2020年广东省梅州市中考数学试题(word版含答案)

合集下载

2020年广东省中考数学试卷(含解析)打印版

2020年广东省中考数学试卷(含解析)打印版

2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【分析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得并解得:直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。

广东省梅州市2020版中考数学试卷B卷

广东省梅州市2020版中考数学试卷B卷

广东省梅州市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)下列运算中,正确的是()A . 3a+2b=5abB . 2a3+3a2=5a5C . 3a2b﹣3ba2=0D . 5a2﹣4a2=12. (2分)在平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是()A . (﹣1,3)B . (﹣3,1)C . (1,3)D . (3,﹣1)3. (2分)(2018·深圳) 下列数据:,则这组数据的众数和极差是()A .B .C .D .4. (2分)在乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A . 众数是90B . 中位数是90C . 平均数是90D . 极差是905. (2分)一元二次方程x2-2x+3=0的根的情况是()A . 育一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根6. (2分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A .B .C .D .7. (2分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图),把余下的部分拼成一个矩形(如图),根据两个图形中阴影部分的面积相等,可以验证()A . (a+b)2=a2+2ab+b2B . (a-b)2=a2-2ab+b2C . a2-b2=(a+b)(a-b)D . (a+2b)(a-b)=a2+ab-2b28. (2分)(2019·江岸模拟) 若一个圆锥的底面半径为2cm,高为4 cm,则圆锥的侧面展开图中圆心角的度数为()A . 80°B . 100°C . 120°D . 150°二、填空题 (共8题;共16分)9. (3分)因式分解:2x2﹣8=________;(x2+1)2﹣4x2=________;x2﹣x﹣12=________.10. (7分)(Ⅰ)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(Ⅱ)回答下列问题:①数轴上表示2和5的两点之间的距离是________,数轴上表示﹣2和﹣5的两点之间的距离是________;数轴上表示1和﹣3的两点之间的距离是________;②数轴上表示x和﹣1的两点A和B之间的距离是________;③如果|x+3|=2,那么x为________;④代数式|x+3|+|x﹣2|最小值是________,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是________.11. (1分)(2013·茂名) 如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是________.12. (1分) (2015七上·福田期末) 一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利18元,则这件夹克衫的成本价为________元.13. (1分)(2017·宜兴模拟) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是________.14. (1分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________15. (1分) (2018八上·扬州月考) 如图所示,已知△ABC和△BDE都是等边三角形。

2020年广东省中考数学试卷以及答案

2020年广东省中考数学试卷以及答案

2020年广东省中考数学试卷以及答案2020年广东省初中学业水平考试数学本试卷共4页,满分120分,考试时间90分钟。

在答题卡上填写准考证号、姓名、考场号、座位号,并用2B铅笔涂黑对应号码的标号。

选择题答案用2B铅笔涂黑,非选择题用黑色字迹钢笔或签字笔作答,写在答题卡指定区域内,如需改动,先划掉原来的答案,再写上新的答案,不准使用铅笔和涂改液。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)1.9的相反数是()A。

-9.B。

9.C。

D。

-2.一组数据2、4、3、5、2的中位数是()A。

5.B。

3.5.C。

3.D。

2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。

(-3,2)。

B。

(-2,3)。

C。

(2,-3)。

D。

(3,-2)4.若一个多边形的内角和是540°,则该多边形的边数为()A。

4.B。

5.C。

6.D。

75.若式子2x-4在实数范围内有意义,则x的取值范围是()A。

x≠2.B。

x≥2.C。

x≤2.D。

x≠-26.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF的周长为()A。

8.B。

22.C。

16.D。

47.把函数y=(x-1)²+2的图象向右平移1个单位长度,平移后图象的函数解析式为()A。

y=x²+2.B。

y=(x-1)²+1.C。

y=(x-2)²+2.D。

y=(x-1)²+38.不等式组{2-3x≥-1,x-1≥-2}的解集为()A。

无解。

B。

x≤1.C。

x≥-1.D。

-1≤x≤19.如题9图,在正方形ABCD中,AB=3,点E、F分别在边AB、CD上,△EFD=60°。

若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。

1.B。

2.C。

3.D。

2√310.如题10图,抛物线y=ax²+bx+c的对称轴是直线x=1.下列结论:△ABC>0,其中A、B、C分别为抛物线与x轴、y轴、顶点的交点。

2020年广东省梅州市中考数学试题(含答案)

