国内外氢能技术规范和标准发展现状简介
氢能源技术开发现状与展望

氢能源技术开发现状与展望氢能源技术开发现状与展望随着全球对环境保护的需求增加,氢能源作为 clean energy 的代表,成为了各国政府和企业关注的热点话题。
目前氢能源技术已经有了不少突破性进展,但也存在许多挑战。
本文将对氢能源技术的现状与展望进行探讨。
一、氢能源技术现状1、生产技术(1)煤气化制氢技术利用煤、天然气等化石能源来制取氢气,可以大规模生产氢气。
但煤气化制氢过程中会产生大量二氧化碳和其他有害气体,对环境造成破坏。
(2)水电解制氢技术水电解制氢技术是利用电解反应将水分解成氢气和氧气。
该技术无污染、无排放,潜力巨大,但目前仍存在技术瓶颈,如高反应能耗、电解槽寿命短等问题。
2、储存技术(1)压缩氢气储存技术将氢气压缩至高压下进行储存,是目前应用最广泛的储存方式之一。
但压缩氢气需要高成本的压缩设备,同时压缩氢气会产生极高的温度和压力,存在安全隐患。
(2)吸附氢气储存技术利用晶体、纳米材料和金属有机骨架等吸附装置吸附氢气进行储存。
优点是储存密度高、安全性能好,但制备成本高。
3、应用技术(1)燃料电池燃料电池是利用氢气和氧气反应产生电能的装置。
与传统热能发电相比,燃料电池效率更高、不产生二氧化碳等污染物质。
目前已经在交通运输、家庭和商业等领域进行应用。
(2)氢气内燃机氢气内燃机是将氢气直接燃烧产生动力的装置。
与传统汽车相比,氢气内燃机具有零污染、零排放和高能量密度等优势。
目前已经开始在交通运输领域进行应用。
二、氢能源技术展望氢能源具有广阔的应用前景,但目前仍存在以下挑战:1、制氢成本高目前制氢成本较高,需要进一步降低制氢成本,提高制氢效率。
2、储氢技术不完善储氢技术仍存在一些不足,需要寻求更安全、更有效的储氢方式。
3、产业配套不足氢能源产业链上下游的相关产业链不足,需要进行配套开发,促进氢能源的可持续发展。
未来,氢能源技术将逐步发展成为能源消费结构的重要组成部分,为实现能源转型和环境保护做出贡献。
国内外氢能产业发展现状与思考

三、国内氢能产业发展现状
1、政策支持:我国政府也高度重视氢能产业的发展,出台了一系列政策措 施,为氢能产业的壮大提供了保障。例如,多地政府制定了氢能产业发展规划, 并加大了对新能源汽车产业的扶持力度。
பைடு நூலகம்
2、技术水平:我国在氢能技术研发方面也取得了一系列的突破。例如,研 发出高效低成本的制氢技术,推动了氢能产业链的完善。此外,我国在燃料电池、 储氢和运氢技术方面也拥有了一定的自主创新能力和技术储备。
2、氢气储存
在氢气储存方面,新型的储氢材料和储氢技术的研究也在不断进行。例如, 固态金属储氢材料的研究,新型有机物储氢材料的研究等都取得了重要进展。这 些新型储氢技术的出现有望降低储氢成本,提高储氢安全性,推动氢能产业的发 展。
四、应用前景
氢能的应用前景非常广阔,未来 将在多个领域得到广泛应用。
5、推动国际合作与交流:要加强国际合作与交流,分享各国在氢能研究与 应用方面的经验和成果。通过开展多边合作,共同推进氢能产业的全球发展。
总之,氢能产业的未来发展需要政府、企业和科研机构等各方的共同努力。 只有加强政策引导、技术创新和基础设施建设等方面的工作,才能推动氢能产业 的健康、快速发展,为实现全球能源转型和应对气候变化做出贡献。
3、加快基础设施建设:要加快加氢站等基础设施的建设,提高氢气供应能 力和服务质量。同时,要注重推动氢能与其他能源技术的融合,提高能源利用效 率,降低碳排放。
4、拓展应用领域:要积极拓展氢能的应用领域,除了新能源汽车和能源存 储等领域,还应将氢能应用于工业生产、电力、建筑等领域。通过拓展应用领域, 推动氢能产业的全面发展。
1、加强政策引导和扶持:政府应继续加大对氢能产业的支持力度,制定更 加详细且具有可操作性的政策,引导和推动氢能产业的发展。同时,要加强对新 能源汽车等领域的补贴和扶持,推动氢能产业链的完善。
氢能 行业概况

氢能行业概况
氢能是一种清洁、高效、可持续的能源,具有广阔的应用前景和巨大的发展潜力。
