单 摆 课时作业(含解析) (36)

合集下载

红对勾届高考生物一轮复习课时作业含解析

红对勾届高考生物一轮复习课时作业含解析

课时作业36生态环境的保护时间:45分钟满分:100分一、选择题(每小题5分,共60分)1.引起温室效应、酸雨、臭氧层空洞的主要气体污染物依次是() A.CO、SO、氟利昂B.SO、CO、氟利昂2222C.氟利昂、CO、SOD.CO、氟利昂、SO 2222解读:全球性的生态环境问题,联系的内容多,如温室效应与气候的变化,温室效应对光合作用的影响,臭氧层的破坏与人体健康细胞癌变的联系,土地沙漠化与沙尘暴的形成等。

在学习中,要从原因与危害等方面去理解全球性生态环境问题。

答案:A2.英国著名经济学家K·E·博尔丁把对自然界进行掠夺,破坏式开发利用的经济模式称为“牧童经济”,下列现象不是由“牧童经济”模式造成的是()A.沙尘暴频发B.火山爆发C.温室效应加剧D.湿地内物种减少解读:“牧童经济”模式是对自然界进行掠夺、破坏式开发利用的经济模式,是人为对生态的破坏。

火山爆发是地壳运动的一种表现形式,不是人类掠夺式开发导致的结果。

答案:B1 / 133.下列关于生物多样性的说法正确的是()A.生物圈内所有的生物构成了生物的多样性B.外来物种的入侵能够增加生物的多样性C.红树林的防风消浪作用属于生物多样性的间接价值D.生物多样性的潜在价值就是其生态功能解读:生物多样性不仅包括物种多样性,还包括基因多样性和生态系统多样性。

外来物种的入侵可能破坏原有的生态系统,降低生态系统的生物多样性。

生物多样性的间接价值又称为生态价值,而潜在价值是指目前还没有发现的价值。

答案:C4.生物多样性是人类赖以生存和发展的基础。

下列关于生物多样性的说法错误的是()A.模拟苍蝇后翅平衡棒原理,研制出的新型导航仪是利用生物多样性的直接价值B.建立自然保护区是保护生物多样性最为有效的措施C.保护生物多样性就是在物种和生态系统两个层次上采取保护战略和保护措施D.引进物种不慎或对引进物种管理、监测不到位可能破坏生物多样性解读:运用平衡棒原理研制出新型导航仪属于生物多样性在科学研究方面的应用,属于生物多样性的直接价值。

2021-2022学年人教版英语必修二课时作业(3) Word版含解析

2021-2022学年人教版英语必修二课时作业(3) Word版含解析

课时作业(三)Unit 1Section ⅢLearning about Language & Using LanguageⅠ.单句语法填空1.He told us whether to_have (have) a picnic was still under discussion.2.As a sailor (sail), he usually spends most of the year at sea.3.The party is not an important one, so you can just be dressed in informal (formal) clothes.4.The painting (paint) attracted his attention, which helped him develop an interest in drawing pictures.5.I came across Mr White at the entrance (enter) to the reception building.6.The man highly (high) thought of by the manager is selected to attend the important meeting.7.There is some evidence that the little actress has gained more support since she played in that TV.8.The two sides had debated with each other for two hours on who wouldbe_selected (select) for the competition.9.Believe it or not, the twins' parents sometimes have difficulty in telling them apart.10.When he heard something exploding (explode), he ran out to see what had happened.Ⅱ.阅读理解AMore and more people around the world are getting tattoos (文身). In the United States a large number of people aged 25 to 40 get tattoos. A third of all Americans between 18 and 25 have a tattoo. In Britain a fifth of all adults are tattooed. Tattooing has become an important industry as well. Today, there are more than 50,000 tattoo artists in the US alone.Even famous people such as Angelina Jolie and David Beckham have some kindof tattoo on their bodies. According to researchers many people tattoo themselves as a sign of individuality (共性). They want to express themselves and show others who they are. Other forms of body art are also on the rise.Today, tattoos are widely accepted in society. That hasn't always been the case. Tattoos used to be connected with criminals (罪犯), lower class people or certain groups like sailors and motorcycle gangs. While tattooing was once only for men, more and more women are now getting tattoos.Tattooing goes way back in history. In many parts of the world, people used tattoos for different purposes. The ancient Romans tattooed their slaves. Native Americans tattooed themselves as a sign of bravery. In Nazi Germany Jews were marked with a number to tell who they were.Not only has tattooing itself become a big industry, but removing them is also on the increase. Many people just don't realize that a tattoo lasts forever, and at some time in their lives they may want to get rid of it. The cost of tattooing yourself usually depends on how large the tattoo is or how complex (简单的) it is. Prices are usually from a hundred to over a thousand dollars.【文章大意】本文是说明文。

2022_2023学年新教材高中数学课时作业十六一元二次不等式的应用湘教版必修第一册

2022_2023学年新教材高中数学课时作业十六一元二次不等式的应用湘教版必修第一册

课时作业(十六) 一元二次不等式的应用1.一服装厂生产某种风衣,日产量为x(x∈N)件时,售价为p元/件,每天的总成本为R元,且p=160-2x,R=500+30x,要使获得的日利润不少于1300元,则x的取值范围为( )A.{x∈N|0<x<45} B.{x∈N|0<x≤45}C.{x∈N|0<x≤20} D.{x∈N|20≤x≤45}2.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400元)的销售收入,则这批台灯的销售单价(单位:元)的取值范围是( ) A.[10,16) B.[12,18)C.[15,20) D.[10,20)3.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接矩形花园(阴影部分),则其边长 x(单位:m)的取值范围是( )A.15≤x≤30B.12≤x≤25C.10≤x≤30D.20≤x≤304.某地每年销售木材约20万立方米,每立方米价格为2400元,为了减少木材消耗,决定按销售收入的t%征收木材税,这样每年的木材销售量减少t万立方米,为了既减少木材消耗又保证税金收入每年不少于900万元,则t的取值范围是( ) A.{t|1≤t≤3} B.{t|3≤t≤5}C.{t|2≤t≤4} D.{t|4≤t≤6}5.(多选)某辆汽车以x km/h的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120 )时,每小时的油耗(所需要的汽油量)为 L,其中k为常数,若汽车以120 km/h的速度行驶时,每小时的油耗为11.5 L,欲使每小时的油耗不超过9 L,则速度x的值可为( )A.60 B.80 C.100 D.1206.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为万件,要使附加税不少于128万元,则R的取值范围是_______ _.7.为配制一种药液,进行了二次稀释,先在体积为V的桶中盛满纯药液,第一次将桶中药液倒出10升后用水补满,搅拌均匀第二次倒出8升后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的取值范围为________.8.某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元?9.2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x(x>0)万元,且每万元创造的利润变为原来的(1+0.25x)倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为0.15(a-0.875x)万元,其中a>0.(1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x的取值范围;(2)若网店销售的利润始终不高于技术指导后养羊的利润,求a的最大值.10.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x名(x∈N且45≤x≤75),调整后研发人员的年人均投入增加(4x)%,技术人员的年人均投入调整为a 万元.(1)要使这100-x名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m的范围;若不存在,说明理由.课时作业(十六) 一元二次不等式的应用1.解析:设日利润为y元,则y=(160-2x)·x-(500+30x)=-2x2+130x-500,由y≥1300,解得20≤x≤45,即x的取值范围为{x∈N|20≤x≤45}.答案:D2.解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x +200<0,因为方程x2-30x+200=0的两根为x1=10,x2=20,所以解x2-30x+200<0得10<x<20,又因为x≥15,所以15≤x<20,因此,应将这批台灯的销售单价制定在15元到20元之间(包括15元但不包括20元),才能使这批台灯每天获得400元以上(不含400元)的销售收入.答案:C3.解析:设矩形的另一边长为y m,则由三角形相似知,= ,所以y=40-x,因为xy≥300,所以x(40-x)≥300,即x2-40x+300≤0,解得10≤x≤30.答案:C4.解析:由题意可得,×2400×≥900,整理可得t2-8t+15≤0,解得3≤t≤5.答案:B5.解析:由汽车以120 km/h的速度行驶时,每小时的油耗为11.5 L,∴=11.5,解得k=100,故每小时油耗为-20,由题意得-20≤9,解得:45≤x≤100,又60≤x≤120,故60≤x≤100,所以速度x的取值范围为[60,100].答案:ABC6.解析:根据题意,要使附加税不少于128万元,需×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].答案:[4,8]7.解析:第一次操作后,剩下的纯药液为V-10,第二次操作后,剩下的纯药液为V-10-×8,由题意可知:V-10-×8≤V·60%⇒V2-45V+200≤0⇒5≤V≤40,因为V≥10,所以10≤V≤40.答案:10≤V≤408.解析:设提价后每本杂志的定价为x元,则销售总收入为·x≥200 000,即2x2-13x+20≤0,解得2.5≤x≤4,所以,每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.9.解析:(1)由题意,得0.15(1+0.25x)(10-x)≥0.15×10,整理得x2-6x≤0,解得0≤x≤6,又x>0,故0<x≤6.(2)由题意知网店销售的利润为0.15(a-0.875x)x万元,技术指导后,养羊的利润为0.15(1+0.25x)(10-x)万元,则0.15(a-0.875x)x≤0.15(1+0.25x)(10-x)恒成立,又0<x<10,∴a≤++1.5恒成立,又+≥5,当且仅当x=4时等号成立,∴ 0<a≤6.5,即a的最大值为6.5.10.解析:(1)依题意可得调整后研发人员的年人均投入为[1+(4x)%]a万元,则(100-x)[1+(4x)%]a≥100a,(a>0 )解得0≤x≤75,∵45≤x≤75,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有a≥a,解得m≥+1.②由研发人员的年总投入始终不低于技术人员的年总投入有(100-x)[1+(4x) %]a≥xa,两边同除以ax得≥m-,整理得m≤++3,故有+1≤m≤++3,因为++3≥2+3=7,当且仅当x=50时等号成立,所以m≤7,又因为45≤x≤75,当x=75时,取得最大值7,所以m≥7,∴7≤m≤7,即存在这样的m满足条件,使得其范围为m∈{7}.。

第7单元第15课我与地坛节选课时作业新教材高中语文部编版必修上册(含解析)

第7单元第15课我与地坛节选课时作业新教材高中语文部编版必修上册(含解析)

第7单元第15课我与地坛节选课时作业新教材高中语文部编版必修上册(含解析)第15课我与地坛(节选)基础积累练一、基础清单化预练1.读准字音。

(1)单音字①亘古( ) ②蝉蜕( )③猝然( ) ④熨帖( )⑤坍圮( )( ) ⑥玉砌雕栏( )⑦窥看( )⑧恪守( )⑨窸窣( )( ) ⑩教诲( )(2)多音字①那晚他在职工宿( )舍住了一宿( ),半夜醒来睡不着,又到院子里数夜空的星宿( )。

②看到家中并没有想象中的狼藉( )不堪,她心里稍微有些慰藉( )。

③这首用隽( )秀字体书写的短诗,语颇隽( )永,耐人寻味。

2.辨明字形。

①②③④3.判断加点成语运用正误。

(1)青山无墨,却是一幅亘古不变的画卷;流水无琴,却是世间最质朴的音乐;情谊无痕,却总是能心领神会。

( )(2)他从小就无恶不作,干尽了坏事,在这个村子里早已是声名狼藉。

( )(3)他就像那样失魂落魄地写着,跟周围的世界离奇地脱了节。

( )二、语基习题化细练4.下列各组加点的字,注音完全正确的一项是( )A.宿(sù)命炫(xuàn)耀坍(tān)圮(pǐ) 窸(xī)窸窣(sū)窣B.蝉蜕(tuì) 熨(yùn)帖荒芜(wú) 历尽沧(cānɡ)桑C.玉砌(qì) 恪(gé)守地坛(tán) 肆意雕琢(zhuó)D.颓(tuí)墙庇(pì)护缄(jiān)默亘(ɡèn)古不变5.依次填入下面语段横线处的词语,最恰当的一项是( )母亲生前没给我留下过什么_的哲言,或要我_的教诲,只是在她去世之后,她_的命运,_的意志和毫不张扬的爱,随光阴流转,在我的印象中愈加鲜明深刻。

A.隽永恪守艰难坚忍B.深刻遵守艰难坚韧C.隽永遵守苦难坚忍D.深刻恪守苦难坚韧6.下列各句中加点成语的使用,正确的一项是( )A.领导干部想问题、做决策,应该身临其境为群众着想,一切为了群众,一切依靠群众,并以此作为干事创业的根本动力。

分层课时作业(含解析版)

分层课时作业(含解析版)

