高中数学必修三知识点大全
高中数学必修1、3、4、5知识点归纳及公式大全

必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。
会合三因素:确立性、互异性、无序性。
2、只需构成两个会合的元素是同样的,就称这两个会合相等。
3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。
记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。
高中数学必修三知识点大全

知識點串講必修三第一章:演算法1. 1.1 演算法得概念1、演算法(algorithm)一詞源於算術(algorism),即算術方法,是指一個由已知推求未知得運算過程。
後來,人們把它推廣到一般,把進行某一工作得方法和步驟稱為演算法。
廣義地說,演算法就是做某一件事得步驟或程式。
2、任意給定一個大於1得整數n,試設計一個程式或步驟對n是否為質數做出判定。
解析:根據質數得定義判斷解:演算法如下:第一步:判斷n是否等於2,若n=2,則n是質數;若n>2,則執行第二步。
第二步:依次從2至(n-1)檢驗是不是n得因數,即整除n得數,若有這樣得數,則n不是質數;若沒有這樣得數,則n是質數。
3、一個人帶三隻狼和三隻羚羊過河,只有一條船,同船可以容納一個人和兩隻動物.沒有人在得時候,如果狼得數量不少於羚羊得數量,狼就會吃掉羚羊.請設計過河得演算法。
解:演算法或步驟如下:S1 人帶兩隻狼過河;S2 人自己返回;S3 人帶一隻羚羊過河;S4 人帶兩隻狼返回;S5 人帶兩隻羚羊過河;S6 人自己返回;S7 人帶兩隻狼過河;S8 人自己返回;S9 人帶一隻狼過河.1.1.2程式框圖(1得流程圖得首末兩端必須是起止框。
(2表示資料得輸入或結果得輸出,它可用在演算法中得任何需要輸入、輸出得位置。
(3(4判斷框一般有一個入口和兩個出口,有時也有多個出口,它是惟一得具有兩個或兩個以上出口得符號,在只有兩個出口得情形中,通常都分成“是”與“否”(也可用“Y ”與“N ”)兩個分支。
2、順序結構:順序結構描述得是是最簡單得演算法結構,語句與語句之間,框與框之間是按從上到下得順序進行得。
3、已知一個三角形得三邊分別為2、3、4,利用海倫公式設計一個演算法,求出它得面積,並畫出演算法得程式框圖。
演算法分析:這是一個簡單得問題,只需先算出p 得值,再將它代入公式,最後輸出結果,只用順序結構就能夠表達出演算法。
解:程式框圖:24、條件結構:根據條件選擇執行不同指令得控制結構。
高中数学必修三知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个数集(定义域)中的每个元素都对应到另一个数集(值域)中的一个唯一元素。
2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。
3. 函数的性质:单调性、奇偶性、周期性、有界性等。
4. 函数的运算:函数的加法、减法、乘法、除法等运算。
5. 函数的复合:两个或多个函数的复合运算。
6. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。
7. 函数的极限:当自变量无限接近某个值时,函数值无限接近的值。
8. 函数的连续性:如果一个函数在某一点的极限存在,那么这个函数在这一点就是连续的。
9. 函数的导数:描述函数变化率的概念,可以用来研究函数的增减性、极值、凹凸性等性质。
10. 函数的积分:描述函数积累效果的概念,可以用来计算面积、体积等。
11. 一元二次方程:形如ax²+bx+c=0的方程,其中a≠0。
12. 一元二次方程的解法:因式分解法、配方法、公式法、求根公式等。
13. 一元二次方程的应用:求最值、求解实际问题等。
14. 一元一次不等式:形如ax+b>c或ax+b<c的不等式,其中a≠0。
15. 一元一次不等式的解法:移项、消去系数、求根等。
16. 一元一次不等式的应用:求解实际问题等。
二、数列与数学归纳法1. 数列的概念:数列是按照一定顺序排列的一组数。
2. 数列的性质:单调性、有界性、收敛性等。
3. 等差数列:每一项与前一项之差相等的数列。
4. 等比数列:每一项与前一项之比相等的数列。
5. 等差数列的性质:求和公式、通项公式等。
6. 等比数列的性质:求和公式、通项公式等。
7. 数学归纳法:通过证明一个命题对某个自然数成立,然后证明它对下一个自然数也成立,从而证明对所有自然数都成立的方法。
三、立体几何与空间向量1. 立体几何的基本概念:点、线、面、体等。
2. 空间直线与平面的位置关系:平行、垂直、相交等。
高中数学必修三知识点总结

