光伏激光工艺

合集下载

浅谈光伏玻璃激光打孔技术

浅谈光伏玻璃激光打孔技术

背景太阳能光伏发电是一种绿色清洁能源,近年来飞速发展。

光伏玻璃作为制造太阳能光伏电池组件必不可少的重要原材料,其生产制造技术及配套生产加工设备也在不断创新和进步。

光伏玻璃主要用于光伏组件的透光面板,覆盖在光伏组件上的光伏玻璃经过镀膜后,可以确保有更高的光线透过率,同时经过钢化处理的光伏玻璃具有更高的强度,可以使太阳能电池片承受更大的风压及较大的昼夜温差变化。

因此光伏玻璃的质量以及加工工艺是决定光伏组件使用寿命及光电转换效率的重要因素。

随着近年来双玻光伏组件在发电效率、使用寿命等多方面的优势,其市场占有率逐步提高并开始广泛应用于各种光伏发电系统,客观上也促进了光伏玻璃背板打孔技术的发展。

因为常规的光伏电池组件仅盖板使用光伏玻璃,而双玻组件的盖板和背板都使用光伏玻璃,而背板光伏玻璃必须在特定位置打孔才能把光伏电池组件的电流导线引出到接线盒。

因此光伏玻璃背板打孔成为深加工生产中必不可少的一道工序。

光伏玻璃打孔工艺选择光伏玻璃最初的的打孔方式为机械钻孔工艺,但是随着技术的发展进步以及对生产效率、产品品质要求的不断提高,激光打孔逐渐成为目前行业内首选的打孔工艺。