=课时分层作业(一)(建议用时:60分钟)[基础达标练]一、选择题1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直D .与x 轴相交但不垂直B [由导数的几何意义可知选项B 正确.] 2.若函数f (x )=x +1x ,则f ′(1)=( ) A .2 B.52 C .1 D .0D [f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫1-11+Δx =0.] 3.已知点P (-1,1)为曲线上的一点,PQ 为曲线的割线,当Δx →0时,若k PQ 的极限为-2,则在点P 处的切线方程为( )A .y =-2x +1B .y =-2x -1C .y =-2x +3D .y =-2x -2B [由题意可知, 曲线在点P 处的切线方程为 y -1=-2(x +1),即2x +y +1=0.]4.在曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4) C .⎝ ⎛⎭⎪⎫14,116D .⎝ ⎛⎭⎪⎫12,14D [∵y ′=lim Δx →0 (x +Δx )2-x 2Δx =lim Δx →0(2x +Δx )=2x ,∴令2x =tan π4=1,得x =12.∴y =⎝ ⎛⎭⎪⎫122=14,所求点的坐标为⎝ ⎛⎭⎪⎫12,14.]5.如图所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于()A.2 B.3C.4 D.5A[易得切点P(5,3),∴f(5)=3,k=-1,即f′(5)=-1.∴f(5)+f′(5)=3-1=2.]二、填空题6.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.2[∵f′(1)=2,又limΔx→0f(1+Δx)-f(1)Δx=limΔx→0a(1+Δx)2-aΔx=limΔx→0(aΔx+2a)=2a,∴2a=2,∴a=1.又f(1)=a+b=3,∴b=2.∴ba=2.]7.曲线y=x2-2x+3在点A(-1,6)处的切线方程是__________.4x+y-2=0[因为y=x2-2x+3,切点为点A(-1,6),所以斜率k=y′|x=-1=limΔx→0(-1+Δx)2-2(-1+Δx)+3-(1+2+3)Δx=limΔx→0(Δx-4)=-4,所以切线方程为y-6=-4(x+1),即4x+y-2=0.]8.若曲线y=x2+2x在点P处的切线垂直于直线x+2y=0,则点P的坐标是__________.(0,0)[设P(x0,y0),则y′|x=x0=limΔx→0(x0+Δx)2+2(x0+Δx)-x20-2x0Δx=limΔx→0(2x0+2+Δx)=2x0+2.因为点P处的切线垂直于直线x+2y=0,所以点P处的切线的斜率为2,所以2x0+2=2,解得x0=0,即点P的坐标是(0,0).]三、解答题9.若曲线y=f(x)=x3在点(a,a3)(a≠0)处的切线与x轴、直线x=a所围成的三角形的面积为16,求a 的值.[解] ∵f ′(a )=lim Δx →0 (a +Δx )3-a 3Δx =3a 2,∴曲线在(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ),切线与x 轴的交点为⎝ ⎛⎭⎪⎫23a ,0.∴三角形的面积为12⎪⎪⎪⎪⎪⎪a -23a ·|a 3|=16,得a =±1.10.已知曲线y =x 2,(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点P (3,5)的切线方程. [解] (1)设切点为(x 0,y 0), ∵y ′|x =x 0=lim Δx →0x 0+Δx2-x 20Δx=lim Δx →0x 20+2x 0·Δx +x2-x 20Δx =2x 0,∴y ′|x =1=2.∴曲线在点P (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.(2)点P (3,5)不在曲线y =x 2上,设切点为A (x 0,y 0), 由(1)知,y ′|x =x 0=2x 0,∴切线方程为y -y 0=2x 0(x -x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0), ① 再由A (x 0,y 0)在曲线y =x 2上得y 0=x 20, ②联立①,②得x 0=1或x 0=5. 从而切点为(1,1)时, 切线的斜率为k 1=2x 0=2,此时切线方程为y -1=2(x -1),即y =2x -1, 当切点为(5,25)时,切线的斜率为k 2=2x 0=10, 此时切线方程为y -25=10(x -5), 即y =10x -25.综上所述,过点P (3,5)且与曲线y =x 2相切的直线方程为y =2x -1或y =10x -25.[能力提升练]1.已知函数f(x)的图象如图所示,f′(x)是f(x)的导函数,则下列数值排序正确的是()A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(3)<f′(2)B[由函数的图象,可知函数f(x)是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在x=2处的切线斜率k1大于在x=3处的切线斜率k2,所以f′(2)>f′(3).记A(2,f(2)),B(3,f(3)),作直线AB,则直线AB的斜率k=f(3)-f(2)3-2=f(3)-f(2),由函数图象,可知k1>k>k2>0,即f′(2)>f(3)-f(2)>f′(3)>0.故选B.]2.设f(x)为可导函数,且满足limΔx→0f(1)-f(1-x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为()A.2 B.-1C.1 D.-2D[∵limΔx→0f(1)-f(1-x)2x=12limΔx→0f(1-x)-f(1)-x=-1,∴limΔx→0f(1-x)-f(1)-x=-2,即f′(1)=-2.由导数的几何意义知,曲线在点(1,f(1))处的切线斜率k=f′(1)=-2,故选D.]3.若函数y=f(x)的图象在x=4处的切线方程是y=-2x+9,则f(4)-f′(4)=________. 3[由题意得f(4)=-2×4+9=1,f′(4)=limΔx→0[-2×(4+Δx)+9]-(-2×4+9)Δx=-2,从而f(4)-f′(4)=1-(-2)=3.]4.已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是__________(填序号).② [由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时f ′(x )=0,当x >0时f ′(x )<0,故②符合.]5.已知曲线f (x )=1x .(1)求曲线过点A (1,0)的切线方程; (2)求满足斜率为-13的曲线的切线方程. [解] (1)f ′(x )=lim Δx →01x +Δx-1x Δx =lim Δx →0-1(x +Δx )x=-1x 2.设过点A (1,0)的切线的切点为P ⎝ ⎛⎭⎪⎫x 0,1x 0,①则f ′(x 0)=-1x 20,即该切线的斜率为k =-1x 20.因为点A (1,0),P ⎝ ⎛⎭⎪⎫x 0,1x 0在切线上, 所以1x 0-0x 0-1=-1x 20,②解得x 0=12.故切线的斜率k =-4.故曲线过点A (1,0)的切线方程为y =-4(x -1), 即4x +y -4=0.(2)设斜率为-13的切线的切点为Q ⎝ ⎛⎭⎪⎫a ,1a ,由(1)知,k =f ′(a )=-1a 2=-13,得a =± 3.所以切点坐标为⎝ ⎛⎭⎪⎫3,33或⎝ ⎛⎭⎪⎫-3,-33.故满足斜率为-13的曲线的切线方程为 y -33=-13(x -3)或y +33=-13(x +3), 即x +3y -23=0或x +3y +23=0.课时分层作业(二)(建议用时:60分钟)[基础达标练]一、选择题1.函数y =mx 2m -n 的导数为y ′=4x 3,则( ) A .m =-1,n =-2 B .m =-1,n =2 C .m =1,n =2D .m =1,n =-2D [∵y =mx 2m -n ,∴y ′=m (2m -n )x 2m -n -1, 又y ′=4x 3,∴⎩⎨⎧ m (2m -n )=42m -n -1=3∴⎩⎨⎧m =12m -n =4,即⎩⎨⎧m =1,n =-2.] 2.若f (x )=1-x 2sin x ,则f (x )的导数是( ) A.-2x sin x -(1-x 2)cos x sin 2xB.-2x sin x +(1-x 2)cos x sin 2 xC.-2x sin x +(1-x 2)sin xD.-2x sin x -(1-x 2)sin xA [f ′(x )=(1-x 2)′sin x -(1-x )2·(sin x )′sin 2x =-2x sin x -(1-x )2cos xsin 2x.]3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( )A.193B.103C.133D.163B [∵f (x )=ax 3+3x 2+2, ∴f ′(x )=3ax 2+6x ,又f ′(-1)=3a -6=4,∴a =103.]4.在曲线f (x )=1x 上切线的倾斜角为34π的点的坐标为( ) A .(1,1) B .(-1,-1) C .(-1,1)D .(1,1)或(-1,-1)D [切线的斜率k =tan 34π=-1, 设切点为(x 0,y 0),则f ′(x 0)=-1,又f ′(x )=-1x 2,∴-1x 20=-1,∴x 0=1或-1,∴切点坐标为(1,1)或(-1,-1).故选D.]5.某质点的运动方程为s =1t 4(其中s 的单位为米,t 的单位为秒),则质点在t =3秒时的速度为( )A .-4×3-4米/秒B .-3×3-4米/秒C .-5×3-5米/秒D .-4×3-5米/秒D [由s =1t 4得s ′=⎝ ⎛⎭⎪⎫1t 4′=(t -4)′=-4t -5.得s ′|t =3=-4×3-5,故选D.] 二、填空题6.已知f (x )=x 2,g (x )=ln x ,若f ′(x )-g ′(x )=1,则x =________. 1 [因为f (x )=x 2,g (x )=ln x , 所以f ′(x )=2x ,g ′(x )=1x 且x >0,f ′(x )-g ′(x )=2x -1x =1,即2x 2-x -1=0, 解得x =1或x =-12(舍去).故x =1.]7.函数y =ln x 在x =2处的切线斜率为________.12 [∵y =ln x ,∴y ′=1x ,∴y ′|x =2=12.] 8.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.-2 [∵f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,∴f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2=-1, ∴f ′(x )=-cos x -sin x , ∴f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.] 三、解答题9.若函数f (x )=e xx 在x =c 处的导数值与函数值互为相反数,求c 的值. [解] ∵f ′(x )=e x x -e x x 2=e x (x -1)x 2, ∴f ′(c )=e c (c -1)c 2. 依题意知f (c )+f ′(c )=0, 即e c c+e c c -1c 2=0,∴2c -1=0,得c =12.10.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R .求曲线y =f (x )在点(1,f (1))处的切线方程.[解] 因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,又f ′(1)=2a ,所以3+2a +b =2a ,解得b =-3. 令x =2,得f ′(2)=12+4a +b ,又f ′(2)=-b ,所以12+4a +b =-b ,解得a =-32. 则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1),即6x +2y -1=0.[能力提升练]1.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 019(x )=( )A.sin x B.-sin xC.cos x D.-cos xD[f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,所以4为最小正周期,故f2 019(x)=f3(x)=-cos x.]2.若曲线y=x-12在点(a,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a=()A.64 B.32C.16 D.8A[因为y′=-12x-32,所以曲线y=x-12在点(a,a-12)处的切线方程为:y-a-12=-12a-32(x-a),由x=0得y=32a-12,由y=0得x=3a,所以12·32a-12·3a=18,解得a=64.] 3.已知曲线y=x3在点P处的切线斜率为k,则当k=3时的P点坐标为() A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8) D.⎝ ⎛⎭⎪⎫-12,-18B[∵y′=3x2,k=3,∴3x2=3,∴x=±1.故P点坐标为(-1,-1)或(1,1).]4.已知直线y=kx是曲线y=3x的切线,则k的值为________.eln 3[设切点为(x0,y0).因为y′=3x ln 3,①所以k=3x0ln 3,所以y=3x0ln 3·x,又因为(x0,y0)在曲线y=3x上,所以3x0ln 3·x0=3x0,②所以x0=1ln 3=log3 e.所以k=eln 3.]5.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P,Q的曲线y=x2的切线方程;(2)求与直线PQ平行的曲线y=x2的切线方程.[解](1)因为y′=2x.P(-1,1),Q(2,4)都是曲线y=x2上的点.过P点的切线的斜率k1=y′|x=-1=-2,过Q点的切线的斜率k2=y′|x=2=4,过P点的切线方程为y-1=-2(x+1),即2x+y+1=0.过Q点的切线方程为y-4=4(x-2),即4x-y-4=0.(2)因为y′=2x,直线PQ的斜率k=4-12+1=1,切线的斜率k=y′|x=x0=2x0=1,所以x0=12,所以切点M⎝⎛⎭⎪⎫12,14,与PQ平行的切线方程为y-14=x-12,即4x-4y-1=0.课时分层作业(三)(建议用时:60分钟)[基础达标练]一、选择题1.下列函数不是复合函数的是()A. y=-x3-1x+1B.y=cos⎝⎛⎭⎪⎫x+π4C.y=1ln x D.y=(2x+3)4A[A不是复合函数,B、C、D均是复合函数,其中B是由y=cos u,u=x+π4复合而成;C是由y=1u,u=ln x复合而成;D是由y=u4,u=2x+3复合而成.]2.函数y=x ln(2x+5)的导数为()A.ln(2x+5)-x2x+5B.ln(2x+5)+2x2x+5C.2x ln(2x+5) D.x2x+5B [∵y =x ln(2x +5),∴y ′=ln(2x +5)+2x2x +5.] 3.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C .e x -e -xD .e x +e -xA [y ′=12(e x +e -x )′=12(e x -e -x ).]4.当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0等于( ) A .a B .±a C .-aD .a 2B [y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .]5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2B [设切点坐标是(x 0,x 0+1), 依题意有⎩⎪⎨⎪⎧1x 0+a =1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.] 二、填空题6.f (x )=ax 2-1且f ′(1)=2,则a 的值为________. 2 [∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12(ax 2-1)′=axax 2-1. 又f ′(1)=2,∴aa -1=2,∴a =2.] 7.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. (e ,e) [设P (x 0,y 0).∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x . ∴k =1+ln x 0.又k =2, ∴1+ln x 0=2,∴x 0=e. ∴y 0=eln e =e.∴点P 的坐标是(e ,e).]8.点P 是f (x )=x 2上任意一点,则点P 到直线y =x -1的最短距离是__________. 328[与直线y =x -1平行的f (x )=x 2的切线的切点到直线y =x -1的距离最小.设切点为(x 0,y 0),则f ′(x 0)=2x 0=1,∴x 0=12,y 0=14.即P ⎝ ⎛⎭⎪⎫12,14到直线y =x -1的距离最短.∴d =⎪⎪⎪⎪⎪⎪12-14-112+12=328.] 三、解答题9.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3; (3)y =sin 4x +cos 4x .[解] (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x )=34+14cos 4x .∴y ′=-sin 4x .10.曲线y =e sin x 在(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程. [解] ∵y =e sin x ,∴y ′=e sin x cos x , ∴y ′|x =0=1.∴曲线y =e sin x 在(0,1)处的切线方程为 y -1=x ,即x -y +1=0.又直线l 与x -y +1=0平行,故可设为x -y +m =0.由|m -1|1+-12=2得m =-1或3.∴直线l 的方程为:x -y -1=0或x -y +3=0.[能力提升练]1.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ) A.13 B.12 C.23D .1A [依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e -2×0=-2. 曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x 的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.]2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4 B.⎣⎢⎡⎭⎪⎫π4,π2 C.⎝ ⎛⎦⎥⎤π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π D [因为y =4e x +1, 所以y ′=-4e x (e x +1)2=-4e xe 2x +2e x +1=-4e x+1e x +2. 因为e x >0,所以e x +1e x ≥2,所以y ′∈[-1,0),所以tan α∈[-1,0). 又因为α∈[0,π), 所以α∈⎣⎢⎡⎭⎪⎫3π4,π.]3.函数y =ln e x1+e x 在x =0处的导数为________.12 [y =ln e x 1+ex =ln e x -ln(1+e x )=x -ln(1+e x ),则y′=1-e x1+e x.当x=0时,y′=1-11+1=12.]4.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.y=-2x-1[设x>0,则-x<0,f(-x)=ln x-3x,又f(x)为偶函数,f(x)=ln x-3x,f′(x)=1x-3,f′(1)=-2,切线方程为y=-2x-1.]5.(1)已知f(x)=eπx sin πx,求f′(x)及f′⎝ ⎛⎭⎪⎫12;(2)在曲线y=11+x2上求一点,使过该点的切线平行于x轴,并求切线方程.[解](1)∵f(x)=eπx sin πx,∴f′(x)=πeπx sinπx+πeπx cos πx=πeπx(sin πx+cos πx).∴f′⎝⎛⎭⎪⎫12=πeπ2⎝⎛⎭⎪⎫sinπ2+cosπ2=πeπ2.(2)设切点的坐标为P(x0,y0),由题意可知y′|x=x0=0.又y′=-2x(1+x2)2,∴y′|x=x0=-2x0(1+x20)2=0.解得x0=0,此时y0=1.即该点的坐标为(0,1),切线方程为y-1=0.课时分层作业(四)(建议用时:60分钟)[基础达标练]一、选择题1.如图是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .在区间(3,5)上f (x )是增函数C [由导函数f ′(x )的图象知在区间(4,5)上,f ′(x )>0,所以函数f (x )在(4,5)上单调递增.故选C.]2.函数y =x +x ln x 的单调递减区间是( ) A .(-∞,e -2) B .(0,e -2) C .(e -2,+∞)D .(e 2,+∞)B [因为y =x +x ln x ,所以定义域为(0,+∞). 令y ′=2+ln x <0,解得0<x <e -2,即函数y =x +x ln x 的单调递减区间是(0,e -2),故选B.]3.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调递减函数,则实数a 的取值范围是( )A .(-∞,-3)∪[3,+∞)B .[-3,3]C .(-∞,-3)∪(3,+∞)D .(-3, 3)B [f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立且不恒为0,Δ=4a 2-12≤0⇒-3≤a ≤ 3.]4.下列函数中,在(0,+∞)内为增函数的是( ) A .y =sin x B .y =x e 2 C .y =x 3-xD .y =ln x -xB [显然y =sin x 在(0,+∞)上既有增又有减,故排除A ;对于函数y =x e 2,因e 2为大于零的常数,不用求导就知y =x e 2在(0,+∞)内为增函数;对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33,故函数在⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞上为增函数,在⎝ ⎛⎭⎪⎫-33,33上为减函数;对于D ,y ′=1x -1(x >0).故函数在(1,+∞)上为减函数, 在(0,1)上为增函数,故选B.]5.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )A B C DD [对于选项A ,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D ,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.]二、填空题6.函数f (x )=x -2sin x 在(0,π)上的单调递增区间为 __________.⎝ ⎛⎭⎪⎫π3,π [令f ′(x )=1-2cos x >0,则cos x <12,又x ∈(0,π),解得π3<x <π,所以函数的单调递增区间为⎝ ⎛⎭⎪⎫π3,π.]7.