyCycQueue(CycqueueTp sq){if(________________) return(1);else return(0);}24. 以下运算实现在循环队上取队头,请在________________处用适当句子予以填充。
Int GetHead(CycqueueTp sq,DataType *x){ if(sq.rear== ________________return(0);else{ *x=sq.data[________________ ];return(1);}25.链队在一定范围内不会出现________________的情况。
当lq.front==lq.rear 试,队中无元素,此时________________。
26.以下运算实现在链队上的初始化,请在________________处用适当句子予以填充。
void InitQueue(QueptrTp *lp){ LqueueTp *p;p=(LqueueTp *)malloc(sizeof(LqueueTp));________________;lq->rear=p;(lq->front)->next=________________;}27. 以下运算实现在链队上的入队列,请在________________处用适当句子予以填充。
Void EnQueue(QueptrTp *lq,DataType x){ LqueueTp *p;p=(LqueueTp *)malloc(sizeof(LqueueTp));________________=x;p->next=NULL;(lq->rear)->next=________________;________________;}28. 以下运算实现在链队上的出队列,请在________________处用适当句子予以填充。
int OutQueue(QuetrTp *lq,DataType *x){ LqueueTp *s;if(lq->front==lq->rear){erroe(“队空”);return(0);}else { s=(lq->front)->next;________________=s->data;(lq->front)->next=________________;if(s->next==NULL) lq->rear=lq->front;free(s);return(1);}}29. 以下运算实现在链队上判队空,请在________________处用适当句子予以填充int EmptyQueue(QueptrTp *lq){ if(________________) return(1);else return(0);}30. 以下运算实现在链队上读队头元素,请在________________处用适当句子予以填充。
Int GetHead(QueptrTp lq,DataType *x){ LqueueTp *p;if(lq.rear==lq.front) return(0);else{________________;________________ =p->data;return(1);}}31.一般地,一个n维数组可视为其数据元素为___________维数组的线性表。
数组通常只有___________和___________两种基本运算。
32,通常采用___________存储结构来存放数组。
对二维数组可有两种存储方法:一种是以___________为主序的存储方式,另一种是以___________为主序的存储方式。
C语言数组用的是以___________序为主序的存储方法;FORTRAN语言用的是以___________序为主序的存储方法33.需要压缩存储的矩阵可分为___________矩阵和___________矩阵两种。