以下是氢能行业的概况:
1. 发展现状:目前,氢能行业处于快速发展阶段。
全球各国政府和企业对氢能的投资和研发力度不断加大,氢能技术不断取得突破,应用领域不断拓展。
2. 技术进展:氢能技术包括氢的制备、储存、运输和应用等方面。
在氢的制备方面,主要有电解水制氢、煤气化制氢、天然气重整制氢等技术;在氢的储存方面,主要有高压气态储氢、液态储氢和固态储氢等技术;在氢的应用方面,主要有燃料电池、氢内燃机等技术。
3. 应用领域:氢能的应用领域非常广泛,主要包括交通运输、工业、能源等领域。
在交通运输领域,氢能被用于燃料电池汽车、船舶和飞机等;在工业领域,氢能被用于钢铁、化工等行业;在能源领域,氢能被用于分布式能源、储能等。
4. 市场前景:随着全球对清洁能源的需求不断增长,氢能市场前景非常广阔。
据预测,到 2030 年,全球氢能市场规模将达到数千亿美元。
5. 面临的挑战:尽管氢能行业发展前景广阔,但仍面临一些挑战,如成本高昂、基础设施不足、技术瓶颈等。
总的来说,氢能行业是一个充满机遇和挑战的行业。
随着技术的不断进步和成本的不断降低,氢能有望成为未来能源的重要组成部分。
氢能源技术的研究现状与未来发展趋势

氢能源技术的研究现状与未来发展趋势一、引言氢能源作为一种清洁、高效、可再生的新能源,正逐步受到国际社会的重视和研究。
其应用范围广泛,涉及能源领域、化工、航空航天、冶金制造、汽车交通、环保等诸多领域。
本文将介绍氢能源技术的研究现状和未来发展趋势。
二、氢能源技术的研究现状1. 氢能源生产技术目前,氢能源的生产主要是通过燃煤、燃油、天然气等传统能源的蒸汽重整或部分氧化,产生CO和CO2。
同时,也可以通过水电解、光电解等方法来制备氢气。
燃煤、燃油和天然气重整法可以大规模商业化实现,但会产生大量的CO2,给环境带来严重影响,水电解法和光电解法得到了越来越广泛的重视。
2. 氢能源储存技术目前氢气的储存方式主要有液态储存、高压气体储存、固态储存和化学储存等。
其中液态储存和高压气体储存技术已经商业化生产,是目前应用最广泛的两种储氢方式。
然而,液态储存需要极低的温度(-253℃)才能保持氢气的液态,储能密度较小;而高压气体储存需要压力达到700-1000 bar,对整个氢能系统的安全性和稳定性提出了更高的要求。
固态储存是一种既安全可靠又能实现高效储氢的方式。
目前主要的研究方向有吸附剂储氢、金属氢化物储氢和碳材料储氢。
3. 氢能源利用技术氢气的利用方式主要有燃烧、燃料电池和化学合成等。
其中,燃料电池已经成为氢气利用的主流技术。
燃料电池可将氢气和氧气(或空气)直接转化为电能,并且产生的唯一废气是水,具有高效、环保、无噪音等特点。
目前,以汽车燃料电池为例,该技术已经商用化,其性能和安全性得到了越来越多的验证和推广。
三、氢能源技术的未来发展趋势1. 生产技术的进一步完善燃煤、燃油、天然气的重整法在生产氢气的过程中仍会产生大量的CO2,研究减少CO2排放是未来的重要课题。
同时,光电解和水电解等新型储存技术的应用将逐步扩大以适应氢燃料电池等新兴应用的崛起。
2. 储存技术的完善吸附剂储氢、金属氢化物储氢和碳材料储氢等新型氢储存技术将成为未来的重点研究方向。
国内外氢能源发展现状

国内外氢能源发展现状引言:氢能源作为一种清洁、高效、可再生的能源形式,受到了国内外的广泛关注和研究。
本文将就国内外氢能源发展现状进行探讨,分析其应用领域和存在的问题。
一、国内氢能源发展现状:1.政策支持:我国政府高度重视氢能源发展,出台了一系列扶持政策。
例如,在能源转型方面,国家鼓励氢能源的应用,提供补贴和优惠政策,推动氢能源技术的研发和产业化。
2.技术进步:我国在氢能源技术方面取得了长足的进步,取得了多项重要成果。
例如,燃料电池技术、氢气制备技术、氢气储存技术等方面的研究成果丰硕,为氢能源的应用奠定了基础。
3.产业规模:我国氢能源产业规模逐渐扩大,涉及氢能源生产、储运、应用等多个领域。
目前,我国已经建立了一批氢能源生产基地和加氢站,推动氢能源的规模化应用。
二、国外氢能源发展现状:1.技术领先:在氢能源技术方面,一些国外发达国家取得了重要突破。