高中数学必修三知识点总结一、函数和极限1、函数函数是一种特殊的数学关系,即将一个变量与另一个变量的幂次方律或以其他形式表示的函数表达式相关联,使其中一个变量可以通过另一个变量确定。
它是将一个数量变化到另一个数量的过程。
例如,y=x²定义了函数y与x之间的关系。
在数学中,函数的定义一般表示为 f(x)=y。
2、极限极限是数学理论中的基本概念,它是描述一个函数沿某方向无限接近某一点的过程。
3、函数的运算性质(1)可加性如果函数a(x)与函数b(x)定义域上存在,那么a(x) + b(x) = a(x) + b(x),其中a(x) + b(x)定义域为定义域a(x)与定义域b(x)的交集。
(2)可乘性如果函数a(x)与函数b(x)定义域上存在,那么a(x) × b(x) = a(x) × b(x),其中a(x) × b(x)定义域为定义域a(x)与定义域b(x)的交集。
(3)绝对值函数的特性绝对值函数的定义域为R,其表达式为 f(x)=|x|,该函数为单增函数,其定义域上单调性为单调递增,又有f(-x)=f(x)成立。
二、坐标系1、什么是坐标系坐标系又被称为图形坐标系,是一种定义坐标位置的系统,可以用于表示,定位和绘制一个点,线或者面的几何形状。
2、极坐标、直角坐标和笛卡尔坐标(1)极坐标极坐标系中只有一个圆形坐标区域,其中x轴和y轴均在同一圆上,整个坐标系定义在一个圆环内,由一对极坐标来表示任意点的坐标,公式为(ρ,θ),ρ表示从原点到点的距离,θ表示从x轴正半轴向给点旋转的角度。
(2)直角坐标直角坐标是一种两个方向平行、正交的坐标系统,它也称为二维坐标系。
直角坐标系均有x轴(横轴)和y轴(纵轴)两个轴来表示,它们垂直于彼此,x轴从原点向右为正向,y轴从原点向上为正向。
每个坐标点都可以用两个坐标值(x, y)来描述。
(3)笛卡尔坐标笛卡尔坐标系是一种基于三个平行、正交的空间坐标系统,也叫三维坐标系,它有x 轴、y轴和z轴,三条轴均正交,x轴、y轴和z轴垂直于彼此,x轴从原点向右为正方向,y轴从原点向上为正方向,z轴从原点朝外为正方向。
高中必修三数学知识点

高中必修三数学知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中必修三数学知识点书读的越多而不加思考,你就会觉得你知道得很多;而当你读书而思考得越多的时候,你就会越清楚地看到,你知道得很少。
高中数学必修三《数学与几何》必备知识点整合

高中数学必修三《数学与几何》必备知识点整合1. 平面向量- 定义:有大小和方向的量- 平移法则:$\overrightarrow{AB} + \overrightarrow{BC} =\overrightarrow{AC}$- 数量积:$\overrightarrow{A} \cdot \overrightarrow{B} =AB\cos\theta$- 向量的分解:$\overrightarrow{A} = \overrightarrow{OA} =x\overrightarrow{i} + y\overrightarrow{j}$2. 三角函数2.1 正弦定理在△ABC中,$a = BC$,$b = AC$,$c = AB$,则有$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$2.2 余弦定理在△ABC中,$a = BC$,$b = AC$,$c = AB$,$A$、$B$、$C$为角的对边,则有$$c^2 = a^2 + b^2 - 2ab\cos C$$2.3 倍角公式- $\sin 2x = 2\sin x \cos x$- $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$3. 数列- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等差数列求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 等比数列求和公式:$S_n = \frac{a_1(q^n-1)}{q-1}$4. 平面几何4.1 平行与垂直- 平行关系:两直线斜率相等或有一个斜率不存在,且不相交- 垂直关系:两直线的斜率乘积为-14.2 三角形- 外角和等于补角- 三角形内角和为180°4.3 相似三角形若两个三角形各对应角相等,则称其为相似三角形4.4 三角形的重心三条三角形的中线交于一点,该点称为三角形的重心。
高中数学必修三知识点总结