2020年广东省梅州市中考数学试题(含答案)

梅州市2020年初中毕业生学业考试数 学 试 卷题序一二三四五六七八总分得分说 明:本试卷共4页,23小题,满分120分。

考试用时90分钟。

注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

5.本试卷不用装订,考完后统一交县招生办(中招办)封存。

参考公式:抛物线y=ax 2+bx+c (a≠0)的对称轴是直线x=―b 2a ,顶点坐标是(―b 2a ,4ac ―b 24a)。

方差S 2=1n[(x ―x 1-2)+(x ―x 2-2)+ … +(x ―x 1-2)]一、选择题:每小题3分,共15分。

每小题给出四个答案,其中只有一个是正确的。

1.―(―12)0=( )A .―2B .2C .1D .―1 2. 下列图形中是轴对称图形的是( )A .B .C .D .3. 某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的( ) A .总体 B .个体 C .样本 D .以上都不对4. 如图,在折纸活动中,小明制作了一张⊿ABC 纸片,点D 、E 分别是边AB 、AC 上,将⊿ABC 沿着DE 折叠压平,A 与A ’重合,若∠A=75°,则∠1+∠2=( )A .150°B .210°C .105°D .75°5. 在同一直角坐标系下,直线y=x+1与双曲线y=1x 的交点的个数为( )A .0个B .1个C .2个D .不能确定二、填空题:每小题3分,共24分。

广东省梅州市2020年中考数学试卷(I)卷

广东省梅州市2020年中考数学试卷(I)卷

广东省梅州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)为奖励大学生创业,我市为在开发区创业的每位大学生提供无息贷款145000元,这个数据用科学记数法表示为(精确到万元)()A . 1.45×105B . 1.5×105C . 1.4×105D . 1.5×1062. (2分)(2017·北海) 右图是由6个小正方体搭建而成的几何体,它的俯视图是()A .B .C .D .3. (2分)(2017·江都模拟) 下列运算正确的是()A . ﹣ =B . =﹣3C . a•a2=a2D . (2a3)2=4a64. (2分)桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是().A .B .C .D .5. (2分) (2017七下·郯城期中) 如图,∠1与∠2不是同旁内角的是()A .B .C .D .6. (2分) (2019八上·顺德期末) 某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A . 85和85B . 85.5和85C . 85和82.5D . 85.5和807. (2分)如图,下列说法正确的是()A . 图中共有5条线段B . 直线AB与直线AC是指同一条直线C . 射线AB与射线BA是指同一条射线D . 点O在直线AC上8. (2分) (2020八下·抚宁期中) 若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2019·通州模拟) 下列图形中,是中心对称图形的是()A .B .C .D .10. (2分)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 135°B . 180°C . 270°D . 315°11. (2分)一元一次不等式组的解集在数轴上表示为()A .B .C .D .12. (2分)分式方程的解为().A . 1B . 2C .D . 0二、填空题 (共6题;共6分)13. (1分) (2019八下·诸暨期末) 在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是________.14. (1分)如图,在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.15. (1分) (2017九上·平舆期末) 在平面直角坐标系中,将抛物线y=x2﹣x﹣12向上(下)或左(右)平移m个单位,使平移后的抛物线恰巧经过原点,则|m|的最小值为________.16. (1分) (2016九上·姜堰期末) 已知x(x﹣3)=5,则代数式2x2﹣6x﹣5的值为________.17. (1分)(2018·吉林模拟) 如图,在 ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2 ,S△BQC=25cm2 ,则图中阴影部分的面积为________cm2 .18. (1分)(2012·湖州) 甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是 =0.6, =0.8,则运动员________的成绩比较稳定.三、解答题 (共8题;共57分)19. (5分)某文具店有单价为10元、15元和20元的三种文具盒出售,该商店统计了2014年3月份这三种文具盒的销售情况,并绘制统计图(不完整)如下:(1)这次调查中一共抽取了多少个文具盒?(2)求出图1中表示“15元”的扇形所占圆心角的度数;(3)在图2中把条形统计图补充完整.20. (5分) (2019七下·永寿期末) 如图,在某住房小区的建设中,为了提高业主的直居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.问剩余草坪的面积是多少平方米?21. (5分)分别在直角坐标系中描出点(1)(0,0),(5,4),(3,0),(5,1)(5,﹣1),(3,0),(4,﹣2),(0,0);按描点的顺序连线.(2)(0,0),(10,8),(6,0),(10,2),(10,﹣2),(6,0),(8,﹣4),(0,0)按描点的顺序连线.(3)你得到两个怎样的图形?(4)两个图形有什么特点?(从形状和大小来回答)22. (5分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?23. (5分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).24. (7分) (2019九下·瑞安月考) 水果商贩小李上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元,小李购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小李有甲、乙两家店铺,每售出一箱草莓或苹果,甲店分别获利14元和20元,乙店分别获利10元和15元;①若小李将购进的60箱水果分配给两家店铺各30箱,设分配给甲店草莓箱,请填写下表:草莓数量(箱)苹果数量(箱)合计(箱)甲店30乙店30小李希望在乙店获利不少于300元的前提下,使自己获取的总利润最大,问应该如何分配水果?最大的总利润是多少?________②若小李希望获得总利润为900元,他分配给甲店箱水果,其中草莓箱,已知,则________(写出一个即可).25. (15分)(2014·茂名) 如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.26. (10分)(2020·贵港模拟) 如图,抛物线交x轴于点A,B交y轴于点C,直线经过点A,C.(1)求抛物线的解析式.(2)点P是抛物线上一动点,设点P的横坐标为m.①若点P在直线AV的下方,当的面积最大时,求m的值;②若是以AC为底的等腰三角形,请直接写出的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共57分)19-1、20-1、21-1、22-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

