偏心受压柱的正截面破坏形态.

合集下载

混凝土结构设计最新试题

混凝土结构设计最新试题

混凝土结构设计原理复习资料第 1 章绪论1.钢筋与混凝土为什么能共同工作:(1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。

(2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。

(3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。

1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难建筑结构的功能包括安全性、适用性和耐久性三个方面作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用结构的极限状态:承载力极限状态和正常使用极限状态结构的目标可靠度指标与结构的安全等级和破坏形式有关。

荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值第2章钢筋与混凝土材料物理力学性能一、混凝土立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。

(f cu,k为确定混凝土强度等级的依据)1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。

(f ck=0.67 f cu,k)轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。

复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。

双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样;一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低)受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。

偏心受压构件

偏心受压构件
求As、A’s
▲分析:三个未知数,As、 A’s和 x,怎么办?
▲措施:令x=bh0
▲求解:利用两个基本公式可得
As
Ne 1 fcbh02b (1
f y (h0 as' )
0.5b )
As
1 fcbh0b
fy
f y As
N
h 式中e = ei + 2 -as
▲验算最小配筋率
As 0.002bh; A's 0.002bh
M Cmns M 2
ns
1
1300(M 2
1 /N
ea
)
/
h0
lc h
2
c
Cm
0.7 0.3 M1 M2
0.7
ea (20, h / 30)max
h为长边长度
c
0.5 fc A N
:截面曲率修正系数,当计算值大于1.0时取1.0
c
其中,当 Cmns 1.0 时取1.0
对剪力墙肢及核心筒墙肢类构件,取1.0
第五章 受压构件
(2) As 、A’s应满足最小配筋率:
As 0.002bh; A's 0.002bh
As + A's ρminbh (3) As 、A’s应满足最大配筋率:
As + A's 0.05bh
1.材料强度及几何参数
截面设计时, h0 = h - as
混凝土等级不超过C25时as‘= as =45mm 混凝土等级超过C25时as‘= as =40mm
l0
eeii
N
yy
N
y f ?sin x
le
ff
N
l0le

偏心受压构件

偏心受压构件

偏心受压: (压弯构件) 二. 工程应用
单向偏心受力构件
双向偏心受力构件
大偏心受压构件 小偏心受压构件
偏心受压构件:拱桥的钢筋砼拱肋,桁架的上弦杆,
刚架的立柱,柱式墩(台)的墩(台)
柱等。
三. 构造要求
图7-2 偏心受压构件截面形式 (1)矩形截面为最常用的截面形式, 截面高度h大于600mm的偏心受压构件多采用 工字型或箱形截面。 圆形截面主要用于柱式墩台、桩基础中。
l0 /r>17.5
l0 /b>5
l0 /d>4.4
§7.3
矩形截面偏心受压构件的正截面承载力计算
一、矩形截面偏心受压构件承载力计算的基本公式 基本假定为: 平截面假定. 不考虑受拉区混凝土的抗拉强度。
C 50及以下时 cu 0.0033 受压区混凝土的极限压应变 。 C80时 cu 0.003
§7.0 概 述 一、定义
偏心受压构件:当轴向压力N的作用线偏离受压构件 的轴线时。
偏心受压构件力的作用位置图
1. 受压构件概述
轴心受压承载力是正截面受压承载力 的上限。单向偏心受压的 正截面承载力计算。 (a)轴心受压 (b)单向偏心受压 (c) 双向偏心受压
由式(7-6)和式(7-10),可求得x方程组
x Ne f cd bx ( a s' ) s As ( h0 a s' ) 2
' s
7-19
以及
s cu E s (
h0
x
1)
即得到关于x的一元三次方程为
Ax 3 Bx 2 Cx D 0
A 0.5 f cd b
E E M
构件长细比的影响图
短柱 l0 / h 5 ---材料破坏,不考虑二阶弯矩