例如,日本在燃料电池技术方面处于世界领先地位,韩国在氢能源储存技术方面取得了重要进展。
2.应用广泛:国外一些国家已经在氢能源的应用上取得了一定成就。
例如,德国在氢能源汽车方面具有较为完善的配套设施,美国在氢能源发电方面进行了大量实验和应用。
3.国际合作:国际间在氢能源领域的合作也日益加强。
例如,国际能源署提出了氢能源的全球愿景,并组织了多个国际合作项目,推动氢能源的共同发展。
三、氢能源发展存在的问题:1.成本高昂:氢能源的生产、储存和运输成本较高,限制了其大规模应用和普及。
2.基础设施不完善:氢能源的应用需要一系列基础设施的支持,例如氢气制备设施、加氢站等。
目前,这些基础设施在国内外尚未完全建立起来。
3.安全隐患:氢气是一种易燃易爆的气体,其应用和储存存在一定的安全隐患。
因此,如何确保氢能源的安全性是一个亟待解决的问题。
结论:国内外在氢能源领域的发展现状各有优劣。
我国在技术研发和产业化方面取得了长足进展,但仍存在基础设施不完善和成本高昂等问题。
国外一些国家在技术领先和应用广泛方面具有优势,但也面临安全隐患等挑战。
氢能技术发展现状与前景

氢能技术发展现状与前景一、引言近年来,随着环境污染问题的日益严重,全球以氢为能源的技术研究与应用越来越受到重视。
本文旨在探讨氢能技术的现状与未来发展前景,以期为推广氢能技术做出一些贡献。
二、氢能技术现状1. 氢燃料电池技术氢燃料电池是一种新型的化学电源。
其核心部件是燃料电池堆,由氢气和氧气在正极和负极反应,产生电子和离子,从而产生电能。
氢燃料电池技术具有高效、清洁和环保等特点,被认为是未来能源的发展方向。
目前,全球氢燃料电池技术发展比较成熟,商用化应用逐渐增多。
2. 氢化物质量存储技术质量氢存储技术是指将氢分子通过吸附等方式存储在载体材料表面,形成氢化物,达到氢的储存和释放。
目前,氢化物材料的质量储存技术研究较为广泛,氢化物材料有高比表面积、低吸附热和良好的热稳定性等特点。
3. 高压氢储存技术高压氢储存技术是将氢气压缩储存,因为氢气的压力较低,所以其储存体积很大,不便于移动和使用。
高压氢储存技术提高氢气密度,减小存储体积,有利于氢能的广泛应用。
目前,高压氢储存技术发展也比较成熟,已经有商用化应用。
三、氢能技术前景1. 应用领域拓展氢能技术在航空航天、汽车、能源储备等领域有着广泛的应用前景。
例如,空客公司已经开发出了一种以氢燃料电池为动力的飞机模型,并计划在未来继续推进该技术的发展。
此外,氢燃料电池车也已经成为汽车行业的热门话题,不少车企已经推出了以氢燃料电池为动力的轿车和公交车。
2. 解决能源危机氢能技术的应用有助于改善能源结构,优化能源使用方式,减少对传统石油、煤炭等化石能源的依赖。
这将有效缓解全球能源供应危机,有利于推进全球可持续发展。
3. 减少环境污染氢能技术的应用还可以有效减少环境污染,改善生态环境。
相比传统化石能源,氢能技术使用过程中不会产生二氧化碳等有害气体,对环境的影响也较小。
四、结论综上所述,氢能技术作为新型能源技术,具有广阔的应用前景。
在未来的发展过程中,我们需要加强近期的科研投入,推动氢能技术的研究、开发和应用,助力全球绿色能源的发展。
国内外氢能产业发展趋势和现状

国内外氢能产业发展趋势和现状随着全球对可再生能源的需求不断增加,氢能作为一种清洁能源逐渐引起人们的关注。
在全球范围内,氢能产业正在迅速发展,国内外都投入了大量的资源和资金用于氢能技术的研究和产业化。
国内氢能产业现状在国内,氢能产业发展得很快,并取得了显著的成就。
自2016年以来,国家已经发布了一系列的政策和规划文件,提出了发展氢能产业的战略目标和举措。
目前,国内已经建立了一批氢能产业园区和氢能技术研发中心,涉及氢能生产、储存、运输和应用等各个环节。
在氢能生产领域,国内已经建设了一批大型氢能生产基地,包括水解制氢和氢燃料电池制氢等技术路线。
这些生产基地可以实现大规模的氢能生产,为氢能产业的发展提供了源头保障。
在氢能储存和运输方面,国内也进行了一系列的研究和实践。