2020年广东省中考数学试卷-含详细解析

2020年广东省中考数学试卷-含详细解析

2020年广东省中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

梅州市2020版中考数学试卷(II)卷

梅州市2020版中考数学试卷(II)卷

梅州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择 (共12题;共24分)1. (2分) (2019七下·中山期中) 下列说法正确是()A . 同位角相等B . 过一点有且只有一条直线与已知直线平行C . 正数、负数统称实数D . 在同一平面内,过一点有且只有一条直线与已知直线垂直2. (2分)下列计算正确的是()A . 3a-2a=1B . x2y-2xy2=-xy2C . 3a2+5a2=8a4D . 3ax-2xa=ax3. (2分)(2011·宁波) 不等式x>1在数轴上表示为()A .B .C .D .4. (2分) (2015七上·永定期中) 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69×108B . 6.9×106C . 6.9×107D . 69×1065. (2分)下列函数中,图象一定关于原点对称的图象是()A . y=2xB . y=2x+1C . y=-2x+1D . 以上三种都不可能有6. (2分)(2020·绍兴模拟) 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A . 主视图相同B . 左视图相同C . 俯视图相同D . 三种视图均不同7. (2分)四边形ABCD中,∠A:∠B:∠C:∠D=2:1:1:2,则四边形ABCD的形状是()A . 菱形B . 矩形C . 等腰梯形D . 平行四边形8. (2分) (2018九上·天河期末) 如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50º,则角C的度数是()A . 50ºB . 25ºC . 30ºD . 40º9. (2分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A . 10mB . 10mC . 15mD . 5m10. (2分)(2019·宁波) 如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A . 3.5cmB . 4cmC . 4.5cmD . 5cm11. (2分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有()A . 4个B . 5个C . 6个D . 7个12. (2分)(2017·黑龙江模拟) 下列计算正确的是()A . x+x2=x3B . 2x+3x=5x2C . (x2)3=x6D . x6÷x3=x2二、填空题 (共6题;共7分)13. (1分) (2019七下·普陀期末) 用幂的形式来表示 =________.14. (1分)(2020·宽城模拟) 分解因式:x3-16x= ________。