机械打孔方式是使用专用玻璃钻孔机,采用上、下两个专用钻头同时钻孔的方法来实现。

这种钻孔方式容易在玻璃孔边缘形成微裂痕、崩边破损等缺陷,使切割边缘的强度降低,并且随着玻璃板厚度越来越薄,切割时所造成的小裂纹也会增多,严重影响打孔的品质。

除此之外,机械钻孔方式对钻头损耗严重,正常生产时,对于钻头打磨修复工作量很大,而且对工人操作经验水平要求高。

因此,对于产品切割边缘的加工质量要求不高的玻璃产品可以采用机械打孔的生产工艺。

在目前光伏行业对玻璃加工质量要求越来越严的形势下,需要更为精密、细致的加工方法。

激光打孔技术凭借其较高的加工质量和成熟的工艺,近几年被广泛应用到光伏玻璃深加工连续生产线中。

激光打孔过程是激光和物质相互作用的热物理过程,它是由激光光束特性(包括激光的波长、脉冲宽度、光束发散角、聚焦状态等)和物质的诸多热物理特性决定。

光伏玻璃激光打孔机设备、工艺简介

光伏玻璃激光打孔机设备、工艺简介

d o i :10.3963/j.i s s n .1674-6066.2023.02.012光伏玻璃激光打孔机设备㊁工艺简介贺 杰,胡 壮,周吕盛,刘忠飞,向 鑫(中建材(宜兴)新能源有限公司,宜兴214200)摘 要: 通过多年对光伏玻璃激光打孔的生产经验,该文介绍了激光钻孔的工艺原理㊁激光器㊁激光钻孔设备及相应的工艺参数㊂关键词: 光伏玻璃; 激光钻孔; 工艺参数B r i e fD e s c r i p t i o no fP h o t o v o l t a i cG l a s sL a s e rD r i l l i n gM a c h i n e a n dP r o c e s sH EJ i e ,HUZ h u a n g ,Z H O UL v -s h e n g ,L I UZ h o n g -fe i ,X I A N GX i n (C N B M (Y i x i n g )N e wE n e r g y R e s o u r c e sC o ,L t d ,Y i x i n g 214200,C h i n a )A b s t r a c t : B a s e do n y e a r so f e x p e r i e n c e i n p h o t o v o l t a i c g l a s s l a s e r d r i l l i n g ,t h e p r o c e s s p r i n c i p l e ,l a s e r ,l a s e r d r i l l i n g e q u i p m e n t a n d c o r r e s p o n d i n gp r o c e s s p a r a m e t e r s o f l a s e r d r i l l i n g we r e i n t r o d u c e d .K e y wo r d s : p h o t o v o l t a i c g l a s s ; l a s e r d r i l l i n g ; p r o c e s s p a r a m e t e r 收稿日期:2022-12-13.作者简介:贺 杰(1986-),助理工程师.E -m a i l :317576420@q q.c o m 近年来,在国内装机需求以及海外市场的带动下,光伏产业呈现稳定增长的发展态势,特别是双玻光伏组件,因具有发电量高㊁抗P I D (电势诱导衰减)性强㊁可靠性高㊁重量轻㊁防火等级高等优异性能,更适用于户用屋顶等荷载能力和防火要求较高的分布式电站,已成为晶硅光伏组件的重要发展方向㊂光伏玻璃作为组件重要辅材主要分为面板玻璃和背板玻璃㊂背板玻璃是以玻璃替代传统组件背板材料P V D F 薄膜(可燃物)可提高组件防火等级㊁防水等级,降低P I D 衰减,延长组件的使用寿命㊂背板玻璃其中最重要的工艺是打孔,打孔一般分为机械打孔和激光打孔㊂由于激光打孔相比机械打孔良率高㊁可打异形孔㊁钻孔速度快㊁精度高稳定性好㊁孔壁细腻㊁无需冲洗㊁打磨㊁抛光㊁降低了制造成本的优势[1],宜兴某公司采用激光打孔㊂林加富[2]介绍了激光打孔设备的组成(光学系统㊁冷却系统㊁视觉定位系统(C C D )㊁玻璃运载平台㊁运动控制系统)和打孔经常出现的问题(如孔未穿透㊁尺寸偏差㊁暗裂等)㊂邓君[3]等详细介绍了激光打孔装置及控制系统在光伏玻璃深加工产线的运用㊂1 