包括氢能储存技术的研发和应用,以及建设氢气管道和加氢站等基础设施。
此外,国内的氢能应用也取得了重要的突破。
目前,氢燃料电池汽车已经开始商业化运营,并且得到了广泛的市场认可。
氢能在城市燃气、航空航天、工业生产等领域的应用也在逐渐推广和应用。
总体上看,国内的氢能产业发展势头良好,取得了可喜的成绩。
但同时面临着技术不成熟、成本高昂和基础设施不完善等挑战。
国外氢能产业现状在国外,氢能产业的发展也有很大的进展。
欧美日等发达国家均将氢能作为未来能源的重要方向,并在这一领域进行了大量的研究和投资。
在欧洲,欧盟提出了“欧洲氢能战略”,旨在推动欧洲范围内的氢能产业发展。
德国、法国、英国等国家也纷纷发布了氢能发展规划和政策。
德国的氢能产业发展较为成熟,已经建立了一整套的产业链,包括氢能生产、储存、输送和应用等多个环节。
在美国,氢能作为一种可再生能源也备受关注。
美国政府投入了大量的资金用于氢能产业研究和开发。
目前,美国已经建成了一批氢能生产基地和加氢站,并且在氢能汽车领域取得了一定的突破。
日本在氢能产业方面一直走在前列,政府积极推动氢能技术的研发和产业化。
日本已经建设了一批氢能生产基地和加氢站,氢燃料电池车辆在日本也得到广泛应用。
国内外氢能产业发展现状分析

国内外氢能产业发展现状分析一、国内氢能产业发展现状1.政策支持:随着中国政府大力推动新能源产业发展,氢能产业也得到了积极的政策支持。
2024年,国家能源局发布了《关于加快推进氢能产业发展的指导意见》,提出了针对氢能产业的发展目标和政策支持措施,包括加大资金投入、推进技术研发和示范应用、完善产业链条等。
2.技术进步:近年来,国内氢能技术取得了显著进展。
在氢能生产方面,中国已经在光解水、化石能源转化等领域取得了可观的成果。
在氢能储存和运输方面,国内企业也推出了一系列新技术和产品。
此外,中国在燃料电池技术方面也有较为突出的表现,拥有全球最大的燃料电池车辆保有量。
3.产业链完善:国内氢能产业链逐渐形成,涵盖了氢能生产、储存、运输、利用等多个环节。
目前,国内已经建立了一批氢能产业园区和试点工程,促进了氢能产业的快速发展。
同时,国内一些大型能源企业和汽车制造商也开始加大对氢能产业的投资和布局,进一步推动了产业链的完善。
二、国外氢能产业发展现状1.发达国家的领先地位:目前,德国、日本等发达国家在氢能产业方面处于领先地位。
这些国家在氢能技术研发、产业布局和政策支持方面具备较为完善的体系,形成了一定规模的氢能产业链。
德国作为欧洲氢能产业的龙头,已经拥有了包括氢能发电、氢能储存和燃料电池车辆等多个领域的完整产业链。
2.全球产业合作互补:不同国家和地区在氢能产业方面有着各自的优势,通过合作可以实现互补发展。
例如,日本在氢能储存和运输方面取得了突破,而中国在燃料电池技术方面有一定的优势,两国可以在技术研发和市场开发等方面进行合作。
此外,国际上也有一些氢能产业合作组织,如国际能源署的氢能合作与创新平台,为促进全球氢能产业的发展发挥了积极作用。
3.激烈的国际竞争:随着氢能产业的发展,国际竞争也越来越激烈。
各国纷纷加大对氢能产业的投资和支持力度,争夺产业链中的各个环节。
例如,欧洲在氢能技术研发和应用方面具备较强实力,美国在燃料电池和氢能储存等领域具有突出优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内外氢燃料电池技术规范和标准发展现状
面对着全球能源枯竭的严重挑战,洁净无污染的氢燃料电池正在以惊人的速度发展。近年来,世界各国纷纷把科技力量和资金转向氢燃料电池技术的开发和利用,尤其是美国、欧盟、日本等发达国家都制定了各自的“国家氢能燃料研究计划”和“氢能设想发展路线图”。
面向新技术涉及的产业,从来都是“标准之争”的沃土,各国在大力支持技术的开发和利用之外更是积极介入和开展技术规范和标准的制订,以求能最大的影响未来氢燃料电池产业的准入“门槛”。因此,国外有关氢能技术规范和标准方面的活动十分活跃,特别是美国、欧盟、日本等发达国家都很重视氢能技术规范和标准的制定以及与技术的同步协调发展工作,同时也非常注重国际间的合作并极力通过法规和标准的全球协调机制将本国氢能技术规范和标准国际化。
