反应扩散方程简介

合集下载

一类反应扩散方程组的解

一类反应扩散方程组的解

一类反应扩散方程组的解陈莉敏【摘要】讨论了一类非线性抛物方程组解的性质,利用微分方程上、下解方法证明初值适当大时,解在有限时间上爆破.推广了相关文献的结果.【期刊名称】《高师理科学刊》【年(卷),期】2011(031)005【总页数】3页(P24-26)【关键词】非线性;反应扩散方程;上、下解;爆破【作者】陈莉敏【作者单位】常州工程职业技术学院基础部,江苏常州213164【正文语种】中文【中图分类】O182.1文献[1]在研究传染病在2种生物之间的相互影响时,建立了一类反应扩散方程组(其中符号的含义见文献[1]),但仅仅考虑了方程组(1)的数值解.文献[2-3]从理论上研究了解的整体存在性与非整体存在性.本文运用微分方程上、下解方法研究解的整体存在性与非整体存在性.考虑特征值问题,该方程组的最小特征值0λ非负,且对应的特征函数ϕ(x)在Ω内大于零.如果β(x)>0,则λ0>0;当α(x)>0时,ϕ(x)在上大于零.记则0<ϕm≤ϕ(x)≤1.记Q=Ω×(0,∞),表示在Ω中关于x有n阶连续导数且关于t有m阶连续导数的所有函数组成的空间;表示在中关于x有n阶连续导数且关于t有m阶连续导数的所有函数组成的空间;C表示在中连续的所有函数组成的空间.初值函数u0(x),v0(x)∈C.函数称为初边值问题(1)的下解,若它们满足不等式:若不等式均反向,则称为初边值问题的上解.引理[4] 设是方程(1)的上、下解,且,则在上、下解之间存在方程组的唯一解(u, v),且满足定理1 设δ0>0,m>1,ρ,α1为常数,为一实数,且,则存在T0为一有限时间,方程组(1)的下解在上存在,且或至少有一式成立.这里,证明考虑常微分方程初值问题,不难求得此问题的解是显然式(2)也满足因为所以成立.因为所以成立.即所因为g(u)≥δ0u m,所以成立.因此成立.令其中p(t)是正的可微函数,且p(0)=ρ,则由式(7)可知,是方程(1)的下解,因为所以即存在T0为一有限时间,方程组(1)的下解在上存在,且当证明至少有一式成立.用反证法,假设结论不成立,则在上存在M0,使得边值问题的解,选取,使得在上均大于M0+1,但小于某一正数M*,定义函数考虑修改的边值问题由文献[5]可知,问题(8)有唯一解且,所以存在T2≤T1,使得在是原方程(1)的解,且或且(x′,t ′)∈Ω×[0,T2],这与u(x,t)≤M0,v(x,t)≤M0的事实矛盾,因此(u(x,t),v(x, t ))至少有一分量在QT*上无界,即或至少有一式成立.证毕.【相关文献】[1] Pao C V.On nonlinear reaction-diffusion systems[J].J Math Anal Appl,1982(87):165-198[2] CAPASSO V,PAVERI S L,FONTANA.A mathematical model for the 1973 choler epidemic in the European Mediterranean region[J].Rev Epidem et Sante Publ,1979(27):121-132[3] CAPASSO V.Asymptotic stability for an Integrodifferential Reaction-DiffusionSystem[J].Math Anl Appl,1984(103):575-588[4] Galeone L,Mastroserio C,Montrone M.Asymptotic stability of the numerical solution for integrodifferential reaction-diffusion system[J].Numerical methods for partial differential equation,1989(5):79-86[5] Pao C V.Nonlinear Parabolic and Elliptic Equations[M].New York:Plenum Press,1992:695-713。

第八章 扩散

第八章 扩散
C / Cm e
2 2


在给定条件下Cm,D, l 皆为定值。只有当 t 时 C / C m 0 才完全均匀化,可见所谓均匀化只有相 对意义。一般来说,只有偏析衰减到一定程度(如
1 1 0 ),即可认为均匀化了。凝固过程细化晶粒,及通
过锻造、轧制、热处理使组织充分细化都可以大大缩短 均匀化退火时间
a.同素异晶转变的金属中,D随晶体结构改变, 910℃,Dα-Fe/Dγ-Fe=280, α-Fe致密度低, 且易形成空位。 b.晶体各向异性使D有各向异性。 铋扩散的各向异性,菱方系Bi沿C轴的自扩 散为垂直C轴方向的1/106 六方系的Zn:平行底面的自扩散系数大于 垂直底面的,因底面原子排列紧密,穿过底面 困难。
Cs C0 2 Dt
C0为原始浓度;Cs为渗碳气氛浓度Cx为距表 x erf 面x处的浓度; ( 2 D t ) erf ( z ) 为误差函数
Fick第二定律的解无限大物体中扩散应用
2.扩散方程在扩散退火过程的应用