激光钻孔的原理激光产生的三要素:(1)工作介质:激光产生必须选择合适工作介质(气体㊁液体㊁固体㊁半导体);(2)激励源(泵浦源):使工作介质中出现粒子数反转;(3)谐振腔:将辐射的光来回反射放大㊂激光通过扩束㊁振镜㊁场镜等一系列光学系统后聚焦成平行度很高的微细光束(直径几十微米),获得极高的能量密度照射到材料上,使材料在极短的时间内融化甚至气化,以达到加热和去除材料的目的㊂并通过振镜实现不同图案轨迹将玻璃加工成圆形孔或者是异形孔㊂原理见图1㊂宜兴某公司以前使用的是绿光激光器(激光波长在可见光范围内,肉眼可见激光颜色为绿光,激光器功率在35W 左右),使用一段时间后发现绿光激光器在玻璃粗糙度较大时存在孔未穿透缺陷,严重影响了玻璃的质量,和厂商沟通后使用红光激光器(红外肉眼不可见,需要借助倍频片观察,激光器功率在60W 左右),红光激光器相比绿光激光器功率更高,打孔效果更好,且加工速度更快㊂2玻璃钻孔设备宜兴某公司激光打孔设备按每台激光打孔机上安装的激光头数目可分为单头激光打孔机㊁三头激光打孔机,分别对应四孔㊁三孔的加工(四孔订单占比特别少)㊂背板玻璃孔位置如图2所示㊂单头激光打孔机㊁三头激光打孔机的技术参数如表1所示㊂表1激光打孔机技术参数设备名称单头激光打孔机三头光伏玻璃激光打孔机设备机型J M5050-S30G J M365-A T50R激光器数量/个13可加工玻璃规格/mm2680ˑ14502680ˑ1450打孔方式2.5D振镜+Z轴升降混合2.6D振镜+Z轴升降混合Z轴重复定位精度/mmʃ0.02<ʃ0.3X Y轴运动重复定位精度/μmʃ5ʃ5定位方式机械靠边定位及C C D定位机械靠边定位及C C D定位打孔形状圆孔㊁多边形孔㊁腰型孔㊁台阶孔圆孔㊁多边形孔㊁腰型孔㊁台阶孔激光器类型进口/国产纳秒激光器进口/国产纳秒激光器激光器功率/W3050~100激光器脉宽/n s<10<10Fθ镜头B O X范围/mm60ˑ6050ˑ50设备外形尺寸/mm1500ˑ1820ˑ199010500ˑ3650ˑ2000设备重量/t263激光钻孔设备工艺参数激光打孔参数由电流㊁速度㊁环数㊁环间距㊁焦距(Z向起点)㊁层厚㊁层数组成㊂3.1电流一般设置为功率最大值的电流数,一般电流越大功率越大㊂不同激光头的电流值不同,做浮法玻璃(粗糙度较压延玻璃小,容易打穿)时,根据打孔质量可以适当降低电流,因为电流过大孔会出现毛刺㊂3.2速度正常状态下,振镜速度控制在3200~3500mm/s㊂如果低于3200mm/s,打孔时间会增加1~2s,随着使用时间的增加,激光功率会衰减,光路会有污染㊂振镜速度过快,就会出现打孔效果不佳的现象,所以我司基本设定在3500mm/s㊂3.3环数环数是指激光运行的圈数,如图3所示是3环㊂宜兴某公司环数使用范围是6环或者7环,匹配环间距是0.035mm,碰到压延换机洗辊出来的原片比较难穿透的(玻璃粗糙度较大)使用7环,匹配环间距是3.4 环间距环与环之间的距离叫做环间距,环间距一般设定范围为0.03~0.04mm ㊂环间距对打孔影响不大,一般设定环间距和环数乘积约等于0.2mm ,可理解为掉落的玻璃圆孔与原先玻璃之间有0.2mm 空隙㊂所以5环环间距设为0.04mm ,6环环间距设为0.035mm ,7环环间距设为0.03mm ㊂3.5 焦距玻璃打孔是从玻璃的下表面往上面打,故起始焦距要放到玻璃的下表面偏下一点㊂平整度好的玻璃,焦距往下放的量一般较少(浮法玻璃一般放0.1~0.2mm 的余量)㊂波形度大的玻璃,焦距往玻璃下方的余量就需要更大,余量更大的同时,层数也要相应添加,不然容易出现孔未穿透的缺陷㊂3.6 层厚层厚一般设定为0.020~0.035mm ,层厚越小,需要的层数越多㊂相反,层厚越大,需要的层数越少㊂3.7 层数打孔要想穿透必须要有足够的层数,层数与焦距㊁层厚又有很大关系㊂焦距余量过多,层厚过小,层数相对也就过多,打孔时间也就过长㊂实验后公式如下:层数ˑ层厚=焦距余量+玻璃厚度胡柳平等[4]描述了具体的激光运行路径:1)当振镜Z 轴定位在待加工产品的最下方后,振镜X Y 轴走空程到第一层的螺旋线的内侧,此刻激光器发出激光,Z 轴与X Y 轴联动,X Y 轴走螺旋线,Z 轴平缓上升至第一层d 的中间高度时,此刻Z 轴保持在这个高度静止不动,振镜X Y 