第2阶段:与此同时,开始起草全球技术法规,法规内容将包括氢和燃料电池车辆的所有方面(车载储氢系统、燃料电池、常态和撞车时的安全、燃料消耗量等等。)。
第3阶段:结合第1和2阶段的结果,制定包括氢和燃料电池车辆所有方面的全球技术法规。2010年完成。
二、目前国际上已颁布或进入制定程序的氢燃料电池法规、指令和标准
工作草案
ISO/TS 14687
氢燃料--产品规范
修改1999年版本
(2)IEC:
标准号
标准名称
备注
IEC/TR 62282-1:2005
Fuel cell technologies-Part1:Terminology
IEC 62282-2:2007
Fuel cell technologies -Part2:Fuel cell modules
(3)SAE:
标准号
标准名称
备注
SAE J 2572:2006
Recommended Practice for Measuring the Exhaust Emissions,Energy Consumption andRangeofFuel CellPowered Electric Vehicles Using Compressed Gaseous Hydrogen
进行中
SAE J2719
Hydrogen Specification Guideling For Fuel Cell Vehicles
进行中
SAE J2783
Liquid Hydrogen Surface Vehicle Refueling Connection Devices
进行中
SAE J2799-TIR:2007
使用燃料重整技术的制氢器
2007颁布
ISO :2007
可运输的气体储藏装置-吸附在可逆金属氢化物中的氢
2007颁布
ISO/CD TS 20012
Gaseous Hydrogen-Service Stations Non-residential,pure hydrogen refueling stations
3、标准:在各标准化组织中,ISO、IEC、SAE等制订的标准最具生命力,为美国、加拿大、欧盟等多数发达国家受以及WP29所接。下面介绍他们颁布或进入程序的标准:
(1)ISO:由下设的道路车辆技术委员会下的电动道路车辆分技术委员会(ISO/TC22/SC21)和氢能技术委员会(ISO/TC197)颁布。
SC3与一般安全性工作组(GRSG)、污染与能源工作组(GRPE)之间的关系如下图:
(2)HFCV全球技术法规的原则路径(A-D)以及与现存的国家/地区性法规的关系:
注:A.新项目协调后的全球技术法规(例如.储氢系统的安全)
B. H2/ FC车辆的现有法规的协调(例如.电的安全)
C.协调的要求,另外的适用于现有的国民/地方的法规
3、UN/WP29的成员包括各国政府的官方代表和非政府组织,专门负责ECE法规的制
修订和实施工作,以及制定全球统一的汽车技术规范。
(1)UN/WP29下设有6个正式工作组:一般安全性工作组(GRSG)、被动安全性工作组(GRSP)、污染与能源工作组(GRPE)、灯光及光信号工作组(GRE)、噪声工作组(GRB)、制动及底盘工作组(GRRF),其中一般安全性工作组(GRSG)和污染与能源工作组(GRPE)属于SC3小组委员会,它们同时设立的为制订 HFCV全球技术法规设立非正式工作组。UN/WP29的组织结构如下:
1、指令(ECC/EC):是欧盟e-MARK认证的技术规范,要进入欧盟市场必须到达其技术要求,是强制性的。目前,欧盟的HFCV指令尚未正式颁布,现处于公告阶段,2007年7月制订了该指令草案,2007年10月出台了正式草案,进行公告,预计2008年将正式颁布。
2、法规(ECE):由UN/WP29负责制定,是E-MARK认证的技术规范,由各国通过本国法规决定是否需遵守。2004年3月,由欧洲联合氢能项目(EIHP)起草的压缩气态氢HFCV法规草案修改草案完成,进入专家组成员评议阶段,目前尚未正式颁布。