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.(1,2) [f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2.] 8.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. ⎝ ⎛⎭⎪⎫-∞,12 [f ′(x )=2a -1(x +2)2,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12.]三、解答题9.已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R . (1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程.(2)若a =-1,求f (x )的单调区间. [解] f ′(x )=(ax +2a +1)x e x .(1)若a =1,则f ′(x )=(x +3)x e x ,f (x )=(x 2+x -1)e x , 所以f ′(1)=4e ,f (1)=e.所以曲线f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即4e x -y -3e =0. (2)若a =-1,则f ′(x )=-(x +1)x e x . 令f ′(x )=0解x 1=-1,x 2=0. 当x ∈(-∞,-1)时,f ′(x )<0; 当x ∈(-1,0)时,f ′(x )>0; 当x ∈(0,+∞)时,f ′(x )<0;所以f (x )的增区间为(-1,0),减区间为(-∞,-1)和(0,+∞).10.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图所示,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间(1,m +12)上是单调函数,求实数m 的取值范围. [解] (1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b , ∴⎩⎨⎧ 2a =2,b =-8,解得⎩⎨⎧a =1,b =-8, ∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2. (2)∵f ′(x )=6x +2x -8 =2x -1x -3x (x >0).∴当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,3) 3 (3,+∞)f ′(x )+-+∴f (x f (x )的单调递减区间为(1,3).要使函数f (x )在区间⎝ ⎛⎭⎪⎫1,m +12上是单调函数,则⎩⎪⎨⎪⎧1<m +12,m +12≤3,解得12<m ≤52.即实数m 的取值范围为⎝ ⎛⎦⎥⎤12,52.[能力提升练]1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2.则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)B [构造函数g (x )=f (x )-(2x +4), 则g (-1)=2-(-2+4)=0,又f ′(x )>2. ∴g ′(x )=f ′(x )-2>0,∴g (x )是R 上的增函数. ∴f (x )>2x +4⇔g (x )>0⇔g (x )>g (-1), ∴x >-1.]2.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )C [因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x ).又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).因此选C.]3.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________.(0,+∞) [若函数y =-43x 3+bx 有三个单调区间,则y ′=-4x 2+b =0有两个不相等的实数根,所以b >0.]4.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.⎣⎢⎡⎭⎪⎫1,32 [显然函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x .由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )单调递减区间为⎝ ⎛⎭⎪⎫0,12.因为函数在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32,又因为(k -1,k +1)为定义域内的一个子区间,所以k -1≥0,即k ≥1.综上可知,1≤k <32.]5.(1)已知函数f (x )=ax e kx -1,g (x )=ln x +kx .当a =1时,若f (x )在(1,+∞)上为减函数,g (x )在(0,1)上为增函数,求实数k 的值;(2)已知函数f (x )=x +ax -2ln x ,a ∈R ,讨论函数f (x )的单调区间. [解] (1)当a =1时,f (x )=x e kx -1, ∴f ′(x )=(kx +1)e kx ,g ′(x )=1x +k . ∵f (x )在(1,+∞)上为减函数, 则∀x >1,f ′(x )≤0⇔k ≤-1x , ∴k ≤-1.∵g (x )在(0,1)上为增函数, 则∀x ∈(0,1),g ′(x )≥0⇔k ≥-1x , ∴k ≥-1. 综上所述,k =-1.(2)函数f (x )的定义域为(0,+∞), ∴f ′(x )=1-a x 2-2x =x 2-2x -ax 2.①当Δ=4+4a ≤0,即a ≤-1时, 得x 2-2x -a ≥0, 则f ′(x )≥0.∴函数f(x)在(0,+∞)上单调递增.②当Δ=4+4a>0,即a>-1时,令f′(x)=0,得x2-2x-a=0,解得x1=1-1+a,x2=1+1+a>0.(ⅰ)若-1<a≤0,则x1=1-1+a≥0,∵x∈(0,+∞),∴f(x)在(0,1-1+a),(1+1+a,+∞)上单调递增,在(1-1+a,1+1+a)上单调递减.(ⅱ)若a>0,则x1<0,当x∈(0,1+1+a)时,f′(x)<0,当x∈(1+1+a,+∞)时,f′(x)>0,∴函数f(x)在区间(0,1+1+a)上单调递减,在区间(1+1+a,+∞)上单调递增.课时分层作业(五)(建议用时:60分钟)[基础达标练]一、选择题1.函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极大值点有()A.1个B.2个C.3个D.4个B[依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x <b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值,选B.]2.函数y=x3-3x2-9x(-2<x<2)有()A.极大值5,极小值-27B.极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值C [由y ′=3x 2-6x -9=0,得x =-1或x =3. 当x <-1或x >3时,y ′>0;由-1<x <3时,y ′<0. ∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值.] 3.已知a 是函数f (x )=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2D [∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2. 当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.]4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9xB .y =x 3-6x 2+9xC .y =x 3-6x 2-9xD .y =x 3+6x 2-9xB [∵三次函数过原点,故可设为 y =x 3+bx 2+cx , ∴y ′=3x 2+2bx +c .又x =1,3是y ′=0的两个根, ∴⎩⎪⎨⎪⎧1+3=-2b31×3=c 3,即⎩⎨⎧b =-6,c =9∴y =x 3-6x 2+9x ,又y ′=3x 2-12x +9=3(x -1)(x -3) ∴当x =1时,f (x )极大值=4 ,当x =3时,f (x )极小值=0,满足条件,故选B.]5.函数f (x )=x 3-3bx +3b 在(0,1)内有且只有一个极小值,则( ) A .0<b <1 B .b <1 C .b >0D .b <12A [f ′(x )=3x 2-3b ,要使f (x )在(0,1)内有极小值,则⎩⎨⎧ f ′(0)<0,f ′(1)>0,即⎩⎨⎧-3b <0,3-3b >0,解得0<b <1.]二、填空题6.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________.-2 [∵f ′(x )=3x 2+2ax +b , ∴⎩⎪⎨⎪⎧f ′(1)=3,f ′⎝ ⎛⎭⎪⎫23 =0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0.解得a =2,b =-4, ∴a +b =2-4=-2.]7.设a ∈R ,若函数y =e x +ax (x ∈R )有大于零的极值点,则a 的取值范围为________. (-∞,-1) [∵y =e x +ax ,∴y ′=e x +a ,令y ′=e x +a =0,则e x =-a , 即x =ln(-a ),又∵x >0,∴-a >1,即a <-1.]8.若直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.(-2,2) [令f ′(x )=3x 2-3=0,得x =±1,则极大值为f (-1)=2,极小值为f (1)=-2.如图,观察得-2<a <2时恰有三个不同的公共点.]三、解答题9.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极大值点还是极小值点,并说明理由. [解] f ′(x )=3ax 2 +2bx +c , (1)法一:∵x =±1是函数的极值点, ∴x =±1是方程3ax 2+2bx +c =0的两根.由根与系数的关系知 ⎩⎪⎨⎪⎧-2b 3a =0, ①c 3a =-1,②又f (1)=-1,∴a +b +c =-1, ③ 由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0, ① 3a -2b +c =0,②又f (1)=-1,∴a +b +c =-1, ③ 由①②③解得a =12,b =0,c =-32. (2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1). 当x <-1或x >1时f ′(x )>0, 当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数.∴当x =-1时,函数取得极大值,x =-1为极大值点;当x =1时,函数取得极小值,x =1为极小值点.10.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值.[解] (1)因为f (x )=a ln x +12x +32x +1, 故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0, 即f ′(1)=0,从而a -12+32=0, 解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32 =3x 2-2x -12x 2=3x +1x -12x 2.令f ′(x )=0,解得x 1=1,x 2=-13因x 2=-13不在定义域内,舍去. 当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值,且f (1)=3.[能力提升练]1.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( ) A .-23 B .-2 C .-2或-23D .不存在A [∵f ′(x )=3x 2+2ax +b 且f (x )在x =1处取得极大值10, ∴f ′(1)=3+2a +b =0,f (1)=1+a +b -a 2-7a =10, ∴a 2+8a +12=0,∴a =-2,b =1或a =-6,b =9. 当a =-2,b =1时,f ′(x )=3x 2-4x +1=(3x -1)(x -1). 当13<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极小值,与题意不符.当a =-6,b =9时,f ′(x )=3x 2-12x +9=3(x -1)(x -3); 当x <1时,f ′(x )>0,当1<x <3时,f ′(x )<0, ∴f (x )在x =1处取得极大值,符合题意; ∴a b =-69=-23.]2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.]3.函数y =x e x 在其极值点处的切线方程为________.y =-1e [由题知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝ ⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e .]4.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________.[1,5) [∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点, 即f ′(x )=0在(-1,1)内恰有一个根. 又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13. ∴应满足⎩⎨⎧ f ′(-1)≤0,f ′(1)>0,∴⎩⎨⎧3-2-a ≤0,3+2-a >0,∴1≤a <5.]5.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? [解] (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时,有f (x )>0, x 取足够小的负数时,有f (x )<0, 所以曲线y =f (x )与x 轴至少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点, ∴f (x )极大值<0或f (x )极小值>0,即527+a <0或a -1>0,∴a <-527或a >1,∴当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点. 课时分层作业(六)(建议用时:60分钟)[基础达标练]一、选择题1.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )A [令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x ), 又f ′(x )<g ′(x ),故F ′(x )<0, ∴F (x )在[a ,b ]上单调递减, ∴F (x )max ≤F (a )=f (a )-g (a ).] 2.函数y =ln xx 的最大值为( )A .e -1B .eC .e 2 D.103A [令y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx 2=0(x >0),解得x =e.当x >e 时,y ′<0;当0<x <e 时,y ′>0. y 极大值=f (e)=1e ,在定义域(0,+∞)内只有一个极值, 所以y max =1e .]3.函数f (x )=x 2·e x +1,x ∈[-2,1]的最大值为( ) A .4e -1 B .1 C .e 2D .3e 2C [∵f ′(x )=(x 2+2x )e x +1=x (x +2)e x +1,∴f ′(x )=0得x =-2或x =0. 又当x ∈[-2,1]时,e x +1>0, ∴当-2<x <0时,f ′(x )<0; 当0<x <1时f ′(x )>0.∴f (x )在(-2,0)上单调递减,在(0,1)上单调递增. 又f (-2)=4e -1,f (1)=e 2,∴f (x )的最大值为e 2.]4.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m 的值为( )A .16B .12C .32D .6C [∵f ′(x )=3x 2-12=3(x +2)(x -2),由f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8, 可知M -m =24-(-8)=32.]5.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1 C .-1<a <1D .0<a <12B [∵f ′(x )=3x 2-3a ,则f ′(x )=0有解,可得a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.] 二、填空题6.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. -71 [f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 则f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.]7.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.(-∞,2ln 2-2] [函数f (x )=e x -2x +a 有零点,即方程e x -2x +a =0有实根,即函数g (x )=2x -e x ,y =a 有交点,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在(-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g (x )=2x -e x 的值域为(-∞,2ln 2-2],所以要使函数g (x )=2x -e x ,y =a 有交点,只需a ≤2ln 2-2即可.]8.已知函数f (x )=ax 2+2ln x ,若当a >0时,f (x )≥2恒成立,则实数a 的取值范围是__________.[e ,+∞) [由f (x )=ax 2+2ln x 得f ′(x )=2(x 2-a )x 3,又函数f (x )的定义域为(0,+∞),且a >0,令f ′(x )=0,得x =-a (舍去)或x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.故x =a 是函数f (x )的极小值点,也是最小值点,且f (a )=ln a +1.要使f (x )≥2恒成立,需ln a +1≥2恒成立,则a ≥e.]三、解答题9.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解] 易知f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞.(1)f ′(x )=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0;当-1<x <-12时,f ′(x )<0; 当x >-12时,f ′(x )>0,从而f (x )在区间⎝ ⎛⎭⎪⎫-32,-1,⎝ ⎛⎭⎪⎫-12,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫-1,-12上单调递减.(2)由(1)知f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最小值为f ⎝ ⎛⎭⎪⎫-12=ln 2+14.又因为f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0,所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为f ⎝ ⎛⎭⎪⎫14=116+ln 72. 10.已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )≥2 019对于∀x ∈[-2,2]恒成立,求a 的取值范围. [解] (1)f ′(x )=-3x 2+6x +9. 由f ′(x )<0,得x <-1或x >3,所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)由f ′(x )=0,-2≤x ≤2,得x =-1.因为f (-2)=2+a ,f (2)=22+a ,f (-1)=-5+a , 故当-2≤x ≤2时,f (x )min =-5+a .要使f (x )≥2 019对于∀x ∈[-2,2]恒成立,只需f (x )min =-5+a ≥2 019,解得a ≥2 024.[能力提升练]1.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是( )A .-13B .-15C .10D .15A [对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9, 故f (m )+f ′(n )的最小值为-13.]2.若函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的取值范围是( ) A .(-1,11) B .(-1,4) C .(-1,2]D .(-1,2)C [由f ′(x )=3-3x 2=0,得x =±1. 当x 变化时,f ′(x )及f (x )的变化情况如下表:解得-1<a <11.又当x ∈(1,+∞)时,f (x )单调递减,且当x =2时,f (x )=-2.∴a ≤2. 综上,-1<a ≤2.]3.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________. (-∞,1] [设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2), 由f ′(x )=0得x =-23或x =0.又f (-1)=1,f ⎝ ⎛⎭⎪⎫-23=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1. 故a ≤1.]4.已知函数f (x )=x 3-92x 2+6x +a ,若∃x 0∈[-1,4],使f (x 0)=2a 成立,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤-232,16 [∵f (x 0)=2a ,即x 30-92x 20+6x 0+a =2a ,可化为x30-92x2+6x0=a,设g(x)=x3-92x2+6x,则g′(x)=3x2-9x+6=3(x-1)(x-2)=0,得x=1或x=2.∴g(1)=52,g(2)=2,g(-1)=-232,g(4)=16.由题意,g(x)min≤a≤g(x)max,∴-232≤a≤16.]5.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[解](1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.令x变化时,f(x)与f′(x)的变化情况如下表:(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.。