轴由内向外继续走设定的螺旋线;当X Y 轴达到第一层的最外侧时,振镜Z 轴平滑上升㊁振镜X Y 轴依旧走本层的螺旋线;2)当振镜Z 轴达到第二层的范围时,X Y 轴的行进方向改成了由外向内的螺旋线;当Z 到达第二层的中间高度时,此刻Z 轴保持在这个高度静止不动,振镜X Y 轴由外向内继续走设定的螺旋线;当Y 轴达到第二层的最内侧时,振镜Z 轴平滑上升㊁振镜X Y 依旧走本层的螺旋线;3)当Z 轴达到第三层的范围时,X Y 轴的行进方向改成了由内向外的螺旋线;当Z 轴到达第三层的中间高度时,此刻Z 轴保持在这个高度静止不动,振镜X Y 轴由内向外继续走设定的螺旋线;当X Y 达到第三层的最外侧时,振镜Z 轴平滑上升㊁振镜X Y 依旧走本层的螺旋线;④如此循环奇数层由内向外㊁偶数层由外往内㊁振镜Z 轴与X Y 联动在相邻两层之间平缓过度上升㊁循环往复,直到振镜Z 轴与X Y 轴联动走完设定的层数D 的螺旋线,此刻,关闭激光器激光,振镜X Y 与Z 均回到初始位置㊂激光运行路径如图4所示㊂各激光器品牌的工艺参数如表2所示,宜兴某公司选用的是E d ge w a v e 激光器㊂表2 各激光器品牌的工艺参数玻璃及孔径/mm激光器品牌最快钻孔时间/s 崩边/mm频率/k H z 脉宽/n s振镜速度/(mm ㊃s-1)环数环间距/mm层厚/mm层数2.5压花*Φ122浮法*Φ12E d g e w a v e 3.60.3510010400050.040.650553.80.410010350050.040.550562.5压花*Φ122浮法*Φ12莱泽4.10.41009.3420050.040.045753.60.31009.3420050.040.045752.5压花*Φ122浮法*Φ12I P G 4.60.416010500050.040.040853.90.430010400050.040.0501002.5压花*Φ122浮法*Φ12J P T3.80.420012400050.040.040903.50.420012420050.040.04090(下转第页)4结论钢筋混凝土拱桥承载力高㊁结构稳定性好㊁造价低廉㊁维护工作量少㊁维护费用低,在各类桥型中有着很强的竞争力㊂其中实腹式钢筋混凝土拱桥更加具备了良好的城市景观效果,该文以某公园景观拱桥工程为依托,设计总结如下:a.根据设计要求与当地地形㊁地质确定最优桥型方案㊂b.矢跨比对结构的弯矩影响较大,随着矢跨比的减小,拱圈各计算截面的弯矩整体均增大㊂c.矢跨比对结构的剪力影响较大,随着矢跨比的减小,拱脚及跨中截面剪力均增大,拱顶截面剪力变化较小㊂d.矢跨比对结构的轴力㊁裂缝影响较大,随着矢跨比的减小,1/4截面及拱顶截面拱圈的轴力㊁裂缝整体均增大,但拱脚截面轴力㊁裂缝呈先减小后增大的趋势㊂e.综合分析得出本桥矢跨比取1/3~1/4时结构受力较合理,在实际设计中矢跨比应结合景观需求及结构受力合理综合取舍㊂参考文献[1]蒋定衍.人行景观拱桥拱圈受力分析[J].城市道桥与防洪,2018(8):149-150,194.[2]杨威.不同矢跨比对拱形连续梁结构受力的影响研究[J].交通科技,2016(4):16-18.[3]刘伟长,吕建根.矢跨比对钢管混凝土拱桥受力性能的影响[J].山西建筑,2008(19):329-330.[4]刘辉,张明科.实腹式钢筋混凝土拱桥的设计与研究[J].黑龙江交通科技,2017,40(6):117,119.[5]郭学峰.矢跨比对钢桁架拱桥静力特性的影响分析[J].交通世界,2021(21):18-19,31.[6]刘浩.拱结构矢跨比设计研究[D].长沙:长沙理工大学,2015.(上接第46页)4结语根据多年的生产经验介绍了光伏玻璃激光打孔机的设备㊁工作原理和工艺参数,只有熟悉了设备㊁原理和工艺参数,并进行有效的过程控制,才能最大限度地提高激光打孔的效率和良率,从而降低生产成本㊁提高经济效益㊂参考文献[1]彭寿,杨京安.太阳能压延玻璃工艺学[M].北京:化学工业出版社,2018.[2]林加富.激光打孔技术在光伏背板玻璃上的应用[J].玻璃,2022(2):53-57.[3]邓君,刘路明,丁玉祥.激光打孔装置及控制系统在光伏玻璃深加工产线的运用[J].建材世界,2022,43(4):79-82.[4]胡柳平,朱宇军,冯建华,等.一种激光钻孔控制方法[P].C N109352190A.2019-02-19.。