2020年广东省中考数学试卷附答案

2020年广东省中考数学试卷附答案

92020 年广东省中考数学试卷一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .92.(3 分)一组数据 2,4,3,5,2 的中位数是()D .− 1A .5B .3.5C .3D .2.53.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为( ) A .4B .5C .6D .75.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣38.(3 分)不等式组{2 − 3x ≥ −1,的解集为( )x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤19.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为( )A .1B .√2C .√3D .210.(3 分)如图,抛物线 y =ax 2+bx +c 的对称轴是 x =1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=.12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n=.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020=.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为.115.(4 分)如图,在菱形ABCD 中,∠A=30°,取大于AB 的长为半径,分别以点A,B2为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N 分别在射线BA,BC 上,MN 长度始终保持与 不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE的最小值为.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.等级 非常了解 比较了解 基本了解 不太了解人数(人) 247218xx 22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.23.(8 分)某社区拟建 A ,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位 3个数的 .5(1) 求每个 A ,B 类摊位占地面积各为多少平方米?(2) 该社区拟建 A ,B 两类摊位共 90 个,且 B 类摊位的数量不少于 A 类摊位数量的 3倍.求建造这 90 个摊位的最大费用.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k =;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.625.(10 分)如图,抛物线 y =3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.92020 年广东省中考数学试卷参考答案与试题解析一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .9D .− 1【解答】解:9 的相反数是﹣9,故选:A .2.(3 分)一组数据 2,4,3,5,2 的中位数是()A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是 3,∴这组数据的中位数是 3.故选:C .3.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为()A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于 x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为()A .4B .5C .6D .7【解答】解:设多边形的边数是 n ,则(n ﹣2)•180°=540°,解得 n =5. 故选:B .5.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( ) A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x − 4在实数范围内有意义, ∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线, ∴DF = 1AC ,DE = 1BC ,EF = 1AC ,222故△DEF 的周长=DE +DF +EF = 1(BC +AB +AC )= 1×16=8.22故选:A .7.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【解答】解:二次函数 y =(x ﹣1)2+2 的图象的顶点坐标为(1,2), ∴向右平移 1 个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为 y =(x ﹣2)2+2.故选:C .8.(3 分)不等式组{2 − 3x ≥ −1, 的解集为()x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【解答】解:解不等式 2﹣3x ≥﹣1,得:x ≤1,解不等式 x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为()A.1 B.√2 C.√3 D.2【解答】解:∵四边形ABCD 是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3 分)如图,抛物线y=ax2+bx+c 的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y 轴右边可得:a,b 异号,所以b>0,根据抛物线与y 轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x 轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1 是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b=1,可得b=﹣2a,2a由图象可知,当x=﹣2 时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2 时,y=4a+2b+c>0;当x=﹣1 时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3 个,故选:B.二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n= 4 .【解答】解:∵单项式3x m y 与﹣5x3y n 是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020= 1 .【解答】解:∵√a− 2 +|b+1|=0,∴a﹣2=0 且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为7 .【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2 时,原式=3(x+y)﹣4xy2 =3×5﹣4×2=15﹣8=7,故答案为:7.115.(4 分)如图,在菱形 ABCD 中,∠A =30°,取大于 AB 的长为半径,分别以点 A ,B2 为圆心作弧相交于两点,过此两点的直线交 AD 边于点 E (作图痕迹如图所示),连接 BE , BD .则∠EBD 的度数为 45° .【解答】解:∵四边形 ABCD 是菱形,∴AD =AB ,∴∠ABD =∠ADB = 1(180°﹣∠A )=75°,由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°,故答案为 45°.16.(4 分)如图,从一块半径为 1m 的圆形铁皮上剪出一个圆周角为 120°的扇形 ABC ,如 1果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m .3【解答】解:由题意得,阴影扇形的半径为 1m ,圆心角的度数为 120°,120π×1则扇形的弧长为:,180而扇形的弧长相当于围成圆锥的底面周长,因此有:318022πr =120π×1,解得,r = 1, 1故答案为: .3 17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点 M ,N 分别在射线 BA ,BC 上,MN 长度始终保持不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE 的最小值为 2√5 −2 .