高中数学必修三知识点总结高中数学必修三是高中数学教育的重要组成部分,是学生进一步完善数学知识结构的关键环节。
通过学习必修三的知识,学生能够全面掌握高阶数学概念和方法,为未来进阶学习打下扎实的基础。
本文将结合高中数学必修三的主要知识点,对其中的代数、函数和三角函数等内容进行总结和分析。
一、代数1.1 代数基础概念代数是数学的一个重要分支,是研究符号和数的关系的数学学科。
在高中数学必修三中,代数是一个重要的知识点,包括了多项式、方程组、不等式等内容。
1.2 多项式多项式是代数中的重要概念。
它是由常数与变量的乘积和的形式构成的代数式。
高中数学必修三中,学生将学习如何对多项式进行加减乘除和因式分解等。
在学习多项式的过程中,学生需要掌握多项式的基本运算和求解方法,并了解多项式在现实生活中的应用。
1.3 方程组方程组是指由若干个方程组成的数学系统。
在高中数学必修三中,方程组是一个重要的知识点,包括线性方程组、非线性方程组等内容。
学生需要学会如何利用代数方法解决方程组,并能够应用方程组的知识解决实际问题。
1.4 不等式不等式是代数中的重要内容之一。
在高中数学必修三中,学生将学习不等式的性质、求解方法以及应用技巧。
不等式的学习有助于提高学生的逻辑思维能力,同时也为学生将来学习更深入的数学知识奠定基础。
1.5 经典知识点总结代数部分的知识点主要涵盖了多项式、方程组和不等式。
通过对这些知识点的学习,学生能够掌握代数基础概念,提高解题能力,为以后的数学学习打下坚实的基础。
二、函数2.1 函数的基本概念函数是高中数学中重要的知识点之一。
函数是自变量和因变量之间的一种对应关系。
在高中数学必修三中,函数是一个非常重要的内容,包括定义域、值域、函数图像、函数的性质、函数的运算等方面的内容。
2.2 一元二次函数一元二次函数是高中数学中的重要内容之一。
它是一个常数与自变量的平方项的和,通常表示为f(x)=ax^2+bx+c。
学生需要学习如何求一元二次函数的顶点、零点、对称轴等性质,还要掌握一元二次函数的图像特征以及实际问题中的应用。
高中数学必修三知识点归纳