光伏组件生产操作规范及操作规范 (1)

光伏组件生产操作规范及操作规范 (1)

电池组件生产工艺目录精心整理太阳能电池组件生产工艺介绍组件线又叫封装线,强度。

产品的高质量和高精心整理寿命是赢得可客户满意的关键,所以组件板的封(去边、清洗)——装边精心整理框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊精心整理2.2高质量的原材料,例如:高的交联度的EVA、精心整理由于太阳电池属于高科技产品,生产过程中是非常重要的。

精心整理3太阳电池组装工艺简介:件的随机性,生产出来的精心整理电池性能不尽相同,所以为了有效的将性能一致格的电池组件。

精心整理3.1.2正面焊接:是将汇流带焊接到带的长度约为电池边长精心整理的2倍。

多出的焊带在背面焊接时与后面的电池上面有36个放置电池片精心整理的凹槽,槽的大小和电池的大小相对应,槽的位置将36片串接在一起并在精心整理组件串的正负极焊接出引线。

(primer底漆)以增加精心整理玻璃和EVA的粘接强度。

敷设时保证电池串与玻精心整理将敷设好的电池放入层压机内,通过抽真空定。

我们使用快速固化精心整理EVA时,层压循环时间约为25分钟。

固化温度为镜框;给玻璃组件装铝精心整理框,增加组件的强度,进一步的密封电池组件,延精心整理池与其他设备或电池间的连接。

坏。

精心整理3.1.8组件测试:测试的目的是对电工序工艺规范精心整理精心整理晶体硅太阳能电池片分选工艺规范精心整理精心整理精心整理精心整理精心整理精心整理晶体硅太阳能电池片激光划片工艺规范精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理晶体硅太阳能电池片单焊工艺规范精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理精心整理晶体硅太阳能电池片串焊工艺规范精心整理精心整理精心整理精心整理精心整理。

激光半切加工工艺流程

激光半切加工工艺流程

激光半切加工工艺流程Laser half-cut processing technology is a method of creating thin grooves on the surface of a material by using a high-power laser,and then breaking the material along the groove, leaving the material partially connected. This technology has been widely used in the semiconductor industry for the production of photovoltaic cells, flexible displays, and electronic components. The half-cutting process allows for more efficient use of materials and enables the creation of bendable and foldable electronic devices.激光半切加工技术是利用高功率激光在材料表面制造细小槽口,然后沿着槽口断裂材料,使得材料部分连接。

这项技术已被广泛应用于半导体工业,用于生产光伏电池、柔性显示屏和电子元件。

半切工艺可以更高效地利用材料,并使得可制造出可折叠和可弯曲的电子设备。

One of the major benefits of laser half-cut processing is the ability to create flexible and bendable electronic devices. By partially cutting the material, it becomes possible to bend and fold the electronic components without damaging them. This is particularly important in the development of wearable electronics and flexible displays, wheretraditional rigid materials are not suitable for the desired form factor. The ability to create bendable electronic devices opens up new possibilities for innovative product designs and applications.激光半切加工的一个主要好处是能够制造出柔性和可弯曲的电子设备。

激光划线工艺在太阳能电池中的应用

激光划线工艺在太阳能电池中的应用

激光划线工艺在太阳能电池中的应用摘要:太阳能电池能够将光能转化为电能,以此满足社会生产以及人类生产的电力需求,而这种转化方式避免了对自然生态环境的污染破坏,也减少了对不可再生能源的浪费与消耗,具有较强的经济效益与生态环境效益,有利于实现光伏行业的持续性发展。

激光划线工艺通过专业的激光技术来进行自动切割工作,广泛应用与薄膜太阳能电池与晶硅太阳能电池的制作工序中,具有加工切割效率高、更高的环境效益、缩减太阳能电池制造成本等显著优势,有助于提高太阳能电池的制作效率及质量。

本文通过阐述激光划线工艺在太阳能制作的硅片切割流程、绒面的加工制备、电池的刻蚀及印刷等工艺步骤中的有效应用,以此来进一步扩大激光划线工艺在太阳能电池制作中的应用范围,实现激光划线工艺的可持续发展。

关键词:激光划线工艺;太阳能电池;制造1 引言伴随着现代化社会的发展,电力需求逐年增加,根据国家统计局数据显示,在2015年至2020年,我国太阳能电池产量逐年上升,截止到2020年,我国太阳能电池的产量共为15729万千瓦,相较于2019年增长了22.3%。

然而人们的日常生活与生产工作都需要耗费大量的电力能源,出现了不可再生能源紧缺的现象,无法有效满足大量的电力需求,这使得清洁能源的合理开发与利用具有较强的现实意义。