钢结构受压构件截面承载力计算

钢结构受压构件截面承载力计算

偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。

1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。

受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。

构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。

2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。

(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。

(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。

破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。

破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。

总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。

在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。

它不仅有横向主裂缝,而且比较明显.。

其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。

界限破坏形态也属子受拉破坏形态。

长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。

但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。

对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。

下图是一根长柱的荷载一侧向变形(N -f)实验曲线。

偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。

长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。

第七章 偏心受压构件的强度计算

第七章 偏心受压构件的强度计算

影响,各截面所受的弯矩不再是Ne0,而
变成N(e0+y)见图(7-4)所示,y为构件 任意点的水平侧向挠度。在柱高度中心处,
y
N
侧向挠度最大,截面上的弯矩为N(e0+f)。
一般,把偏心受压构件截面弯矩中心的Ne0称为初始弯矩或一
阶弯矩(不考虑侧向挠度时的弯矩),将Nf或Ny称为附加弯矩或
二阶弯矩。
由于二阶弯矩的影响,将造成偏心受压构件不同的破坏类型。(见教材122 页图7-12) 短柱——材料破坏,即由于截面中材料达到其强度极限而发生的破坏; 长柱(8<lo /h≤30) ——材料破坏 细长柱——失稳破坏。即当偏心压力达到最大值时,侧向挠度f突然剧增, 但材料未达到其强度极限情况下发生的破坏。由于失稳破坏与材料破坏有本 质的区别,设计中一般尽量不采用细长柱。
rb N j e M u Rg Ag (h0 a ' ) (7-12) rs 当按式(7-12)求得的正截面承载力M u比不考虑受压钢筋A/g时更小,则 在计算中不应考虑受压钢筋A/g 。
'
3)当偏心压力作用的偏心距很小,即小偏心受压情况下且全截面受压。 若靠近偏心压力一侧的纵向钢筋A/g配置较多,而远离偏心压力一侧的纵向钢 筋Ag配置较少时,钢筋Ag的应力可能达到受压屈服强度,离偏心压力较远一 侧的混凝土也有可能压坏,这时的截面应力分布如图(7-8)所示。为使钢筋 Ag数量不致过少,防止出现一侧压应力负担较大引起的破坏,《公路桥规》 规定:对于小偏心受压构件,若偏心压力作用于钢筋Ag合力点和A/g合力点之 间时,尚应符合下列条件:
e
e/
e0
e/
x
Ra
z
x 2a '
rb / Rg Ag C rs

建筑结构习题

建筑结构习题

一.填空题1. 偏心受压构件正截面破坏有——和——破坏两种形态。

当纵向压力N 的相对偏心距e 0/h 0较大,且A s 不过多时发生——破坏,也称——。

其特征为——。

2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉——或者受压——。

3. 界限破坏指——,此时受压区混凝土相对高度为——。

4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。

5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大偏压破坏;当——为小偏压破坏。

6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。

对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。

7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。

当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。

8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。

9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点——时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。

10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配筋的偏心受压构件相同。

11. 偏心距增大系数2012011()1400i le hh ηξξ=+式中:e i 为______;l 0/h 为_____;ξ1为 ______。

12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。

13. 根据偏心力作用的位置,将偏心受拉构件分为两类。

《钢筋混凝土结构基本原理》作业解答

《钢筋混凝土结构基本原理》作业解答

《钢筋混凝土结构基本原理》一到二章论述题:1、为什么钢筋和混凝土能共同工作?答:1.二者具有相近的线膨胀系数;2.在混凝上硬化后,二者之间产生了良好的粘结力,包括(❷)钢筋与混凝丄接触而上的化学吸附作用力(令)混凝上收缩握裹钢筋而产生摩阻力(令)钢筋表而凹凸不平与混凝上之间产生的机械咬合作用力;3.混凝土能够很好的保护钢筋不被侵蚀。

2、混凝土的强度等级是怎样划分的?答:混凝上强度等级按立方体抗压强度标准值划分为C1 5、C20、C2 5、C30、C35、C40、C45、C50、C5 5、C60、C65、C7 0、C 7 5、C 80 等14 个3、什么是混凝土的徐变?答:长期荷载作用下,混凝上的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的徐变。

单选题:4、混凝土规范》规泄混凝土强度等级应按(A )强度标准值确左。

A:立方体抗压B:圆柱体抗压C:棱柱体抗压D:轴心抗压5、混凝上材料的强度标准值与强度设计值二者关系为(B )。

A : 一样大B:标准值大C:设计值大D :不相关6、 4 •结构在正常使用荷载作用下,具有良好的工作性能,称为结构的(B )。

A:安全性B:适用性C:耐久性D:可靠性7、结构在规定的时间内,在规左的条件下完成预定功能的能力,称为结构的(D )oA:安全性B:适用性C:耐久性D:可靠性8、普通房屋和构筑物结构设计使用年限是(C )。