高中数学 本册素养等级测评课时作业(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题

高中数学 本册素养等级测评课时作业(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题

本册素养等级测评一、单选题(本大题共5小题,每小题8分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x <0,使x 2-3x +1≥0”的否定是( C ) A .∃x <0,使x 2-3x +1<0 B .∃x ≥0,使x 2-3x +1<0 C .∀x <0,使x 2-3x +1<0 D .∀x ≥0,使x 2-3x +1<0解析:命题“∃x <0,使x 2-3x +1≥0”的否定是“∀x <0,x 2-3x +1<0”,故选C . 2.设f (x )=ax 5+bx 3+cx +7(其中a 、b 、c 为常数,x ∈R ),若f (-7)=-17,则f (7)=( A )A .31B .17C .-31D .24解析:令g (x )=ax 5+bx 3+cx ,则g (x )为奇函数. ∴f (-7)=g (-7)+7=-17,∴g (-7)=-24. ∴f (7)=g (7)+7=24+7=31.3.对于α:a -1a +1>0,β:关于x 的方程x 2-ax +1=0有实数根,则α是β成立的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由α:a -1a +1>0解得a >1或a <-1,β:关于x 的方程x 2-ax +1=0有实数根,则Δ=a 2-4≥0,解得a ≥2或a ≤-2.∵{a |a ≥2或a ≤-2}{a |a >1或a <-1},∴α是β成立的必要不充分条件,故选B .4.关于x 的不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,则实数a 的取值X 围为( D )A .⎝ ⎛⎭⎪⎫-35,1B .⎣⎢⎡⎦⎥⎤-35,1C .⎝ ⎛⎦⎥⎤-35,1∪{-1} D .⎝ ⎛⎦⎥⎤-35,1 解析:当a 2-1=0时,a =±1,若a =1,则原不等式可化为-1<0,显然恒成立;若a =-1,则原不等式可化为2x -1<0,不恒成立,所以a =-1舍去;当a 2-1≠0时,因为(a 2-1)x 2-(a -1)x -1<0的解集为R ,所以只需⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0,解得-35<a <1.综上,实数a 的取值X 围为⎝ ⎛⎦⎥⎤-35,1.故选D . 5.若关于x 的方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图像可以是( D )解析:因为关于x 的方程f (x )-2=0在(-∞,0)内有解,所以函数y =f (x )与y =2的图像在(-∞,0)内有交点,观察图像可知只有D 中图像满足要求.6.已知不等式(x +y )(1x +ay)≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为( B )A .2B .4C .6D .8解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y=ax 时取等号,所以(x +y )·⎝⎛⎭⎪⎫1x +a y的最小值为(a +1)2,于是(a +1)2≥9恒成立,所以a ≥4,故选B .7.已知f (x )=(x -a )(x -b )-2,并且α,β是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系可能是( C )A .a <α<b <βB .a <α<β<bC .α<a <b <βD .α<a <β<b解析:∵α,β是函数f (x )的两个零点,∴f (α)=f (β)=0.又∵f (a )=f (b )=-2<0,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间,故它们之间的关系可能为α<a <b <β.故选C .8.函数f (x )=x |x |.若存在x ∈[1,+∞),使得f (x -2k )-k <0,则实数k 的取值X 围是( D )A .(2,+∞)B .(1,+∞)C .(12,+∞)D .⎝ ⎛⎭⎪⎫14,+∞ 解析:当k ≤12时,x -2k ≥0,因此f (x -2k )-k <0,可化为(x -2k )2-k <0,即存在x∈[1,+∞),使g (x )=x 2-4kx +4k 2-k <0成立,由于g (x )=x 2-4kx +4k 2-k 的对称轴为直线x =2k ≤1,所以g (x )=x 2-4kx +4k 2-k 在[1,+∞)上单调递增,因此只要g (1)<0,即1-4k +4k 2-k <0,解得14<k <1.又因为k ≤12,所以14<k ≤12.当k >12时,f (x -2k )=(x -2k )|x -2k |=⎩⎪⎨⎪⎧-x -2k 2,1≤x ≤2k ,x -2k 2,x >2k .当1≤x ≤2k 时,f (x -2k )-k =-(x -2k )2-k <0恒成立,满足存在x ∈[1,+∞),使得f (x -2k )-k <0成立.综上,k >14.故选D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.设全集U ={0,1,2,3,4},集合M ={0,1,4},N ={0,1,3},则( AC ) A .M ∩N ={0,1} B .∁U N ={4} C .M ∪N ={0,1,3,4} D .集合M 的真子集个数为8解析:由题意,M ∩N ={0,1},A 正确;∁U N ={2,4},B 不正确;M ∪N ={0,1,3,4},C 正确;集合M 的真子集个数为23-1=7,D 不正确;故选AC .10.下列对应关系f ,能构成从集合M 到集合N 的函数的是( ABD )A .M =⎩⎨⎧⎭⎬⎫12,1,32,N ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32=1 B .M =N ={x |x ≥-1},f (x )=2x +1 C .M =N ={1,2,3},f (x )=2x +1D .M =Z ,N ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1解析:对于A ,M ={12,132},N ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32=1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;对于B ,M =N ={x |x ≥-1},f (x )=2x +1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;对于C ,M =N ={1,2,3},f (x )=2x +1,∵f (2)=5∉N ,∴不满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 不能构成从集合M 到集合N 的函数,不满足题意;对于D ,M =Z ,N ={-1,1},n 为奇函数时,f (n )=-1,n 为偶函数时,f (n )=1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;故选ABD .11.已知f (x )=x +1x -1(x ≠±1),则下列各式成立的是( CD ) A .f (x )+f (-x )=0 B .f (x )·f (-x )=-1 C .f (x )-1f -x=0D .f (x )·f (-x )=1解析:∵f (x )+f (-x )=x +1x -1+-x +1-x -1=2x 2+2x 2-1≠0,∴A 不符合题意,∵f (x )·f (-x )=x +1x -1×-x +1-x -1=1,∴B 不符合题意,D 符合题意,∵f (x )-1f -x =x +1x -1--x -1-x +1=0,∴C 符合题意;故选CD .12.下列命题中正确的是( AC ) A .y =x +1x(x <0)的最大值是-2B .y =x 2+3x 2+2的最小值是2C .y =2-3x -4x (x >0)的最大值是2-4 3D .y =2-3x -4x(x >0)的最小值是2-4 3解析:y =x +1x =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时,等号成立,所以A 正确;y =x 2+3x 2+2=x 2+2+1x 2+2>2,取不到最小值2,所以B 错误;y =2-3x -4x (x >0)=2-⎝⎛⎭⎪⎫3x +4x ≤2-43,当且仅当3x =4x 时,等号成立,所以C 正确;y =2-3x -4x(x >0)的最大值是2-43,所以D 错误.故选AC .三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则函数f (x )的解析式为__f (x )=2x +7__.解析:由题意,设f (x )=ax +b (a ≠0). ∵f (x )满足3f (x +1)-2f (x -1)=2x +17, ∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17, 即ax +(5a +b )=2x +17,∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7.∴f (x )=2x +7.14.函数y =3-2x -x 2的定义域是__[-3,1]__,值域为__[0,2]__.解析:要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1.∴定义域为[-3,1].∵-x 2-2x +3=-(x -1)2+4 ∴y =-x 2-2x +3的值域为[0,2].15.关于x 的不等式x 2-ax +a +3≥0在区间[-2,0]上恒成立,则实数a 的取值X 围是__[-2,+∞)__.解析:由题意得a ≥x 2+3x -1=(x -1)+4x -1+2.因为-2≤x ≤0,所以-3≤x -1≤-1.所以(x -1)+4x -1+2=-[(1-x )+41-x]+2≤-24+2=-2. 当且仅当x =-1时取到等号.所以a ≥-2. 故实数a 的取值X 围为[-2,+∞). 16.给出以下四个命题:①若集合A ={x ,y },B ={0,x 2},A =B ,则x =1,y =0;②若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); ③函数f (x )=1x的单调递减区间是(-∞,0)∪(0,+∞);④若f (x +y )=f (x )f (y ),且f (1)=1,则f 2f 1+f 4f 3+…+f 2 018f 2 017+f 2 020f 2 019=2 020.其中正确的命题有__①②__.(写出所有正确命题的序号)解析:①由A ={x ,y },B ={0,x 2},A =B 可得⎩⎪⎨⎪⎧y =0,x =x 2或⎩⎪⎨⎪⎧x =0,y =x 2.(舍)故x =1,y=0,正确;②由函数f (x )的定义域为(-1,1),得函数f (2x +1)满足-1<2x +1<1,解得-1<x <0,即函数f (2x +1)的定义域为(-1,0),正确;③函数f (x )=1x的单调递减区间是(-∞,0),(0,+∞),不能用并集符号,错误;④由题意f (x +y )=f (x )f (y ),且f (1)=1,则f 2f 1+f 4f 3+…+f 2 018f 2 017+f 2 020f 2 019=f 1·f 1f 1+f 3·f 1f 3+…+f 2 017·f 1f 2 017+f 2 019·f 1f 2 019=f (1)+f (1)+…+f (1)=1+1+…+1=1010,错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合A ={x |x <a },B ={x |1≤x ≤2},C ={x |mx +2=0}. (1)若A ∪(∁R B )=R ,某某数a 的取值X 围; (2)若C ∩B =C ,某某数m 的取值X 围.解:(1)∵B ={x |1≤x ≤2},∴∁R B ={x |x <1或x >2}.又∵A ={x |x <a },A ∪(∁R B )=R ,∴a >2,即实数a 的取值X 围是(2,+∞). (2)∵C ∩B =C ,∴C ⊆B . 当C =∅时,m =0符合题意.当C ≠∅时,由mx +2=0得x =-2m ,故1≤-2m≤2,解得-2≤m ≤-1.综上可知,实数m 的取值X 围为[-2,-1]∪{0}.18.(12分)若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,某某数a 的取值X 围.解:A ={-3,2}.对于x 2+x +a =0,①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;②当Δ=1-4a =0,即a =14时,B =⎩⎨⎧⎭⎬⎫-12,B ⊆A 不成立;③当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},∴a =-3×2=-6. 综上,a 的取值X 围为a >14或a =-6.19.(12分)已知函数f (x )=ax 2-2x +1(a ≠0). (1)若函数f (x )有两个零点,某某数a 的取值X 围;(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,某某数a 的取值X 围.解:(1)函数f (x )有两个零点,即方程ax 2-2x +1=0(a ≠0)有两个不等实根,令Δ>0,即4-4a >0,解得a <1.又因为a ≠0,所以实数a 的取值X 围为(-∞,0)∪(0,1).(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,由f (x )的图像过点(0,1)可知,只需⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧1>0,a -1<0,4a -3>0,解得34<a <1.所以实数a 的取值X 围为⎝ ⎛⎭⎪⎫34,1. 20.(12分)为了净化空气,某科研单位根据实验得出,在一定X 围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/米3)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/米3)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (1≤a ≤4)个单位的净化剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1,参考数据:2取1.4).解析:(1)因为一次喷洒4个单位的净化剂, 所以浓度f (x )=4y =⎩⎪⎨⎪⎧648-x-4,0≤x ≤4,20-2x ,4<x ≤10.则当0≤x ≤4时,由648-x-4≥4,解得x ≥0,所以此时0≤x ≤4.当4<x ≤10时,由20-2x ≥4,解得x ≤8, 所以此时4<x ≤8.综上,得0≤x ≤8,即若一次投放4个单位的净化剂,则有效净化时间可达8天. (2)设从第一次喷洒起,经x (6≤x ≤10)天,浓度g (x )=2⎝ ⎛⎭⎪⎫5-12x +a ⎣⎢⎡⎦⎥⎤168-x -6-1=10-x +16a 14-x -a =(14-x )+16a14-x-a -4≥214-x ·16a14-x-a -4=8a -a -4.因为14-x ∈[4,8],而1≤a ≤4.所以4a ∈[4,8],故当且仅当14-x =4a 时,y 有最小值为8a -a -4. 令8a -a -4≥4,解得24-162≤a ≤4,所以a 的最小值为24-162≈1.6. 21.(12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,某某数m 的取值X 围. 解:(1)g (x )=2x 2-4x -16<0,即(2x +4)(x -4)<0, ∴-2<x <4,∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8.当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1).∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2x -1×4x -1-2=2(当且仅当x =3时等号成立),∴实数m 的取值X 围是(-∞,2].22.(12分)定义在(-∞,0)∪(0,+∞)上的函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),且函数f (x )在(0,+∞)上是增函数.(1)求f (-1),并证明函数y =f (x )是偶函数;(2)若f (4)=2,解不等式f (x -5)-f ⎝ ⎛⎭⎪⎫3x ≤1.解:(1)令x =y ≠0,则f (1)=f (x )-f (x )=0. 再令x =1,y =-1可得f (-1)=f (1)-f (-1) =-f (-1),∴f (-1)=0.证明:令y =-1可得f (-x )=f (x )-f (-1)=f (x ), ∴f (x )是偶函数.(2)∵f (2)=f (4)-f (2),∴f (2)=12f (4)=1.又f (x -5)-f (3x )=f (x 2-5x 3),∴f ⎝ ⎛⎭⎪⎫x 2-5x 3≤f (2).∵f (x )是偶函数,在(0,+∞)上单调递增, ∴-2≤x 2-5x3≤2且x 2-5x3≠0,解得-1≤x <0或0<x ≤2或3≤x <5或5<x ≤6.所以不等式的解集为{x |-1≤x <0或0<x ≤2或3≤x <5或5<x ≤6}.。