高中数学必修三知识点归纳一、函数与方程1. 函数的定义与性质- 函数是一个或多个变量间的依赖关系。
- 定义域、值域、图像、奇偶性、单调性等。
2. 一元二次函数- 基本形式:f(x) = ax² + bx + c (a≠0)- 参数a、b、c对函数图像的影响- 顶点坐标、对称轴- 判别式和根的关系- 单调性、最大值最小值- 图像的平移、伸缩、翻转3. 幂函数、指数函数和对数函数- 幂函数:f(x) = x^a (a为实数,a≠0)- 指数函数:f(x) = a^x (a > 0, a ≠ 1)- 对数函数:f(x) = loga(x) (a > 0, a ≠ 1)- 特性和性质- 图像和变化规律4. 三角函数和三角方程- 正弦函数、余弦函数、正切函数、余切函数的定义- 周期和振幅- 正弦定理、余弦定理和正切定理- 三角方程的解法和应用二、数列与数学归纳法1. 数列的概念和性质- 数列是按照一定规律排列的一组数。
- 等差数列、等比数列、等差数列的前n项和- 通项公式、递推公式- 数列图像的性质2. 数列的极限- 数列趋于无穷的极限- 数列的收敛与发散- 等差数列、等比数列的极限- 极限的运算性质3. 数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用三、数学推理与证明1. 几何证明方法- 直接证明、间接证明、反证法、数学归纳法- 常见几何定理的证明2. 合理推理方法- 演绎推理、归纳推理、直觉推理、假设-验证法 - 合理推理的特点和要求3. 几何证明- 平行线证明- 三角形的证明- 圆的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点串讲必修三第一章:算法1. 1.1 算法的概念1、算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
2、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
3、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
解:算法或步骤如下:S1 人带两只狼过河;S2 人自己返回;S3 人带一只羚羊过河;S4 人带两只狼返回;S5 人带两只羚羊过河;S6 人自己返回;S7 人带两只狼过河;S8 人自己返回;S9 人带一只狼过河.1.1.2程序框图1、基本概念:(1的流程图的首末两端必须是起止框。
(2表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。
(3(4判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y”与“N”)两个分支。
2、顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
解:程序框图:24、条件结构:根据条件选择执行不同指令的控制结构。
5、求x 的绝对值,画出程序框图。
6、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构分为两类:(1)一类是当型循环结构,如图(1)所示,它的功能是当给定的条件P1成立时,执行A 框,A 框执行完毕后,再判断条件P1是否成立,如果仍然成立,再执行A 框,如此反复执行A 框,直到某一次条件P1不成立为止,此时不再执行A 框,从b 离开循环结构。
(2)另一类是直到型循环结构,如图(2所示,它的功能是先执行,然后判断给定的条件P2是否成立,如果P2仍然不成立,则继续执行A框,直到某一次给定的条件P2成立为止,此时不再执行A 框,从b点离开循环结构。
A AP1?成立 P2?不成立不成立成立当型循环结构直到型循环结构(1)(2)7、输入3个实数按从大到小的次序排序。
解:程序框图:8、给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 将下面给出的程序框图补充完整.(1)________i < = 50_________________(2)_____p= p + i____________________(8题图)1. 2.1输入、输出语句和赋值语句1、输入语句在程序中的第1行中的INPUT语句就是输入语句。
这个语句的一般格式是:INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:例如,输入一个学生数学,语文,英语三门课的成绩,可以写成:INPUT “数学,语文,英语”;a,b,c注:①“提示内容”与变量之间必须用分号“;”隔开。
②各“提示内容”之间以及各变量之间必须用逗号“,”隔开。
但最后的变量的后面不需要。
2、输出语句在程序中,第3行和第4行中的PRINT语句是输出语句。
它的一般格式是:输出语句的用途:(1)输出常量,变量的值和系统信息。
(2)输出数值计算的结果。
3、赋值语句用来表明赋给某一个变量一个具体的确定值的语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。
它的一般格式是:赋值语句中的“=”叫做赋值号。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。
注:①赋值号左边只能是变量名字,而不能是表达式。
如:2=X是错误的。
②赋值号左右不能对换。
如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。
(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。
4、编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
算法: 程序:5、交换两个变量A 和B 的值,并输出交换前后的值。
分析:引入一个中间变量X,将A 的值赋予X,又将B 的值赋予A ,再将X 的值赋予B , 从而达到交换A ,B 的值。
程序:1. 2.2条件语句1、条件语句算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句.它的一般格式是:(IF-THEN-ELSE-END IF 格式)当计算机执行上述语句时,首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句1,否则执行ELSE 后的语句2.其对应的程序框图为:(如上右图) 在某些情况下,也可以只使用IF-THEN 语句:(即IF-THEN-END IF 格式)计算机执行这种形式的条件语句时,也是首先对IF 后的条件进行判断,如果条件符合, 就执行THEN 后的语句体,否则执行END IF 之后的语句.其对应的程序框图为:(如上右图) 2、编写一个程序,求实数x 的绝对值. 程序:IF 条件 THEN 语句体END IF3、下面程序运行后实现的功能为_______________1.2.3循环语句1、WHILE 语句的一般格式是 对应的程序框图是2、当计算机遇到WHILE 语句时,先判断条件的真假,如果条件符合,就执行WHILE 与WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。
这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND 之后的语句。
因此,当型循环有时也称为“前测试型”循环。
3、UNTIL 语句的一般格式是INPUT “a ,b ,c =”;a ,b ,cIF b>a THENt=a a=b b=t END IFIF c>a THENt=a a=c c=t END IFIF c>b THENt=b b=c c=t END IFPRINT a ,b ,c END4、直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。
5、编写程序,计算自然数1+2+3+……+99+100的和。
分析:这是一个累加问题。
我们可以用WHILE型语句,也可以用UNTIL型语句。
程序(WHILE语句):i=1sum=0WHILE i<=100sum=sum+ii=i+1WENDPRINT sumEND程序(UNTIL语句):i=1sum=0DOsum=sum+ii=i+1LOOP UNTIL i>100PRINT sumEND6、设计一个算法:求满足1+2 + 3 +…+ n>10000的最小正整数n,并写出相应的程序。
解:i = 0sum = 0DOi = i + 1sum = sum + iLOOP UNTIL sum>10000PRINT iEND1. 3算法案例1、辗转相除法:例1 求两个正数8251和6105的最大公约数。
解:8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0则37为8251与6105的最大公约数。
2、更相减损术:用更相减损术求98与63的最大公约数.解: 98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98与63的最大公约数是7。
3、(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到4、秦九韶算法秦九韶计算多项式的方法令,则有,其中.这样,我们便可由依次求出;显然,用秦九韶算法求n 次多项式的值时只需要做n 次乘法和n 次加法运算 5、k 进制转换为十进制的方法:,6、十进制转化为k 进制数b 的步骤为:第一步,将给定的十进制整数除以基数k ,余数便是等值的k 进制的最低位; 第二步,将上一步的商再除以基数k ,余数便是等值的k 进制数的次低位;第三步,重复第二步,直到最后所得的商等于0为止,各次所得的余数,便是k 进制各位的数,最后一次余数是最高位,即除k 取余法.7、已知一个五次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f 用秦九韶算法求这个多项式当x = 5的值。
解:将多项式变形:8.0)7.1)6.2)5.3)25(((()(-+-++=x x x x x x f 按由里到外的顺序,依此计算一次多项式当x = 5时的值:50=v ,272551=+⨯=v ,5.1385.35272=+⨯=v ,9.6896.255.1383=-⨯=v2.34517.159.6894=+⨯=v ,2.172558.052.34515=-⨯=v 所以,当x = 5时,多项式的值等于17255.28、将二进制数110011(2)化成十进制数 解:根据进位制的定义可知12345)2(212120202121110011⨯+⨯+⨯+⨯+⨯+⨯=121161321+⨯+⨯+⨯= 51=所以,110011(2)=51。
第二章:统计2. 1.1简单随机抽样1、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。