太阳能电池通过将太阳能转化为电能来为社会提供充足的电力能源,其制造工艺既减少了对自然环境的污染,还有效解决了电力能源消耗的问题,在社会中广泛应用。

将激光划线工艺应用于太阳能电池的制造中有利于提高电池的制作效率,形成更加高质量的光伏产品,具有加工切割效率高、环境效益良好及太阳能电池制造成本低等使用优势。

本文旨在研究激光划线工艺在太阳能电池制造流程中的有效应用,以此来进一步优化激光划线工艺,完善太阳能电池的制造工艺,为社会提供更加良好的太阳能电池产品。

2 激光划线工艺概述激光划线工艺是通过使用聚焦镜来将CO2激光束凝聚在切割材料表面,使得材料表层融化,机器能够自动散发压缩气体来清洁切割材料的表层。

激光在太阳能光伏电池上的应用

激光在太阳能光伏电池上的应用

激光在太阳能光伏电池上的应用新型电池片时代来临,TOPCon、HJT、XBC等效率潜力更大的新型电池新技术纷纷涌现。

激光是光伏电池实现降本增效的有效技术,在刻蚀、开槽、掺杂、修复以及金属化等领域均体现出相较于传统技术的明显优势,激光技术在各类电池技术中都有广阔的发展空间。

一、激光技术的应用在光伏元件制造过程中,需要使用激光对硅片进行打薄、切割、塑形等工序。

激光可以将自身所蕴含的大量能量集中到横截面积很小的范围内释放,极大程度上提高了能量的利用效率,使其可以对较为坚硬的物质进行加工。

同时,激光的高能特性使之具有超高的温度,这可以在工作人员的精密控制下对硅片及附着物质进行灼烧,形成电池边缘掺杂或是对光伏元件表面进行镀膜,提高光伏电池的发电能力与太阳能利用能力,使用激光源作为主要光源,降低发电成本,从根本上提升光伏发电的效率。

激光技术在PERC电池端的应用主要包括激光掺杂(SE)、激光消融、激光划片等,激光消融和激光掺杂已经成为标配性技术。

此外,激光在光伏电池端还有部分小众型应用,如激光MWT打孔、LID/R修复等,具体来看:一是激光掺杂设备:SE为选择性发射极,在前道扩散工序产生的磷硅玻璃层的基础上,利用激光的可选择性加热特性,在电极栅线与硅片接触部位进行高浓度磷掺杂,形成n++重掺杂区。

激光掺杂可提高电极接触区域的掺杂浓度,降低接触电阻。

二是激光消融设备:利用激光对钝化膜精密刻蚀,实现微纳级高精度的局部接触。

该工艺为PERC技术增强钝化的核心工艺之一,同时要求激光加工具有精确的能量分布、作用时间控制以及脉冲稳定性。

PERC技术可使单晶电池光电的转换效率从20.3%提升至21.5%。

三是其他设备:①MWT打孔设备:应用金属穿孔卷绕技术进行激光打孔,将电池正面电极搜集的电流通过孔洞中的银浆引导背面,而消除正面电极的主栅线,从而减少正面栅线的遮光。

由于MWT电池较为小众,该设备仅在日托光伏等企业有少量应用。

异质结光伏电池_激光_概述及解释说明

异质结光伏电池激光概述及解释说明1. 引言1.1 概述异质结光伏电池是以异质结为基础的一种光伏发电技术,利用异质结的能带差异实现光能转化为电能。

同时,激光作为一种高强度、单色性好的光源,在各个领域得到了广泛应用。

本文将对异质结光伏电池和激光进行综述,并探讨它们之间的关联性。

1.2 文章结构本文分为五个部分。

首先是引言部分,对研究主题进行概述并介绍文章结构;其次是对异质结光伏电池进行详细阐述,包括定义原理、结构特点以及应用领域和前景;接着对激光进行基本概念的介绍,并解释其在光伏电池中的应用;随后是针对异质结光伏电池与激光之间的关联性进行解释说明,包括光传输与能量转换机制、外界激发条件与响应机制以及实验研究和发展动态分析;最后总结全文观点并提出未来研究方向。