2019人教版小学数学三年级上册课时作业(全册含答案)

2019人教版小学数学三年级上册课时作业(全册含答案)1.1秒的认识1.填一填。

(1)钟表上有三根针,我是最长最细的那一根,我走一圈是1分钟,我是()针。

(2)秒针从3走到10经过了()秒,从10走到3经过了()秒。

2.在()里填上合适的时间单位。

(1)小明刷牙大约用了3()。

(2)小强跑50米大约需要10()。

(3)脉搏跳动10次大约用了8()。

(4)爸爸每天工作8()。

第()跑道的男生跑得最快,第()跑道的男生跑得最慢。

1.2 时、分、秒的简单换算1.填一填。

3时=()分 4时=()分5分=()秒 2分=()秒2分30秒=()秒 1时20分=()分2.比大小。

40秒○1分 1时○52分2时○90分 240秒○3分1.3 计算经过时间1. 比大小。

2时30分○150分 1时20分○80分2.蓝天小学要求学生上午7:40到校,但是值日生需要提前10分钟到校做值日,值日生最晚什么时候到校?3.奶奶今天早上6:30去广场锻炼身体,比昨天提前了15分钟。

她昨天什么时间去锻炼身体?1.4 练习一1.在()里填上合适的时间单位。

(1)看一场电影大约需要2()。

(2)小学生每天的睡眠时间应该不少于10()。

(3)明明跑100米用了17()。

(4)吃一顿饭大约用了15()。

2.判一判。

(1)小强跑50米,用了13分。

()(2)分针从1走到3,经过了2分。

()(3)从8时30分走到9时,经过了70分钟。

()3.比大小。

100分○1时 2时○120分 120秒○2时8分○8秒 90分○1时40分 15分○2时1.口算。

41+33= 32+24= 58+12= 37+27=53+36= 37+54= 32+46= 15+65=2.学校买了一些故事书,分给二年级29本,分给三年级36本。

一共分了多少本故事书?3.小亮说:“我收集了56枚邮票”;小军说:“我比小亮多收集了37枚邮票”。

小军收集了多少枚邮票?1.口算。

48-14= 48-24= 53-29= 60-25=56-35= 43-15= 63-48= 80-26=2.学校买了一些乒乓球,分给二年级28个,分给三年级33个。