显微偏析是合金在结晶过程中形成的,在铸件,锻件中 普遍存在。扩散退火时将零件在高温下长时间保温可促 使成分的均匀化。 具有显微偏析的合金其组元分布大多呈周期性变化。 在研究扩散退火过程时,可以近似为 Dt /t
8.3.3.晶体结构 晶体结构对扩散有影响,有些金属存在同 素异构转变,当它们的晶体结构改变后, 扩散系数也随之发生较大的变化。例如铁 在912℃时发生-Fe-Fe转变,-Fe的自 扩散系数大约是-Fe的240倍。所有元素在 -Fe中的扩散系数都比在-Fe中大,其原 因是体心立方结构的致密度比面心立方结 构的致密度小,原子较易迁移。
空位扩散机制--- 3.交换机制 相邻两原子交换位臵而实现 F10-14:扩散的交换机 制

一类非经典反应扩散方程的指数吸引子

一类非经典反应扩散方程的指数吸引子

一类非经典反应扩散方程的指数吸引子
几何平均分散理论下的指数吸引子
(一)定义
指数吸引子是结合几何平均分散理论,用非经典反应扩散方程来解释
亚微米纳米动力学过程的数学建模。

它表示一种时变的概念,即在特
定的区域,当时间推移,给定的吸引子及其相应的参数,其核的强度
也能不断增强,从而达到指数级增强。

(二)几何平均分散理论
几何平均分散理论是一种微观动力学理论。

它定义了由几何平均分散
作用在分子活动体上所产生的非经典反应扩散系统。

该理论认为,一
个系统的反应动力,既受到分子给定的相互作用,也受到本源的非经
典影响,表现为非经典行为。

非经典反应扩散的作用,能够产生非线
性效应,如量子振荡、双極及超短信号等,这些理论也成为“指数吸引子”的基础。

(三)指数吸引子的应用
指数吸引子有着广泛的应用。

它可以用于模拟流体流动、热物理计算、传输过程等等。

例如,它可以用来模拟流体流动,其结果比经典模型
更接近实际情况。

在热物理计算中,它能够模拟准确的温度场和速度场,以改善热物理计算的精度和精确度。

此外,它也可以用来模拟传
输过程,模拟不同系统中的信号传输。

(四)指数吸引子的优点
指数吸引子的最大优点是,它能够提供更加准确的模拟结果,比常规
的经典反应扩散方程更具有准确性。

此外,由于几何平均分散的作用,它还能够提供更为强大的信号传输能力,以及更精确的模拟效果,这
对于解决技术问题有着重要的意义。

此外,由于它引入了本源端传递
与量子振荡,使得指数吸引子可以用来解决不同的问题,比如量子力学、量子计算和量子通信等。

反应扩散方程的显示行波解

反应扩散方程的显示行波解

Ab ta t h sp p r su is a tp f s e ilr a t n df so y tm y u i g s me t n s r c :T i a e td e y e o p c a e ci iu in s se b sn o r o f a s0 ai n n f 舶 to s a d wo k utS me e pl i ta ei v lto s T e e c mp r e S l t n . r so O x i t r v l c ng wa e S u i n h n w o a e t u i s O h O o