1.3 目的本文旨在全面了解和掌握异质结光伏电池和激光相关知识,并通过对它们之间关联性的解释说明,深入探讨其在能源领域中的应用前景。

同时,本文也将为进一步研究和开发相关技术提供参考和指导。

2. 异质结光伏电池:2.1 定义和原理:异质结光伏电池是一种利用不同材料的结合形成的界面而产生光电效应的太阳能电池。

这种电池由两个或多个半导体材料构成,其中至少一个材料具有带隙能量较小(p型)、允许电子跃迁(n型),从而形成异质结。

在异质结光伏电池中,当光线照射到其表面时,其中一个半导体材料中的光子能量将会被吸收,并激发出自由载流子(自由电子和空穴)。

根据不同材料的能带结构,这些自由载流子将会在异质结处积累,并形成开路电压。

这样,通过连接外部负载,就可以将生成的电荷转化为可用的直流电能。

2.2 结构和特点:异质结光伏电池通常由几个层次的不同材料组成。

其中最常见的是p-n型异质结太阳能电池。

该类型的异质结太阳能电池包括两个层次:p型半导体和n型半导体。

- p型半导体:在这一层,禁带宽度较小,电子激发跃迁几率较高。

常用的p型半导体材料包括硼化铝(AlB2)等。

- n型半导体:在这一层,禁带宽度较大,能够容纳更多激发跃迁后的电子。

topcon电池激光辅助烧结导电原理

topcon电池激光辅助烧结导电原理全文共四篇示例,供读者参考第一篇示例:Topcon电池激光辅助烧结导电原理是一种先进的制造技术,可以用于生产高效、高质量的电池组件。

这种技术结合了激光烧结和导电材料,能够实现电池组件的高效导电和稳定性。

本文将介绍Topcon电池激光辅助烧结导电原理的具体工作原理和优势。

1. Topcon电池激光辅助烧结导电原理的工作原理第一步:在电池组件的导电层上涂覆一层导电材料,通常是银浆或碳纳米管等。

第二步:将激光照射到导电层上,利用激光的高能量将导电材料与基底材料(通常是硅片)烧结在一起。

第三步:通过烧结完成后,形成一个均匀、致密的导电层,能够有效地导电并提高电池组件的性能。

Topcon电池激光辅助烧结导电原理有许多优势,使得它在电池制造领域备受关注:(1)高效性:激光烧结能够快速并且均匀地烧结导电材料,使得导电层的质量和均匀性得到提高,从而提高电池组件的效率和性能。

(2)精密性:激光烧结可精确控制烧结的位置和温度,确保导电层与基底材料之间的结合牢固,不会出现空洞或者裂纹。

(3)节能环保:相比传统的电池导电工艺,Topcon电池激光辅助烧结导电原理能够减少材料的浪费和能源消耗,有助于提高电池制造的节能环保性。

(4)成本效益:虽然激光设备的投资成本较高,但Topcon电池激光辅助烧结导电原理在生产过程中能够提高效率和降低成本,从而提高电池制造的成本效益。

Topcon电池激光辅助烧结导电原理已经在电池制造领域得到广泛应用,尤其是用于生产光伏电池、锂电池等领域。

通过这种技术,电池制造商可以生产更加高效、高性能的电池组件,从而满足市场对功率密度和稳定性要求的提高。

4. 总结第二篇示例:Topcon电池激光辅助烧结导电原理1. Topcon电池概述Topcon电池,又称为霍爪电池,是一种具有高效率和优良导电性能的新型太阳能电池。

它的制备过程包括多个步骤,其中一个关键步骤就是利用激光辅助烧结技术提高电池的导电性能。

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍薄膜光伏电池是一种新型的太阳能电池技术,相比于传统的硅片光伏电池,它具有更高的柔韧性、更低的成本和更广泛的应用潜力。