2020版高一数学 课时作业全册(含解析) 新人教A版必修3

20203目录[课时作业1] 算法的概念 (3)[课时作业2] 程序框图与算法的顺序结构、条件结构 (7)[课时作业3] 循环结构及应用 (14)[课时作业4] 输入语句、输出语句和赋值语句 (22)[课时作业5] 条件语句 (29)[课时作业6] 循环语句 (37)[课时作业7] 算法案例 (47)[课时作业8] 简单随机抽样 (52)[课时作业9] 系统抽样 (55)[课时作业10] 分层抽样 (59)[课时作业11] 用样本的频率分布估计总体分布 (65)[课时作业12] 用样本的数字特征估计总体的数字特征 (72)[课时作业13] 变量间的相关关系 (79)[课时作业14] 随机事件的概率 (86)[课时作业15] 概率的意义 (90)[课时作业16] 概率的基本性质 (95)[课时作业17] 古典概型 (101)[课时作业18] (整数值)随机数(random numbers)的产生 (106)[课时作业19] 几何概型 (110)[课时作业20] 均匀随机数的产生 (116)[课时作业1] 算法的概念[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.算法的有限性是指( ) A .算法必须包含输出B .算法中每个操作步骤都是可执行的C .算法的步骤必须有限D .以上说法均不正确解析:一个算法必须在有限步内结束称为算法的有穷性. 答案:C2.给出下面一个算法: 第一步,给出三个数x ,y ,z . 第二步,计算M =x +y +z . 第三步,计算N =13M .第四步,输出M ,N . 则上述算法是( ) A .求和 B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数. 答案:D3.已知一个算法: 第一步,m =a .第二步,如果b <m ,则m =b ,输出m ;否则执行第三步. 第三步,如果c <m ,则m =c ,输出m .如果a =3,b =6,c =2,那么执行这个算法的结果是( ) A .3 B .6 C .2 D .m解析:当a =3,b =6,c =2时,依据算法设计,执行后,m =a =3<b =6,c =2<3=m ,则c =2=m ,即输出m 的值为2.答案:C4.一个算法的步骤如下:第一步,输入x 的值; 第二步,计算x 的绝对值y ; 第三步,计算z =2y-y ; 第四步,输出z 的值.如果输入x 的值为-3,则输出z 的值为( ) A .4 B .5 C .6 D .8解析:根据算法的步骤计算: 第一步,输入x =-3. 第二步,计算x 的绝对值y =3. 第三步,计算z =2y -y =23-3=5. 第四步,输出z 的值为5. 答案:B5.对于解方程x 2-5x +6=0的下列步骤: ①设f (x )=x 2-5x +6;②计算判别式Δ=(-5)2-4×1×6=1>0; ③作f (x )的图象;④将a =1,b =-5,c =6代入求根公式x =-b ±Δ2a ,得x 1=2,x 2=3.其中可作为解方程的算法的有效步骤为( ) A .①② B.②③ C .②④ D.③④解析:解一元二次方程可分为两步:确定判别式和代入求根公式,故②④是有效的,①③不起作用.故选C.答案:C二、填空题(每小题5分,共15分) 6.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则计算y =4-x . 第三步,输出y .当输入x =0时,输出y =________. 解析:∵x =0<4,∴y =4-x =2. 答案:27.已知A (-1,0),B (3,2),下面是求直线AB 的方程的一个算法,请将其补充完整:第一步,________.第二步,用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步,将第二步的方程化简,得到方程x -2y +1=0.解析:该算法功能为用点斜式方法求直线方程,第一步应为求直线的斜率,应为“计算直线AB 的斜率k =12”.答案:计算直线AB 的斜率k =128.下面给出了解决问题的算法:S 1,输入x .S 2,若x ≤1,则y =2x -3,否则y =x 2-3x +3. S 3,输出y .当输入的值为________时,输入值与输出值相等.解析:该算法的作用是计算并输出分段函数y =⎩⎪⎨⎪⎧x 2-3x +3,x >1,2x -3,x ≤1的函数值.因为输入值与输出值相等,所以当x >1时,x 2-3x +3=x ,解得x =3或x =1(舍去),当x ≤1时,2x -3=x ,解得x =3(舍去).答案:3三、解答题(每小题10分,共20分) 9.写出解方程x 2-2x -3=0的一个算法. 解析:算法一:第一步,移项,得x 2-2x =3.① 第二步,①式两边同时加1并配方,得(x -1)2=4.② 第三步,②式两边开方,得x -1=±2.③ 第四步,解③得x =3或x =-1.算法二:第一步,计算方程的判别式并判断其符号:Δ=(-2)2-4×(-3)=16>0. 第二步,将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac2a ,得x 1=3,x 2=-1.10.请设计一个判断直线l 1:y =k 1x +b 1(k 1≠0)与直线l 2:y =k 2x +b 2(k 2≠0)是否垂直的算法.解析:算法如下: 第一步,输入k 1,k 2的值. 第二步,计算u =k 1·k 2.第三步,若u =-1,则输出“垂直”;否则,输出“不垂直”.[能力提升](20分钟,40分)11.能设计算法求解下列各式中S 的值的是( ) ①S =12+14+18+ (12100)②S =12+14+18+…+12100+…;③S =12+14+18+…+12n (n 为确定的正整数).A .①② B.①③ C .②③ D.①②③解析:因为算法的步骤是有限的,所以②不能设计算法求解.易知①③能设计算法求解. 答案:B12.一个算法的步骤如下: 第一步,令i =0,S =2.第二步,如果i ≤15,则执行第三步;否则执行第六步. 第三步,计算S +i 并用结果代替S . 第四步,用i +2的值代替i . 第五步,转去执行第二步. 第六步,输出S .运行该算法,输出的结果S =________.解析:由题中算法可知S =2+2+4+6+8+10+12+14=58. 答案:5813.从古印度的汉诺塔传说中演变出一个汉诺塔游戏:如图有三根杆子A ,B ,C ,A 杆上有三个碟子(自上到下逐渐变大),每次移动一个碟子,要求小的只能叠在大的上面,最终把所有碟子从A 杆移到C 杆上.试设计一个算法,完成上述游戏.解析:第一步,将A 杆最上面的碟子移到C 杆上. 第二步,将A 杆最上面的碟子移到B 杆上. 第三步,将C 杆上的碟子移到B 杆上. 第四步,将A 杆上的碟子移到C 杆上. 第五步,将B 杆最上面的碟子移到A 杆上. 第六步,将B 杆上的碟子移到C 杆上.第七步,将A 杆上的碟子移到C 杆上.14.给出解方程ax 2+bx +c =0(a ,b ,c 为实数)的一个算法. 解析:算法步骤如下:第一步,当a =0,b =0,c =0时,解集为全体实数; 第二步,当a =0,b =0,c ≠0时,原方程无实数解; 第三步,当a =0,b ≠0时,原方程的解为x =-c b; 第四步,当a ≠0且b 2-4ac >0时,方程有两个不等实根 x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a;第五步,当a ≠0且b 2-4ac =0时,方程有两个相等实根x 1=x 2=-b2a ;第六步,当a ≠0且b 2-4ac <0时,方程无实根.[课时作业2] 程序框图与算法的顺序结构、条件结构[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.条件结构不同于顺序结构的特征是含有( ) A .处理框 B .判断框 C .输入、输出框 D .起止框解析:由于顺序结构中不含判断框,而条件结构中必须含有判断框,故选B. 答案:B2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.故选C.答案:C3.运行如图所示的程序框图,输出的结果为11,则输入的x 的值为( )A.6 B.5C.4 D.3解析:依题意,令2x-1=11,解得x=6,即输入的x的值为6.答案:A4.已知M=ln 2,N=lg 10,执行如图所示的程序框图,则输出S的值为( )A.1 B.ln 10C.ln 5 D.ln 2解析:依题意,可得M<N,故输出的S=M=ln 2,故选D.答案:D5.某市的出租车收费办法如下:不超过2千米收7元(即起步价7元),超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填( )A .y =7+2.6xB .y =8+2.6xC .y =7+2.6(x -2)D .y =8+2.6(x -2) 解析:当x >2时,2千米内的收费为7元, 2千米外的收费为(x -2)×2.6, 另外燃油附加费为1元,所以y =7+2.6(x -2)+1=8+2.6(x -2). 答案:D二、填空题(每小题5分,共15分) 6.如图,该程序框图的功能是________.解析:该程序框图表示的算法是先输入五个数,然后计算这五个数的和,再求这五个数的平均数,最后输出它们的和与平均数.答案:求五个数的和以及这五个数的平均数7.阅读如图所示的程序框图,若运行该程序框图后,输出y 的值为4,则输入的实数x 的值为________.解析:由程序框图,得y =⎩⎪⎨⎪⎧(x +2)2,x ≥02x,x <0,若y =4,则有⎩⎪⎨⎪⎧x ≥0(x +2)2=4或⎩⎪⎨⎪⎧x <02x=4,解得x =0.答案:08.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥22-x ,x <2,如图表示的是给定x 的值,求其对应的函数值y 的程序框图,则①②处分别应填写________.解析:程序框图中的①处就是分段函数解析式的判断条件,故填写“x <2?”,②处就是当x ≥2时的函数解析式,故填写“y =log 2x ”.答案:x <2?,y =log 2x三、解答题(每小题10分,共20分)9.已知半径为r 的圆的周长公式为C =2πr ,当r =10时,写出计算圆的周长的一个算法,并画出程序框图.解析:算法如下: 第一步,令r =10. 第二步,计算C =2πr . 第三步,输出C . 程序框图如图所示:10.为了节约能源,培养市民节约用电的良好习惯,某省居民生活用电价格将实行三档累进递增的阶梯电价:第一档,月用电量不超过200千瓦时,每千瓦时0.498元;第二档,月用电量超过200千瓦时但不超过400千瓦时,超出的部分每千瓦时0.548元;第三档,月用电量超过400千瓦时,超出的部分每千瓦时0.798元.(1)写出电费y (元)关于月用电量z (千瓦时)的函数关系式; (2)请帮助该省政府设计一个计算电费的程序框图. 解析:(1)所求的函数关系式为y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.498×200+(x -200)×0.548,200<x ≤4000.498×200+200×0.548+(x -400)×0.798,x >400,即y =⎩⎪⎨⎪⎧0.498x ,0≤x ≤2000.548x -10,200<x ≤4000.798x -110,x >400.(2)程序框图为[能力提升](20分钟,40分)11.阅读如图程序框图,如果输出的值y 在区间⎣⎢⎡⎦⎥⎤14,1内,则输入的实数x 的取值范围是( )A .[-2,0)B .[-2,0]C .(0,2]D .[0,2]解析:由题意得:2x∈⎣⎢⎡⎦⎥⎤14,1且x ∈[-2,2],解得x ∈[-2,0].答案:B12.阅读如图所示的程序框图,写出它表示的函数是________.解析:由程序框图知,当x >3时,y =2x -8;当x ≤3时,y =x 2,故本题框图的功能是输入x 的值,求分段函数y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)的函数值.答案:y =⎩⎪⎨⎪⎧2x -8(x >3)x 2(x ≤3)13.已知函数y =⎩⎪⎨⎪⎧2x -1,x <0,x 2+1,0≤x <1,x 3+2x ,x ≥1,写出求该函数的函数值的算法,并画出程序框图.解析:算法如下: 第一步,输入x .第二步,如果x <0,那么y =2x -1,然后执行第四步;否则,执行第三步. 第三步,如果x <1,那么y =x 2+1;否则,y =x 3+2x . 第四步,输出y . 程序框图如图所示.14.如图所示的程序框图,其作用是:输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,求这样的x 值有多少个?解析:由题可知算法的功能是求分段函数y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5的函数值,要满足题意,则需要⎩⎪⎨⎪⎧x ≤2,x 2=x (解得x =0或x =1)或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x (x =3)或⎩⎪⎨⎪⎧x >5,1x=x ,(x=±1,舍去)∴满足条件的x 的值有3个.[课时作业3] 循环结构及应用[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列关于循环结构的说法正确的是( )A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去解析:由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.答案:C2.如图所示程序框图的输出结果是( )A.3 B.4C.5 D.8解析:利用循环结构求解.当x=1,y=1时,满足x≤4,则x=2,y=2;当x=2,y=2时,满足x≤4,则x=2×2=4,y=2+1=3;当x=4,y=3时,满足x≤4,则x=2×4=8,y=3+1=4;当x=8,y=4时,不满足x≤4,则输出y=4.答案:B3.如图所示的程序框图输出的S是126,则①应为( )A.n≤5? B.n≤6?C.n≤7? D.n≤8?解析:2+22+23+24+25+26=126,所以应填“n≤6?”.答案:B4.执行程序框图如图,若输出y的值为2,则输入的x应该是( )A.2或 3 B.2或± 3C.2 D.2或- 3解析:由程序框图可得:当x<0时,y=x2-1,∴x2-1=2,即x2=3,∴x=- 3.当x≥0时,y=2x-2,∴2x-2=2,∴2x=4=22.∴x=2,综上所述,x=2或- 3.答案:D5.执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4C.5 D.6解析:执行第一次循环的情况是:a=2,b=4,a=6,s=6,n=1;执行第二次循环的情况是:a=-2,b=6,a=4,s=10,n=2,执行第三次循环的情况是:a=2,b=4,a =6,s=16,n=3,执行第四次循环的情况是:a=-2,b=6,a=4,s=20,n=4.根据走出循环体的判断条件可知执行完第四次走出循环体,输出n值,n值为4.答案:B二、填空题(每小题5分,共15分)6.执行如图所示的程序框图,若输入n的值为3,则输出的S的值为________.解析:第一次运算:S=2-1,i=1<3,i=2,第二次运算:S=3-1,i=2<3,i=3,第三次运算:S=1,i=3=n,所以S的值为1.答案:17.根据条件把图中的程序框图补充完整,求区间[1,1 000]内所有奇数的和,(1)处填________;(2)处填________.解析:求[1,1 000]内所有奇数和,初始值i =1,S =0,并且i <1 000,所以(1)应填S =S +i ,(2)应填i =i +2.答案:(1)S =S +i (2)i =i +28.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于________.解析:当n =1时,a =152,b =4,满足进行循环的条件.n =2,a =454,b =8,满足进行循环的条件. n =3,a =1358,b =16,满足进行循环的条件. n =4,a =40516,b =32,不满足进行循环的条件. 故输出的n 值为4. 答案:4三、解答题(每小题10分,共20分)9.设计一个算法,求1×2×3…×100的值,并画出程序框图.解析:算法步骤如下: 第一步,S =1. 第二步,i =1. 第三步,S =S ×i . 第四步,i =i +1.第五步,判断i 是否大于100,若成立,则输出S ,结束算法;否则返回执行第三步. 程序框图如图.10.如图所示程序框图中,有这样一个执行框x i =f (x i -1),其中的函数关系式为f (x )=4x -2x +1,程序框图中的D 为函数f (x )的定义域. (1)若输入x 0=4965,请写出输出的所有x i ;(2)若输出的所有x i 都相等,试求输入的初始值x 0. 