关键词 变换 ; 反应扩散方程 ; 行波解
【 中图分类号】 152 O7.
【 文献标 识码 】 A
【 文章编号 】62-53 20 )2 02 0 1 -81 {07 o — 1 7 4— 4
Ex l i T a eig W a eS lto sfrRe cin Di u in S se p i t r v ln v ouin o a t f so y tm c o
其 后±号 -√ (+ 中=√ ,C±号5 1 口)
这样我们就求出了方程( ) 3 的显示行波解 , 并且该解具有性质 :
当 后 号u ∞=u ∞=当=√ 时u ∞=u ∞- 时= ,一)1( ) ,后一号 ,一) ,+)l √ ( ,+ 0 ( O(
2 待定 系数法
下面我们采用待定系数法来讨论( ) 2 的显示行波解, 用待定系数法寻找出( ) 2 的显示行波解后可见 : 这 些解可以定量地描述方程的性质 , 而利用变换法却不能描述出方程的性质. 同样令 : u=u )= ( t ( > , ( u +c) c 0 因为 c 是波 速 ) 代人 ( ) 2 式可得 : ‘ c‘ + a p 1一 ) 一 u = p u+ ( 口 p 9 0

求解一维扩散反应方程的隐式高精度紧致差分格式

求解一维扩散反应方程的隐式高精度紧致差分格式

求解一维扩散反应方程的隐式高精度紧致差分格式1概述一维扩散反应方程是描述许多物理过程的数学方程之一,如化学反应、热传导等。

在求解这样的方程时,我们需要寻找适合的数值解法。

本文将介绍一种隐式高精度紧致差分格式,用于求解一维扩散反应方程。

2一维扩散反应方程一维扩散反应方程可表示为:$$\frac{\partial u}{\partial t}=D\frac{\partial^2u}{\partial x^2}+\rho u(1-u)$$其中,$u(x,t)$表示物理量的变量,$D$为扩散系数,$\rho$为反应速率常数。

初始条件为$u(x,0)=u_0(x)$,边界条件为$u(0,t)=u(L,t)=0$,其中$L$为区间长度。

3差分方法为了求解上述方程的数值解,我们需要使用差分方法。

差分方法可以将连续的偏微分方程转化为离散的方程,从而得到数值解。

这里我们采用一阶差分法和二阶差分法分别对时间和空间进行离散化。

时间离散化:$$\frac{\partial u(x,t)}{\partialt}\approx\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}$$空间离散化:$$\frac{\partial^2u(x,t)}{\partialx^2}\approx\frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Deltax,t)}{\Delta x^2}$$将上述两个式子带入到原方程中,得到离散化形式:$$\frac{u_i^{n+1}-u_i^n}{\Delta t}=D\frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}+\rho u_i^n(1-u_i^n)$$其中,$n$表示时间步长,$i$表示空间位置。