A:5年B:25 年C: 5 0 年D: 100年及其以上9、填空题(1 — 6):1、混凝上立方体抗压强度比混凝上柱体抗压强度大。

2、钢筋混凝上结构由很多受力构件组合而成,主要受力构件有楼板、梁、柱 墙、基础等。

3、 混凝丄结构包括素混凝丄结构、钢筋混凝丄结构、预应力混凝上结构 和其他形式加筋混凝土结构。

4、 长期荷载作用下,混凝上的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的徐变 。

5、 在测立混凝上的立方体抗压强度时,我国通常采用的立方体标准试件的尺寸为 _______ 15 Omm x 150mm x 150mm _____ 。

5.3 偏心受压构件正截面受压破坏形态

5.3 偏心受压构件正截面受压破坏形态
N
受压区混凝土首先压碎而达到破坏。
破坏时受压区高度较大,
As 太
受拉侧钢筋未达到受拉屈服,

破坏具有脆性性质。(设计时应予避免)
sAs
f'yA's
一、偏心受压短柱的破坏形态
“受拉破坏”和“受压破坏” 都属于“材料破坏”; 相同之处是截面的最终破坏是 受压边缘混凝土达到极限压应变而被压碎; 不同之处在于截面破坏的原因, 即截面受拉部分和受压部分谁先发生破坏。
(1)当相对偏心距e0/h0较小; (2)或虽然相对偏心距e0/h0较大,
但受拉侧纵向钢筋配置较多时。
N
N
As 太

sAs
f'yA's
sAs
f'yA's
2. 受压破坏(小偏心受压破坏)
N
截面受压侧混凝土和钢筋的受力较大,
而受拉侧钢筋应力较小。
当相对偏心距e0/h0很小时,
sAs
f'yA's
“受拉侧” 还可能出现受压情况。
h0 e0 N
h0 e0
N
e0很小 As适中
e0较小
e0较大 As较多 e0较大 As适中
受压破坏(小偏心受压破坏) 受拉破坏(大偏心受压破坏)
接近轴压
界限破坏
接近受弯
一、偏心受压短柱的破坏形态
界限状态:受拉纵筋屈服,同时受压区边缘混凝土达到极 限压应变。界限破坏特征与适筋梁、与超筋梁的界限破坏 特征完全相同,因此,的表达式与受弯构件的完全一样。
M较大,N较小
fyAs
f'yA's
偏心距e0较大
1. 受拉破坏(大偏心受压破坏)
截面受拉侧混凝土较早出现裂缝,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏心受压柱的正截面破坏形态
偏心受压柱的破坏形态与荷载的偏心距e0和纵向钢筋配筋率
有关:可以分为大偏心受压破坏和小偏心受压破坏。 1、大偏心受压破坏
N
N
M
M较大,N较小
fyAs
f'yA's
fyA偏s 心距e0较大f'yA's
As配筋合适
2、小偏心受压破坏 产生受压破坏的条件有两种情况:
(1)相对偏心距e0/h0较小,截面全部受压或大部分受压。
⑵虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多。
N
N
As
太 多
ssAs
f'yA's
ssAs
f'yA's
(一)大偏心受压破坏
试验表明:当轴向力的偏心距较大时,截面部分受拉、部分 受压,如果受拉区配置的受拉钢筋数量适当,则构件在受力后, 首先在受拉区产生横向裂缝。随着荷载不断增加,裂缝将不断 开展延伸,受拉钢筋应力首先达到受拉屈服强度,随着钢筋塑 性的增加,混凝土受压区高度迅速减小,压应变急剧增加,最 后混凝土达到极限压应变而被压碎,构件破坏。
图1 小偏心受压破坏截面应力图形
Байду номын сангаас
上述三种情况,尽管破坏时应力状态有所不同,但破坏特 征是相似的。
由于上述三种破坏情况中的前两种是在偏心距较小时发生 的,故统称为“小偏心受压破坏”。由于破坏是由受压区开始的, 故这种破坏又称为“受压破坏”。小偏心受压破坏一般没有明显 预兆,属于脆性破坏。
破坏时受压钢筋应力达到抗压屈服强度,因为这种破坏发生 于轴向力偏心矩较大的情况,因此称为“大偏心受压破坏”。
N 大偏心受压柱破坏过程类 似于双筋梁的适筋破坏。 由于破坏是从受拉区开始 的,故这种破坏又称为“受 拉破坏”。 大偏心受压破坏具有明显 的预兆,属于延性破坏。
(二)小偏心受压破坏
小偏心受压破坏包括下列三种情况: (1)偏心距很小时,截面全部受压,如图1(a)所示。 (2)偏心距较小时,截面大部分受压,小部分受拉,如图1(b) 所示。 (3)偏心距较大时,截面部分受拉,部分受压,且受拉钢筋配 置过多,如图1(c)所示。
相关文档
最新文档