解析:(1)当x 0=4965时,x 1=4x 0-2x 0+1=1119,而x 1∈D ,∴输 出x 1,i =2,x 2=4x 1-2x 1+1=15,而x 2=15∈D ,∴输出x 2,i =3,x 3=4x 2-2x 2+1=-1,而-1∉D ,退出循环,故x i 的所有项为1119,15.(2)若输出的所有x i 都相等,则有x 1=x 2=…=x n =x 0,即x 0=f (x 0)=4x 0-2x 0+1,解得:x 0=1或x 0=2,所以输入的初始值x 0为1或2时输出的所有x i 都相等.[能力提升](20分钟,40分)11.考拉兹猜想又名3n +1猜想,是指对于每一个正整数,如果它是奇数,则乘3再加1;如果它是偶数,则除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i =( )A .4B .5C .6D .7解析:当a =10时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =5,i =2;当a =5时,不满足退出循环的条件,进入循环后,由于a 值满足“a 是奇数”,故a =16,i =3;当a =16时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =8,i =4;当a =8时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =4,i =5;当a =4时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =2,i =6;当a =2时,不满足退出循环的条件,进入循环后,由于a 值不满足“a 是奇数”,故a =1,i =7;当a=1时,满足退出循环的条件,故输出结果为7.故选D.答案:D12.下列四个程序框图都是为计算22+42+62+…+1002而设计的.正确的程序框图为________(填序号);图③输出的结果为________________(只需给出算式表达式);在错误的程序框图中,不能执行到底的为________(填序号).解析:将每一个程序框图所表示的算法“翻译”出来,即可判断.答案:④22+42+62+ (982)13.某高中男子体育小组的50米短跑成绩(单位:s)如下:6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5.设计一个算法,从这些成绩中搜索出小于 6.8 s 的成绩,并将这个算法用程序框图表示出来.解析:算法如下:第一步,输入a.第二步,若a<6.8成立,则输出a,否则执行第三步.第三步,若没有数据了,则算法结束,否则返回第一步.程序框图如图所示:14.设计一个算法,求1×22×33×…×100100的值,并画出程序框图(分别用直到型循环结构和当型循环结构表示).解析:算法步骤如下(直到型循环结构):第一步,S=1.第二步,i=1.第三步,S=S×i i.第四步,i=i+1.第五步,判断i>100是否成立.若成立,则输出S,结束算法;否则,返回第三步.该算法的程序框图如图所示:算法步骤如下(当型循环结构):第一步,S=1.第二步,i=1.第三步,判断i≤100是否成立.若成立,则执行第四步;否则,输出S,结束算法.第四步,S=S×i i.第五步,i=i+1.该算法的程序框图如图所示:[课时作业4] 输入语句、输出语句和赋值语句[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列语句正确的个数是( )①输入语句INPUT a+2;②赋值语句x=x-5;③输出语句PRINT M=2.A.0 B.1C.2 D.3解析:①中输入语句只能给变量赋值,不能给表达式a+2赋值,所以①错误;②中x =x-5表示变量x减去5后再将值赋给x,即完成x=x-5后,x比原来的值小5,所以②正确;③中不能输出赋值语句,所以③错误.答案:B2.下列程序运行的结果是( )A.1 B.2C.3 D.4解析:由赋值语句的功能知:M=1,M=1+1=2,M=2+2=4,输出M的值为4,故选D.答案:D3.输入a=5,b=12,c=13,经下列赋值语句运行后,a的值仍为5的是( )解析:对于选项A,先把b的值赋给a,a的值又赋给b,这样a,b的值均为12;对于选项B,先把c的值赋给a,这样a的值就是13,接下来是把b的值赋给c,这样c的值就是12,再又把a的值赋给b,所以a的值还是13;对于选项C,先把a的值赋给b,然后又把b的值赋给a,所以a的值没变,仍为5;对于选项D,先把b的值赋给c,这样c的值是12,再把a的值赋给b,于是b的值为5,然后又把c的值赋给a,所以a的值为12.于是可知选C.答案:C4.给出下列程序:若输出的A的值为120,则输入的A的值为( )A.1 B.5C.15 D.120解析:该程序的功能是计算A×2×3×4×5的值,则120=A×2×3×4×5,故A=1,即输入A的值为1.答案:A5.下列程序执行后,变量a,b的值分别为( )A.20,15 B.35,35C.5,5 D.-5,-5解析:a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15,再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.答案:A二、填空题(每小题5分,共15分)6.阅读如图所示的算法框图,则输出的结果是________.解析:y=2×2+1=5,b=3×5-2=13.答案:137.下面程序的功能是求所输入的两个正数的平方和,已知最后输出的结果是3.46,试据此将程序补充完整.解析:由于程序的功能是求所输入的两个数的平方和,且最后输出的结果是3.46,所以3.46=1.12+x22.所以,x22=2.25.又x2是正数,所以x2=1.5.答案:1.58.已知A(x1,y1),B(x2,y2)是平面上的两点,试根据平面几何中的中点坐标公式设计一个程序,要求输入A,B两点的坐标,输出它们连线中点的坐标.现已给出程序的一部分,请在横线处把程序补充完整:解析:应填入中点坐标公式.答案:(x1+x2)/2 (y1+y2)/2三、解答题(每小题10分,共20分)9.给出程序框图,写出相应的程序语句.解析:程序如下:10.阅读下面的程序,根据程序画出程序框图.解析:程序框图如图所示.[能力提升](20分钟,40分)11.给出下列程序:此程序的功能为( )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和解析:输入的四个实数可作为两个点的坐标,程序中的a,b分别表示两个点的横、纵坐标之差,而m,n分别表示两点横、纵坐标之差的平方;s是横、纵坐标之差的平方和,d 是平方和的算术平方根,即两点之间的距离,最后输出此距离.答案:B12.阅读下列两个程序,回答问题.①②(1)上述两个程序的运行结果是①____________;②________;(2)上述两个程序中的第三行有什么区别:________________________________________________________________________ ________________________________________________________________________.解析:(1)①中运行x=3,y=4,x=4,故运行结果是4,4;同理,②中的运行结果是3,3;(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为3.答案:(1)①4,4②3,3(2)程序①中的“x=y”是将y的值4赋给x,赋值后x的值变为4;程序②中的“y=x”是将x的值3赋给y,赋值后y的值变为313.已知函数y=x2+3x+1,编写一个程序,使每输入一个x值,就得到相应的y值.解析:程序如下:14.某粮库3月4日存粮50 000 kg,3月5日调进粮食30 000 kg,3月6日调出全部存粮的一半,求每天的库存粮食数,画出程序框图,写出程序.解析:程序框图如图所示.程序:[课时作业5] 条件语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.当a=3时,下面的程序段输出的结果是( )A.9 B.3C.10 D.6解析:因为a=3<10,所以y=2×3=6.答案:D2.运行下面程序,当输入数值-2时,输出结果是( )A.7 B.-3C.0 D.-16解析:该算法是求分段函数y =⎩⎨⎧3x ,x >0,2x +1,x =0,-2x 2+4x ,x <0,当x =-2时的函数值,∴y =-16. 答案:D3.下列程序语句的算法功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:由程序语句可知,当比较a ,b 的大小后,选择较大的数赋给a ;当比较a ,c 的大小后,选择较大的数赋给a ,最后输出a ,所以此程序的作用是输出a ,b ,c 中最大的数.答案:A4.为了在运行下面的程序之后输出y =25,键盘输入x 应该是( )A .6B .5C .6或-6D .5或-5解析:程序对应的函数是y =⎩⎪⎨⎪⎧ (x +1)2,x <0,(x -1)2,x ≥0.由⎩⎪⎨⎪⎧ x <0,(x +1)2=25,或⎩⎪⎨⎪⎧ x ≥0,(x -1)2=25,得x =-6或x =6.答案:C5.已知程序如下:如果输出的结果为2,那么输入的自变量x 的取值范围是 ( )A .0B .(-∞,0]C .(0,+∞) D.R解析:由输出的结果为2,则执行了ELSE 后面的语句y =2,即x >0不成立,所以有x ≤0. 答案:B二、填空题(每小题5分,共15分)6.将下列程序补充完整.判断输入的任意数x 的奇偶性.解析:因为该程序为判断任意数x 的奇偶性且满足条件时执行“x 是偶数”,而m =x MOD 2表示m 除2的余数,故条件应用“m =0”.答案:m =07.如图,给出一个算法,已知输出值为3,则输入值为________.解析:本题的程序表示一个分段函数f(x)=⎩⎪⎨⎪⎧ x 2-3x -1,x≥0,log 2(x +5),x<0,∵输出值为3,∴⎩⎪⎨⎪⎧ x 2-3x -1=3,x≥0或⎩⎪⎨⎪⎧ log 2(x +5)=3,x<0,∴x=4,∴输入值x =4.答案:48.阅读下面程序(1)若输入a=-4,则输出结果为________;(2)若输入a=9,则输出结果为________.解析:分析可知,这是一个条件语句,当输入的值是-4时,输出结果为负数.当输入的值是9时,输出结果为9=3.答案:(1)负数(2)3三、解答题(每小题10分,共20分)9.编写求函数y=|x|的值的程序.解析:程序如下:10.给出如下程序(其中x满足:0<x<12).(1)该程序用函数关系式怎样表达?(2)画出这个程序的程序框图.解析:(1)函数关系式为y =⎩⎪⎨⎪⎧ 2x ,0<x ≤4,8,4<x ≤8,24-2x ,8<x <12.(2)程序框图如下:[能力提升](20分钟,40分)11.阅读下面的程序:程序运行的结果是( )A.3 B.3 4C.3 4 5 D.3 4 5 6解析:本题主要考查了条件语句的叠加,程序执行条件语句的叠加的过程中对于所有的条件都要进行判断,依次验证每一个条件,直到结束.在本题中共出现四次条件判断,每一个条件都成立,故输出结果为3 4 5 6.答案:D12.如下程序要使输出的y 值最小,则输入的x 的值为________.解析:本程序执行的功能是求函数y =⎩⎪⎨⎪⎧ (x -1)2(x ≥0),(x +1)2(x <0)的函数值.由函数的性质知,当x =1或x =-1时,y 取得最小值0.答案:-1或113.设计判断正整数m 是否是正整数n 的约数的一个算法,画出其程序框图,并写出相应的程序.解析:程序框图:程序为:14.到某银行办理跨行汇款,银行收取一定的手续费,汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取手续费;超过5 000元,一律收取50元手续费,画出描述汇款额为x 元,银行收取手续费y 元的程序框图,并写出相应的程序.解析:由题意,知y =⎩⎪⎨⎪⎧ 1,0<x ≤100,0.01x ,100<x ≤5 000,50,x >5 000.程序框图如图所示:程序如下:[课时作业6] 循环语句 [基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列程序运行后,输出的i的值等于( )A.9 B.8C.7 D.6解析:第一次:S=0+0=0,i=0+1=1;第二次:S=0+1=1,i=1+1=2;第三次:S=1+2=3,i=2+1=3;第四次:S=3+3=6,i=3+1=4;第五次:S=6+4=10,i=4+1=5;第六次:S=10+5=15,i=5+1=6;第七次:S=15+6=21,i=6+1=7,因此S=21>20,所以输出i=7.答案:C2.下列循环语句,循环终止时,i等于( )A.2 B.3C.4 D.5解析:当i<3时,执行循环体,因此,循环终止时i=3.答案:B3.如果以下程序运行后输出的结果是132,那么在程序中LOOP UNTIL后面的“条件”应为( )A.i>11 B.i>=11C.i<=11 D.i<11解析:该程序中使用了直到型循环语句,当条件不满足时执行循环体,满足时退出循环,由于输出的是132,132=12×11,故选D.答案:D4.下列程序执行后输出的结果是( )A.3 B.6C.10 D.15解析:由题意得,S=0+1+2+3+4+5=15.答案:D5.图中程序是计算2+3+4+5+6的值的程序.在WHILE后的①处和在s=s+i之后的②处所填写的语句可以是( )A.①i>1②i=i-1B.①i>1②i=i+1C.①i>=1 ②i=i+1D.①i>=1 ②i=i-1解析:程序框图是计算2+3+4+5+6的和,则第一个处理框应为i>1,i是减小1个,i=i-1,从而答案为:①i>1②i=i-1.答案:A二、填空题(每小题5分,共15分)6.阅读下面程序,输出S的值为________.解析:S=1,i=1;第一次:T=3,S=3,i=2;第二次:T=5,S=15,i=3;第三次:T =7,S =105,i =4,满足条件, 退出循环,输出S 的值为105. 答案:1057.下列程序表示的表达式是________(只写式子,不计算).解析:所给程序语句为WHILE 语句,是求12i +1的前九项和.所以表达式为13+15+…+117+119. 答案:13+15+…+117+1198.已知有如下两段程序:程序1运行的结果为________,程序2运行的结果为______.解析:程序1从计数变量i =21开始,不满足i ≤20,终止循环,累加变量sum =0,这个程序计算的结果是sum =0;程序2从计数变量i =21开始,进入循环,sum =0+21=21,i =i +1=21+1=22,i >20,循环终止,此时,累加变量sum =21,这个程序计算的结果是sum =21.答案:0 21三、解答题(每小题10分,共20分)9.编写程序,计算并输出表达式11+2+12+3+13+4+…+119+20的值.解析:利用UNTIL 语句编写程序如下 :10.分别用WHILE 语句和UNTIL 语句编写程序,求出使不等式12+22+32+…+n 2<1 000成立的n 的最大整数值.解析:方法一 利用WHILE 语句编写程序如下:方法二 利用UNTIL 语句编写程序如下:[能力提升](20分钟,40分)11.如下所示的程序,若最终输出的结果为6364,则在程序中横线处可填入的语句为( )A .i>=8B .i>=7C .i<7D .i<8解析:因为n =2,i =1,第1次循环:S =0+12=12,n =4,i =2;第2次循环:S =12+14=34,n =8,i =3;第3次循环:S =34+18=78,n =16,i =4;第4次循环:S =78+116=1516,n =32,i =5;第5次循环:S =1516+132=3132,n =64,i =6;第6次循环:S =3132+164=6364,n =128,i =7.此时输出的S =6364,故可填i >=7.答案:B12.下面是利用UNTIL 循环设计的计算1×3×5×…×99的一个算法程序.请将其补充完整,则横线处应分别填入①________②________.解析:补充如下:①S=S*i ②i>99答案:①S=S*i ②i>9913.高一(4)班共有60名同学参加数学竞赛,现已有这60名同学的竞赛分数,请设计一个将竞赛成绩优秀的同学的平均分输出的程序(规定89分以上为优秀).解析:程序如下:14.意大利数学家菲波那契在1202年出版的一本书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.解析:由题意可知,第一个月有一对小兔,第二个月有一对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和.设第N个月有F 对兔子,第N-1个月有S对兔子,第N-2个月有Q对兔子,则F=S+Q.第N+1个月时,式中变量S的新值应变为第N个月兔子的对数(F的旧值),变量Q的新值应变为第N-1个月兔子的对数(S的旧值),这样,用S+Q求出变量F的新值就是第N+1个月兔子的对数,以此类推,可以得到一列数,这列数的第12项就是年底应有兔子的对数.我们可以先确定前两个月的兔子对数均为1,以此为基准,构造—个循环结构,让表示“第x个月”的i从3逐次增加1,一直变化到12,最后一次循环得到的F就是所求结果.程序框图如图所示.程序如下:。