4隐式高精度紧致差分格式在上述差分方法中,我们采用了一阶差分法和二阶差分法,这种方法的精度有限。

为了提高求解的精度,可以采用更高阶的差分方法。

物理化学中的分子扩散过程

物理化学中的分子扩散过程

物理化学中的分子扩散过程分子扩散是指物质分子由高浓度区域向低浓度区域自发地移动的过程。

它是物理学和化学中的一个重要现象,广泛应用于日常生活和工业生产中。

分子扩散过程可以通过多种方式进行描述和分析,包括菲克定律、扩散方程等。

1.菲克定律:菲克定律是描述分子扩散过程的基本定律之一。

它表明,单位时间内通过单位面积的物质流量与浓度梯度成正比,与扩散系数成正比。

流量可以表示为物质的质量流量或物质的摩尔流量。

2.浓度梯度:浓度梯度是指物质浓度的变化率,即单位长度或单位面积上的浓度变化。

浓度梯度是分子扩散的驱动力,浓度梯度越大,分子扩散速率越快。

3.扩散系数:扩散系数是描述物质扩散能力的物理量。

它是一个材料特性,与物质的分子质量、分子结构和温度等因素有关。

扩散系数越大,物质分子的扩散速率越快。

4.扩散方程:扩散方程是描述分子扩散过程的数学方程。

它将物质的浓度变化与时间、空间和扩散系数等因素联系起来。

扩散方程可以帮助我们计算和预测物质在一定条件下的扩散情况。

5.分子扩散速率:分子扩散速率是指物质分子在单位时间内扩散的距离。

它与浓度梯度、扩散系数和物质的分子质量等因素有关。

分子扩散速率可以通过实验测量和计算得到。

6.温度对分子扩散的影响:温度对分子扩散过程有重要影响。

随着温度的升高,分子的平均动能增加,分子运动速率加快,从而加快了分子的扩散速率。

7.压力对分子扩散的影响:压力对分子扩散过程也有一定的影响。

在一定范围内,压力的增加可以使分子间的距离变小,从而加快分子的扩散速率。

8.分子扩散的应用:分子扩散在许多领域都有广泛的应用。

例如,在化工生产中,分子扩散过程用于物质的混合和反应;在生物医学中,分子扩散过程用于药物的输送和组织修复;在环境科学中,分子扩散过程用于污染物的迁移和扩散等。

以上是关于物理化学中分子扩散过程的一些基本知识点。

这些知识点可以帮助我们更好地理解和应用分子扩散现象。

习题及方法:1.习题:一个物体在空气中的质量流量为2 kg/s,空气的浓度梯度为0.1 mol/m^3/s,空气的摩尔质量为29 g/mol,求物体的扩散系数。

反应扩散方程

反应扩散方程

反应扩散方程反应扩散方程(Reaction-DiffusionEquation)是由多国科学家并行研究发展起来的分析技术,是一种描述复杂系统里现象的理论模型。

它可以解释许多自然界中的现象,从生物界的细胞生长到物理界的化学反应过程,都可以用反应扩散方程来描述和解释,它是一种非常有用的科学理论模型,可以应用于许多不同的领域。

反应扩散方程是20世纪50年代由多国科学家开发出来的,其中最重要的贡献者有Uwe Schrder,John. Von Neumann,Alan Turing 及其他人。

他们结合物理学家Erwin Schrdinger的波动方程,结合数学理论,开发出了这种方程。

后来,很多研究者基于这种理论模型,延伸出了更丰富的反应扩散方程,以适应不同的领域。

反应扩散方程的形式非常多样,其中的参数可以用于描述不同的物理过程,如反应活性,扩散系数等。

反应扩散方程是一个微分方程,可以用来表示物质交互的形式,它会产生极少数解,但是它们是否可以用来描述特定系统,还需要具体做出判断。

反应扩散方程最初是用来描述物质在空间上的扩散过程,但是随着科学家对反应扩散方程的研究,它的应用领域越来越多。

它不仅可以用来描述化学反应,也可以用来描述各种沿海浅水生物群落的发展过程,以及空气污染物的扩散过程。

此外,反应扩散方程还可以应用于医学,用于模拟药物在身体内的扩散过程。

现代科学家正在持续地研究和拓展反应扩散方程,使之能够应用于更多不同的领域,以加深我们对复杂系统现象的理解,从而更好地把握自然规律,提高人类的生活质量。

反应扩散方程已经成为当今最重要的理论模型之一,它能够帮助人们更深入地理解复杂系统。

它有助于改善日常生活,并可以帮助我们更好地利用自然资源,从而提高人类的生活质量。

一类非线性反应--扩散方程差分格式的稳定性问题

一类非线性反应--扩散方程差分格式的稳定性问题

关键词
中图法分类号
0 4 .4; 文献标识码 2 18

在使 用微 分方 程 的有 限差分 格式进 行 数值 计算
时 , 须选 用稳 定 的格式 计算 才有 意义 。 因此 , 出 必 给

冥 中 , >0 , 为 自然 数 . P m
个差 分格 式 , 先要 考 虑 它 的稳 定性 问题 。对 于 首
1n — : + ( U )^ (: ~ + 1 印( U, 一 :) + ( ) , l h h
和内积
,1
U 一 )=0, h :
于是
(UV) 』 ^出= ^, V。 (  ̄) ) ^ ( h) hh^ ^ ^ h
在上 述 定 义 的 内 积 下 的 范数 记 为 l I J・ J ^:
的稳定性 的问题 。
对 方程 ( ) 行离 散 . 到有 限差分 格 式 为 1进 得
—_ 一 一 盟—— — — p — p — —— ~

+(n2- u. + 一x 1-0 tm ;

= U ( ), 0
i = 1, … , ; 2, Ⅳ
一 n
0,
n = l2 … , ,,

L [ ,]上 的 内积 记 为 ( ,・ 此 O 1 。 ),
内积下 的范数 记 为 11, 且 l l 和 11在 . 并 _・ J ^ .
上是 H let 数 。 i r范 b 有 了步 长 函 数 空 间 , 以将 有 限差 分 方 程 可
() 2
2 引人 步长 函数空问 1 对—维反应一 扩散方程引人有限差分格式
2 1 步 长 函数 空 间的基 本 概念 . 为讨 论有 限 差 分 格 式 ( 的稳 定 性 , 2) 引入 如 下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档