SAE J2600:2002
Compressed Hydrogen Vehicle Fueling Communication Devices(defines geometries of receptacles for different pressure levels)
SAE J2601
Compressed Hydrogen Vehicle Fueling Communicatioeling strategies)
2、目前较有影响的国际氢能合作组织主要有:氢能经济国际合作组织(IPHE)、欧洲联合氢能项目(EIHP)、促进氢能转变伙伴关系(PATH)(成员国为美国、加拿大、日本三国)等,均致力于氢能技术规范和标准制定工作。其中欧洲联合氢能项目(EIHP)有整体协调、燃料添加站、与添加燃料有关的相关界面、汽车、安全、与“EU—USA”相关的一揽子活动。
欧盟、加拿大采用
IEC 62282-3-1:2007
Fuel cell technologies- Part3-1:Stationary fuel cell power systems-Safety
欧盟、加拿大采用,被、日本纳入其JIS标准中
IEC 62282-3-2:2006
Fuel cell technologies-Part3-2:Stationary fuel cell power systems-Performance test methods
(例如.附加撞车要求)
D.没有协调,但是国家/地区性法规得到修正(例如.氢
气内燃机的NOx限值)
非正式工作组认为制定新的全球技术法规,尽最大可能考虑各方利益,考虑执行该法规的经济性。
同时非正式工作组将按照上面所列储的内容和范围建立了工作小组;各个小组的主要任务是对照现有的法规或标准,评估附加试验的必要性,起草全球技术法规草案,各个小组之间要充分合作和沟通,以免对相同的内容重复要求。非正式工作组也将同WP29其它的GR组、以及国际的标准化组织相互沟通。它们的相互关系如下图:
1、标准组织,主要有国际标准化组织(ISO)、国际电工委员会(IEC)、美国机械工程师协会(ASME)、氢能法规和标准协调委员会(HCSCC)、加拿大标准协会(CSA)、电气和电子工程师协会(IEEE)、国际法规理事会(ICC)、自动化工程师协会(SAE)、保险业者实验室(UL)、欧洲英国标准(BS)、日本标准协会(JSA)等。其中,著名的国际标准化组织(ISO)和国际电工委员会(IEC)均分设有关氢能的技术委员会TC 197氢能技术委员会和TC 105燃料电池技术委员会。其中IEC/TC105和ISO/TC 197分别专攻氢能应用系统的某些重要领域,如氢能系统安全性的基本考虑、加氢站、氢燃料——产品规范等。
标准号
标准名称
状态
备注
ISO 237273:2006
燃料电池道路车辆-安全规范(共3部分)
2006年颁布
ISO/DIS 23828
燃料电池道路车辆-能耗测量方法
国际标准草案
ISO/PDTR-****
燃料电池道路车辆-道路行驶最高速度车辆方法
工作提案阶段
ISO/13985:2006
液态氢-地面车辆燃料箱
2006年颁布
ISO17268:2006
气态氢-地面车辆加氢口
2006年颁布
基于SAE2600
ISO/DIS 15869
气态氢和氢混合气-地面车辆燃料箱(五部分)
国际标准草案
ISO/TR 15916:2004
氢系统安全的基本考虑
颁布,2007年修改
ISO/DIS 22734
电解装置
国际标准草案
ISO 16110:2007
欧盟采用
IEC 62282-3-3:2007
Fuel cell technologies-Part3-3:Stationary fuel cell power systems-Installation
IEC 62282-5-1:2007
Fuel cell technologies-Part5-1:Portable fuel cell power systems-Safety