本文将介绍薄膜光伏电池的主要技术和制备工艺。

首先,薄膜光伏电池主要由薄膜光伏材料组成。

目前常见的薄膜光伏材料包括非晶硅、铜铟镓硒和钙钛矿等。

非晶硅是最常见的薄膜材料,具有较高的效率和较长的使用寿命;铜铟镓硒则具有较高的光吸收能力和较高的效率;钙钛矿则具有优异的光电转化效率和低成本制备的特点。

其次,薄膜光伏电池的制备工艺包括材料制备、器件结构设计和组装等环节。

在材料制备方面,常用的方法包括物理气相沉积、化学气相沉积和溶液法等。

物理气相沉积是一种将材料蒸发到衬底上后再结晶形成薄膜的方法,化学气相沉积则是通过反应气体在衬底表面上生成薄膜。

溶液法则是将溶液均匀涂敷在衬底上,将溶液中的成分通过烘烤或其他方式结晶成薄膜。

器件结构设计是薄膜光伏电池制备的关键环节之一。

不同的薄膜材料有不同的结构设计,常见的结构包括单接触结构、双接触结构和多接触结构。

单接触结构是将薄膜材料直接沉积在透明导电玻璃上,双接触结构则是在透明导电玻璃上先沉积一层反射层,再沉积薄膜材料。

多接触结构则是在薄膜材料上层添加一层稳定层,来提高电池的稳定性和效率。

最后,薄膜光伏电池的组装是将制备好的薄膜光伏材料封装在太阳能电池片中。

目前常见的封装方法包括激光封装、胶封装和真空封装等。

激光封装是利用激光将薄膜光伏材料与太阳能电池片粘合在一起,胶封装则是利用粘合剂将两者粘合在一起,真空封装则是在真空环境下将两者粘合在一起。

总之,薄膜光伏电池是一种具有广阔市场应用前景的太阳能电池技术。

通过合理的材料选择、器件设计和制备工艺,薄膜光伏电池可以实现更高的效率和更低的成本,为清洁能源的发展做出重要贡献。

续上文,继续探讨薄膜光伏电池技术及制备工艺的相关内容:除了材料的选择和制备工艺,薄膜光伏电池的性能和效率也受到电池结构的影响。

光伏pl工作原理

光伏pl工作原理
光伏PL(Photoluminescence)是一种用于评估太阳能电池性能和质量的光致发光技术。

其工作原理基于光致发光现象,即当太阳能电池受到特定波长的光照射时,电子从价带跃迁到导带,并释放出光子。

通过测量这些光子的属性和数量,可以评估太阳能电池的性能和质量。

在光伏PL测试中,使用特定波长的激光照射太阳能电池片,激发电子从价带跃迁到导带。

这些电子在重新结合到价带时释放出光子,即光致发光。

光伏PL测试仪通过测量这些光子的能量和强度,可以评估太阳能电池的载流子属性、复合速率以及缺陷等级等重要参数。

光伏PL测试仪的主要组件包括激光器、样品架、探测器和计算机等。

激光器用于产生特定波长的光,样品架用于支撑太阳能电池片,探测器用于检测光子并转换为电信号,计算机则用于控制测试过程和收集、分析数据。

光伏PL测试的应用范围广泛,可以用于测试各种类型的太阳能电池片和太阳能电池组件。

在生产过程中,PL测试可以帮助制造商评估太阳能电池的质量和性能,指导生产过程并改进制造工艺。

在科研领域,PL测试可用于研究新型太阳能电池材料和结构,提高效率和延长寿命等方面。

此外,光伏PL测试还可以用于评估不同制造工艺对太阳能电池质量和性能的影响。

总的来说,光伏PL工作原理是基于光致发光现象,通过测量光子的属性和数量来评估太阳能电池的性能和质量。

光伏PL测试在太阳能电池制造和研究中具有广泛的应用价值,有助于提高生产效率、产品质量和推进科研进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏激光工艺
光伏激光工艺是指利用激光技术对光伏器件进行加工和制造的过程。

光伏激光工艺通常包括以下几个方面:
1. 线切割:利用激光切割技术将硅片切割成光伏电池芯片。

激光具有高能量集中度和精确控制能力,可以实现高效、精确的切割,同时避免了传统切割方式带来的损耗和污染。

2. 点焊接:利用激光束对电池片进行点焊接。

激光束可以快速、精准地对电子器件进行高温点焊,避免了传统焊接方式的热损伤和位移问题。

3. 光伏电池器件改性:利用激光对光伏电池器件进行表面改性,以提高其光吸收能力和光电转换效率。

激光可以改变材料表面的形貌、结构和化学性质,从而调控光伏电池的光学特性和电学性能。

4. 光伏电池组件加工:利用激光对光伏电池组件进行加工和封装。

激光可以实现精确的剥离、刻蚀、打孔等加工操作,使光伏电池组件具备更好的电气和机械性能。

5. 光伏电池修复和调试:利用激光对损坏或不良的光伏电池进行修复和调试。

激光可以通过瞬时加热、表面改性等方式修复器件的性能问题,并通过精准调试提高光伏系统的整体效率。

总之,光伏激光工艺在光伏器件的制造和应用中起着关键的作
用,可以提高生产效率、降低成本,并改善器件的性能和可靠性。

相关文档
最新文档