【解答】解:如图,连接 BE ,BD .由题意 BD = √22 + 42 =2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE = 1MN =2, ∴点 E 的运动轨迹是以 B 为圆心,2 为半径的圆,∴当点 E 落在线段 BD 上时,DE 的值最小,∴DE 的最小值为 2√5 −2.故答案为 2√5 −2.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 【解答】解:(x +y )2+(x +y )(x ﹣y )﹣2x 2,120 =x 2+2xy +y 2+x 2﹣y 2﹣2x 2 =2xy ,当 x = √2,y = √3时,原式=2× √2 × √3 =2√6.19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x =120﹣(24+72+18)=6; (2)1800× 24+72=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440 人.20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.【解答】证明:∵∠ABE =∠ACD ,∴∠DBF =∠ECF ,∠DBF = ∠ECF在△BDF 和△CEF 中,{∠BFD = ∠CFE ,BD = CE ∴△BDF ≌△CEF (AAS ),∴BF =CF ,DF =EF ,等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x与 {x − y = 2 ∴BF +EF =CF +DF ,即 BE =CD ,∠ABE = ∠ACD在△ABE 和△ACD 中,{∠A = ∠A,BE = CD ∴△ABE ≌△ACD (AAS ),∴AB =AC ,∴△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于 x ,y 的方程组的相同解,就是程组 x + y = 4的解,x = 3{y = 1,代入原方程组得,a =﹣4√3,b =12;(2)当 a =﹣4√3,b =12 时,关于 x 的方程 x 2+ax +b =0 就变为 x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以 2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.解得,【解答】(1)证明:作OE⊥CD 于E,如图1 所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO 平分∠BCD,∴∠OCE=∠OCB,∠OEC = ∠OBC在△OCE 和△OCB 中,{∠OCE = ∠OCB,OC = OC∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD 与⊙O 相切;(2)解:作DF⊥BC 于F,连接BE,如图所示:则四边形ABFD 是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF= √CD2 −CF2 = √32 − 12 =2√2,∴AB=DF=2√2,∴OB= √2,∵CO 平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH =OB= √2BC 2 .23.(8 分)某社区拟建A,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A 类摊位每平方米的费用为40 元,建B 类摊位每平方米的费用为30 元.用60 平方米建A 类摊位的个数恰好是用同样面积建B 类摊位3个数的.5(1)求每个A,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B 两类摊位共90 个,且B 类摊位的数量不少于A 类摊位数量的3 倍.求建造这90 个摊位的最大费用.【解答】解:(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米,60根据题意得:=x+260 3 x⋅5,解得:x=3,经检验x=3 是原方程的解,所以3+2=5,答:每个A 类摊位占地面积为5 平方米,每个B 类摊位的占地面积为3 平方米;x (2)设建 A 摊位 a 个,则建 B 摊位(90﹣a )个,由题意得:90﹣a ≥3a , 解得 a ≤22.5,∵建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元,∴要想使建造这 90 个摊位有最大费用,所以要多建造 A 类摊位,即 a 取最大值 22 时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这 90 个摊位的最大费用是 10520 元.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k = 2 ;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.1 1【解答】解:(1)设点 B (s ,t ),st =8,则点 M ( s , t ), 22则 k = 1s 1= 1st =2,2• t 4 2 故答案为 2;(2) △BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD = 1 ×8− 1×2=3;2 22 (3) 设点 D (m , 2),则点 B (4m , ),m m2m6∵点 G 与点 O 关于点 C 对称,故点 G (8m ,0), 1 则点 E (4m ,),2m2= ms + n 设直线 DE 的表达式为:y =sx +n ,将点 D 、E 的坐标代入上式得{m1= 4ms + n ,解得 k = − 12{ 2m , 5 b = 2m故直线 DE 的表达式为:y = −12 x +5,令 y =0,则 x =5m ,故点 F (5m ,0),2m2m故 FG =8m ﹣5m =3m ,而 BD =4m ﹣m =3m =FG ,则 FG ∥BD ,故四边形 BDFG 为平行四边形. 25.(10 分)如图,抛物线 y = 3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.【解答】解:(1)∵BO =3AO =3,∴点 B (3,0),点 A (﹣1,0),∴抛物线解析式为:y =3+√3(x +1)(x ﹣3)=3+√3x 2 3+√3x 3+√3, 6∴b =3+√3,c =3+√3;6 3 232(2)如图 1,过点 D 作 DE ⊥AB 于 E ,OE 3 3∴CO ∥DE , BC ∴CDBO =OE,∵BC = √3CD ,BO =3, ∴√3 = 3,∴OE = √3,∴点 D 横坐标为−√3,∴点 D 坐标(−√3,√3 +1), 设直线 BD 的函数解析式为:y =kx +b ,由题意可得:{√3 + 1 = −√3k + b ,0 = 3k + bk √3解得:{ 3 ,b = √3∴直线 BD 的函数解析式为 y = − √3x +√3;(3)∵点 B (3,0),点 A (﹣1,0),点 D (−√3,√3 +1),∴AB =4,AD =2√2,BD =2√3 +2,对称轴为直线 x =1,∵直线 BD :y = − √3x +√3与 y 轴交于点 C ,∴点 C (0,√3), ∴OC = √3,∵tan ∠COB =CO = √3,BO3∴∠COB =30°,如图 2,过点 A 作 AK ⊥BD 于 K ,23 ,3∴AK = 1AB =2,∴DK = √AD 2 − AK 2 = √8 − 4 =2, ∴DK =AK ,∴∠ADB =45°,如图,设对称轴与 x 轴的交点为 N ,即点 N (1,0),若∠CBO =∠PBO =30°,∴BN = √3PN =2,BP =2PN ,∴PN = 2√3 BP =4√3 3 ,当△BAD ∽△BPQ , BP ∴BABQ=BD ,4√3×(2√3+2)2√3∴BQ =34=2+ 3 ,∴点 Q (1− 2√3,0);当△BAD ∽△BQP , BP ∴BDBQ = AB,第 21 页(共 21 页) 3 4√3×4 ∴BQ = 3 =4− 2√3+24√3, 3 ∴点 Q (﹣1+ 4√3,0);若∠PBO =∠ADB =45°,∴BN =PN =2,BP = √2BN =2√2,当△BAD ∽△BPQ , BP ∴BQ= , AD 2√2 ∴ BD BQ = , 2√2 2√3+2∴BQ =2√3 +2∴点 Q (1﹣2√3,0);当△BAD ∽△PQB , BP ∴BD BQ= AD ,∴BQ = 2√2×2√2 =2√3 −2, 2√3+2 ∴点 Q (5﹣2√3,0); 综上所述:满足条件的点 Q 的坐标为(1− 2√30)或(﹣1+ 4√3,0)或(1﹣2√3,0)或(5﹣2√3,0). 3 , 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年梅州市初中毕业生学业考试数学说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.(09梅州)12-的倒数为( ) A .12B .2C .2-D .1-2.(09梅州)下列图案是我国几家银行的标志,其中不是..轴对称图形的是( ) 3.(09梅州)数学老师布置10道填空题,测验后得到如下统计表: 答对题数 7 8 9 10 人 数420188根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(09梅州)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(09梅州)一个正方体的表面展开图可以是下列图形中的( )二、填空题:每小题 3分,共 24 分. 6.(09梅州)计算:2()a a -÷= .7.(09梅州)梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 . 8.(09梅州)如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.A .B .C .D . A . B . C . D .O C A O9.(09梅州)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 10.(09梅州)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.(09梅州)已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________.12.(09梅州)如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13.(09梅州) 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个. 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤. 14.(09梅州)本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC 的面积等于_________(面积单位).15.(09梅州)本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.图3A E D C FB D 1C 1 图4… … 第1幅 第2幅 第3幅 第n 幅 图5C BD A 图6y (千米)3根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时. 16.(09梅州)本题满分 7 分.171819.(09梅州)本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.D C FE A B G20.(09梅州)本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(字21C . (((22.(09梅州)本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.(09梅州)本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)交((S (2009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分)C B 图1110.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15( 2分 ( 4分 ( 7分 16 4分 6分 7分 17 2分 由分 分 分 18 3分 2x =- 6分 当32x =时,原式3226322⨯==--. ······································································ 8分19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分 ∴CDF BGF △∽△. ······················3分DC FE(2) 由(1)CDF BGF △∽△, 又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分 又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ······················································································ 2 分(1)解:令0x =,得y =(0C . ············································ 1分令0y =,得2033x x -+=,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分(2)法一:证明:因为22214AC =+=,M 1222231216BC AB =+==,, ··················· 4分∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,, ∴2OC OA OB =, ························································································ 4分5分 分1.5 8分分 6分 EC BC 53x -整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°, 设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (∴ 3分 ∴∴4分当 6分 (1C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ····································· 7 分 下证90PQC ∠=°.连CB ,则四边形OACB 是正方形.法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1.L 1由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ······································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°. ····················· 9分 (1 分C ,O 分 (∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形. ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,°. 又∵OM MP =, ∴MP QN =, ∴QNC QMP △≌△, ∴MPQ NQC ∠=∠,L 1又∵90MQP MPQ ∠+∠=°,∴90MQP NQC ∠+∠=°.∴90CQP ∠=°. ····················································································· 8分(ii )当点Q 与点B 重合时,显然90PQC ∠=°. ···································· 9分 (iii )Q 在线段AB 的延长线上时,如图–5,∵分9分 连∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t t OQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭. ∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分 ∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分。

相关文档
最新文档