人教A版数学-必修第一册-课时作业-63三角恒等变换及应用(含解析)

课时作业63 习题课 三角恒等变换及应用1.cos 40°cos 25°1-sin 40°=( )A .2B .-2C .1cos 25°D .222.若cos (π4+θ)=45,则sin 2θ=( )A .15B .-15C .725 D .-7253.设a =12cos 10°-32sin 10°,b =2tan 12°1+tan 212°,c =1-sin40°2,则a ,b ,c 大小关系正确的是( )A .a <b <cB .c <b <aC .a <c <bD .b <c <a4.已知4cos 2α2-22cos α+sin α=12,则tan 2α=( )A .12 B .1C .45D .-435.(多选)已知α是第三象限角,且tan α21-tan 2α2=1,则( )A .tan α=1B .sin α=-255C .sin 2α=45D .tan (α-π4)=-136.(多选)设θ的终边在第二象限,则1-sin θcos θ2-sinθ2的值可能为( )A .1B .-1C .-2D .27.已知tan α、tan β是方程x 2-33x +10=0的两根,且α、β∈(-π2,π2),则α+β的值等于________.8.已知cos (α+π12)=-34,则sin (2α-π3)=________.9.已知α,β∈(0,π2),其中cos 2α=725,sin (α-β)=-225.(1)求cos (α-π4)的值;(2)求sin β的值.10.已知函数f (x )=2cos 2x +23sin x cos x -1(x ∈R ).(1)求函数f (x )的最小正周期及对称轴;(2)若x ∈[-π4,π4],求函数f (x )的值域.11.已知α,β都是锐角,sin (α-π6)=17,cos (α+β)=-35,则cos (β+π6)=( )A .-4-12335B .4-12335C .-12+4335 D .-12-433512.已知θ∈(3π4,π),且cos θ-sin θ=-72,则2cos 2θ-1cos (π4+θ)=( )A .-22 B .-12C .12D .2213.函数y =sin 2x +a cos 2x 的图象关于直线x =π8对称,则a 的值为( )A .2B .-2C .1D .-114.(多选)计算下列各式的值,其结果为1的有( )A .cos 40°(1+3tan 10°)B .12(1cos 80°-3sin 80°)C .sin 140°(3-tan 190°)D .4sin 18°·sin 54°15.设f (x )=cos xcos (30°-x ),则f (1°)+f (2°)+…+f (59°)=________.16.已知f (α)=tan α·tan 2αtan 2α-tan α+3(sin 2α-cos 2α).(1)化简f (α),并求f (-5π12)的值;(2)若f (α)=1013,α∈(0,π4),求sin2α的值.1.解析:cos 40°cos 25°1-sin 40°=cos (90°-50°)cos 25°sin 220°-2sin20°cos 20°+cos 220°=sin50°cos 25°(cos 20°-sin 20°)2=2sin 25°cos 25°cos 25°(cos 20°-sin 20°)=2sin 25°2(22cos 20°-22sin 20°)=2sin 25°2×sin (45°-20°)=2sin 25°sin 25°=2.故选A.答案:A2.解析:因为cos (π4+θ)=45,所以cos π4cos θ-sin π4sin θ=45,即cos θ-sin θ=425,两边同时平方,由平方关系可得1-2sin θcos θ=3225,所以sin 2θ=2sin θcos θ=1-3225=-725.故选D.答案:D3.解析:a =12cos 10°-32sin 10°=cos (60°+10°)=cos 70°=sin 20°,b =2tan 12°1+tan 212°=2sin12°cos 12°1+sin 212°cos 212°=2sin12°cos 12°=sin 24°,c = 1-sin 40°2= cos 220°-2sin20°cos 20°+sin 220°2=(cos 20°-sin 20°)22=22cos 20°-22sin 20°=cos (45°+20°)=cos 65°=sin 25°,由于y =sin x 在x ∈(0,π2)单调递增,故sin 20°<sin 24°<sin 25°,故a <b <c .故选A.答案:A4.解析:由4cos 2α2-22cos α+sin α=2cos α2cos α+sin α=22+tan α=12,解得tan α=2,tan 2α=2tan α1-tan 2α=41-4=-43.故选D.答案:D5.解析:由题意得tan α=2tanα21-tan 2α2=2,A 错误;又α是第三象限角,sin α<0,所以由{sin 2α+cos 2α=1sin αcos α=tan α=2解得sin α=-255,cos α=-55,B 正确;sin 2α=2sin αcos α=45,C 正确;tan (α-π4)=tan α-11+tan α=13,D 错误.故选BC.答案:BC6.解析:∵θ的终边在第二象限,∴2k π+π2<θ<2k π+π,k ∈Z ,∴k π+π4<θ2<k π+π2,k ∈Z ,1-sin θcos θ2-sin θ2=sin 2θ2+cos 2θ2-2sin θ2cosθ2cos θ2-sinθ2=(sin θ2-cos θ2)2 cos θ2-sinθ2=|sin θ2-cos θ2|cos θ2-sin θ2,故当2k π+π4<θ2<2k π+π2,k ∈Z 时,sin θ2-cos θ2>0,1-sin θcos θ2-sin θ2=sin θ2-cos θ2cos θ2-sinθ2=-1,当2k π+5π4<θ2<2k π+3π2,k ∈Z 时,sin θ2-cos θ2<0,1-sin θcos θ2-sin θ2=cos θ2-sin θ2cos θ2-sinθ2=1.故选AB.答案:AB7.解析:已知tan α、tan β是方程x 2-33x +10=0的两根,所以有{tan αtan β=10>0tan α+tan β=33>0⇒α、β∈(0,π2)⇒α+β∈(0,π),tan (α+β)=tan α+tan β1-tan αtan β=331-10=-33,因为α+β∈(0,π),所以α+β=5π6.答案:5π68.解析:因为cos (α+π12)=-34,则sin (2α-π3)=sin [2(α+π12)-π2]=-cos [2(α+π12)]=1-2cos 2(α+π12)=1-1816=-18.答案:-189.解析:(1)依题意,cos2α=2cos 2α-1=1-2sin 2α=725,因为α∈(0,π2),解得:sin α=35,cos α=45,故cos (α-π4)=cos αcos π4+sin αsin π4=45×22+35×22=7210.(2)因为sin (α-β)=-225,且α,β∈(0,π2),故α-β∈(-π2,0),则cos (α-β)=1-sin 2(α-β)=175,故sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=35×175-45×(-225)=317+8225.10.解析:(1)f (x )=cos 2x +3sin 2x =2sin (2x +π6),故最小正周期T =2π2=π,对称轴满足:2x +π6=π2+k π,k ∈Z ,故对称轴为x =π6+k π2,k ∈Z .(2)由(1)可知f (x )=2sin (2x +π6),x ∈[-π4,π4],则2x +π6∈[-π3,2π3],sin (2x +π6)∈[-32,1],故f (x )∈[-3,2].故函数f (x )的值域为[-3,2].11.解析:由于α,β都是锐角,则-π6<α-π6<π3,0<α+β<π,因为sin (α-π6)=17>0,cos (α+β)=-35<0,所以0<α-π6<π3,π2<α+β<π,所以cos (α-π6)=437,sin (α+β)=45,所以cos (β+π6)=cos [(α+β)-(α-π6)]=cos (α+β)cos (α-π6)+sin (α+β)sin (α-π6)=-35×437+45×17=4-12335.故选B.答案:B12.解析:因为cos θ-sin θ=-72,所以(cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1-sin 2θ=74,所以sin 2θ=-34.因为θ∈(3π4,π),所以2θ∈(3π2,2π),所以cos 2θ=1-sin 22θ=74.则2cos 2θ-1cos (π4+θ)=cos 2θ22(cos θ-sin θ)=74-144=-22.故选A.答案:A13.解析:由已知y =sin 2x +a cos 2x =1+a 2(11+a 2sin 2x +a 1+a 2cos 2x ),令sin θ=a 1+a 2,cos θ=11+a 2,则y =1+a 2(cos θsin 2x +sin θcos 2x )=1+a 2sin (2x +θ).因为图象关于直线x =π8对称,所以2×π8+θ=π2+k π,k ∈Z ,所以θ=π4+k π,k ∈Z .当k 为偶数时,有sin θ=cos θ=22>0,可得a =1;当k 为奇数时,有sin θ=cos θ=-22<0,又cos θ=11+a 2>0,此时a 无解.综上所述,a =1.故选C.答案:C14.解析:对于A ,cos 40°(1+3tan 10°)=cos 40°(1+3sin 10°cos 10°)=cos40°·cos 10°+3sin 10°cos 10°=cos 40°·2sin (30°+10°)cos 10°=2sin 40°cos 40°cos 10°=sin 80°cos 10°=sin (90°-10°)cos 10°=cos 10°cos 10°=1,A 正确;对于B ,12(1cos 80°-3sin 80°)=12·sin 80°-3cos 80°sin 80°cos 80°=2sin (80°-60°)sin 160°=2sin 20°sin (180°-20°)=2,B 错误;对于C ,sin 140°(3-tan 190°)=sin 140°(3-sin 190°cos 190°)=sin 140°·3cos 190°-sin 190°cos 190°=sin 140°·2cos (30°+190°)cos 190°=sin 140°·2cos (360°-140°)cos 190°=2sin 140°cos 140°cos 190°=sin 280°cos 190°=sin (190°+90°)cos 190°=cos 190°cos 190°=1,C 正确;对于D ,4sin 18°·sin 54°=4sin (90°-72°)·sin (90°-36°)=4cos 72°·cos 36°=4cos 72°·cos 36°·sin 36°sin 36°=2cos 72°·sin 72°sin 36°=sin 144°sin 36°=sin (180°-36°)sin 36°=sin 36°sin 36°=1,D 正确.故选ACD.答案:ACD15.解析:由题得f (x )+f (60°-x )=cos x cos (30°-x )+cos (60°-x )cos (x -30°)=cos x +cos (60°-x )cos (x -30°)=cos x +12cos x +32sin x cos (x -30°)=32cos x +32sin xcos (x -30°)=3(32cos x +12sin x )cos (x -30°)=3cos (x -30°)cos (x -30°)=3,所以f (1°)+f (2°)+…+f (59°)=12{[f (1°)+f (59°)]+[f (2°)+f (58°)]+…+[f (59°)+f (1°)]}=12[3+3+…+3]=5932.答案:593216.解析:(1)f (α)=sin αcos α·sin 2αcos 2αsin 2αcos 2α-sin αcos α+3(sin 2α-cos 2α)=sin αsin 2αcos αcos 2αsin 2αcos α-cos 2αsin αcos 2αcos α-3(cos 2α-sin 2α)=sin αsin 2αsin (2α-α)-3cos 2α=sin 2α-3cos 2α=2sin (2α-π3).所以f (-5π12)=2sin (-2×5π12-π3)=2sin (-7π6)=1.(2)由(1)及题设得:2sin (2α-π3)=1013,所以sin (2α-π3)=513.因为α∈(0,π4),所以2α-π3∈(-π3,π6),所以cos (2α-π3)= 1-sin 2(2α-π3)=1-(513)2=1213,所以sin 2α=sin [(2α-π3)+π3]=sin (2α-π3)cos π3+cos (2α-π3)sinπ3=513×12+1213×32=5+12326.。

单 摆 课时作业(含解析) (30)

第4课时单摆[对点训练]知识点一·单摆及单摆公式的应用1.(多选)单摆是为研究摆的振动而抽象出的理想化模型,其理想化条件是()A.摆线质量不计B.摆线的长度不伸缩C.摆球的直径比摆线长度短得多D.摆角很小(θ<5°)答案ABCD解析单摆就是一根不可伸长的没有质量的线,下面悬挂一个质点的理想化模型,摆角要求小于5°,故A、B、C、D均正确。

2.天津市某中学生在本校实验室利用一单摆做小角度摆动,通过实验得到摆球振动位移x随时间t变化的关系如图所示,则下列说法正确的是()A.该同学所用单摆摆长约为1 mB.t=0时刻与t=1 s时刻摆球的速度相同C.t=0时刻摆球加速度为零,所受合力为零D.t=0.5 s时刻摆线的拉力最大答案A解析从图象可以知道,T=2 s,T=2π Lg,L=gT24π2=1m,所以A正确;t=0时刻与t=1 s时刻摆球都处于平衡位置,速度大小相等,但方向相反,故B错误;t=0时刻摆球处于平衡位置即最低点,单摆实际上在一定的弧度内做圆周运动,如图。

在最低点,合力提供向心力,所以合力和加速度都不为零,故C 错误;t =0.5 s 时,在最大位移处,速度为0,重力沿绳子方向的分力G 1与绳子拉力T ′平衡,T ′=G 1,拉力比重力小,而在平衡位置速度最大,合力提供向心力即T -G =m v 2R ,拉力比重力大,故D 错误。

3.如图所示为演示简谐运动的沙摆,已知摆长为l ,沙桶的质量为m ,沙子的质量为M ,M ≫m ,沙子逐渐下漏的过程中,沙摆的周期为( )A .周期不变B .先变大后变小C .先变小后变大D .逐渐变大答案 B解析 在沙摆摆动、沙子逐渐下漏的过程中,沙摆的重心逐渐下降,即摆长逐渐变大,周期变大;当沙子流到一定程度后,沙摆的重心又重新上移,即摆长变小,由周期公式可知,沙摆的周期变小,故沙摆的周期先变大后变小,故B 正确。

4.两个相同的单摆静止于平衡位置,使摆球分别以水平初速度v 1、v 2(v 1>v 2)在竖直平面内做小角度摆动,它们的频率与振幅分别为f 1、f 2和A 1、A 2,则( )A .f 1>f 2,A 1=A 2B .f 1<f 2,A 1=A 2C .f 1=f 2,A 1>A 2D .f 1=f 2,A 1<A 2答案 C解析 由单摆周期公式T =2π Lg 知,单摆振动的周期或频率只与摆长和当地重力加速度有关,因此两单摆的频率相等,即f 1=f 2;由机械能守恒定律有12m v 2=mgh ,解得h =v 22g ,即摆球经过平衡位置的速度越大,达到的高度越高,其振幅也就越大,C 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章机械振动第4节单摆课时分层训练「基础达标练」1.振动着的单摆摆球,通过平衡位置时,它受到的回复力()A.指向地面B.指向悬点C.数值为零D.垂直摆线,指向运动方向解析:选C摆球受到的回复力是重力沿圆弧切线方向上的分力,经过平衡位置时,回复力为零.由于单摆做圆周运动,在平衡位置,合力不为零,合力提供向心力,方向指向悬点,故C正确,A、B、D错误.2.一单摆的摆长为40 cm,摆球在t=0时刻正从平衡位置向右运动,若g 取10 m/s2,则在1 s时摆球的运动情况是()A.正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在减小解析:选D由T=2πlg,代入数据得T=1.256 s,则1 s时,正处于第四个14T内,由左侧最大位移向平衡位置运动,D正确.3.(2019·全国卷Ⅱ)如图,长为l的细绳下方悬挂一小球a,绳的另一端固定在天花板上O点处,在O点正下方34l的O′处有一固定细铁钉.将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时.当小球a摆至最低位置时,细绳会受到铁钉的阻挡.设小球相对于其平衡位置的水平位移为x,向右为正.下列图象中,能描述小球在开始一个周期内的x-t关系的是()解析:选A由单摆的周期公式T=2πLg可知,小球在钉子右侧时,振动周期为在左侧时振动周期的2倍,故B、D错误;由机械能守恒定律可知,小球在左、右最大位移处距离最低点的高度相同,但由于摆长不同,所以小球在左、右两侧摆动时相对平衡位置的最大水平位移不同,当小球在右侧摆动时,最大水平位移较大,故A正确,C错误.4.(多选)将一单摆向左拉至水平标志线上,从静止释放,当摆球运动到最低点时,摆线碰到障碍物,摆球继续向右摆动.用频闪照相机拍到如图所示的单摆运动过程的频闪照片,以下说法正确的是()A.摆线碰到障碍物前后的周期之比为3∶2B.摆线碰到障碍物前后的摆长之比为3∶2C.摆球经过最低点时,线速度不变,半径减小,摆线张力变大D.摆球经过最低点时,角速度变大,半径减小,摆线张力不变解析:选AC由单摆的周期公式T=2πLg可知,L∝T2,由于是频闪照片,图中相邻两小球的影像的时间间隔是相同的,所以周期之比是6∶4=3∶2,周期平方比是9∶4,故摆长之比为9∶4,故A正确,B错误;小球在摆动过程中机械能守恒,摆线经过最低点时,小球线速度不变,由v=ωr可知r减小,角速度变大.由向心力知识,T-mg=m v2r可知,r减小,摆线张力T变大,故C正确,D错误.5.(2018·衡水冀州中学月考)如图所示是描绘沙摆振动图象的实验装置和木板上留下的实验结果.沙摆的运动可看做简谐运动.若用手向外拉木板的速度是0.20 m/s,木板的长度是0.60 m,那么下列说法中正确的是(g取9.8 m/s2)()A.该沙摆的周期为3 sB.该沙摆的频率为1.5 HzC.这次实验所用的沙摆的摆长约为56 cmD.这次实验所用的沙摆的摆长约为1.5 m解析:选C由题得,薄木板水平匀速运动,运动时间为t=sv=0.60.2s=3 s,设沙摆的周期为T,由题图看出,2T=t,得T=1.5 s,频率为f=1T =23Hz,选项A、B错误;由单摆的周期T=2πlg,得l=gT24π2≈0.56 m=56 cm,选项C正确,D错误.6.如图所示,三根细线于O点处打结,A、B端固定在同一水平面上相距为L的两点上,使∠AOB成直角,∠BAO=30°,已知OC线长是L,下端C点系着一个小球(直径可忽略).下列说法中正确的是()A .让小球在纸面内摆动,周期T =2π L gB .让小球在垂直纸面内摆动,其周期T =2π3L2g C .让小球在纸面内摆动,周期T =2π3L2gD .让小球在垂直纸面内摆动,周期为T =2πLg 解析:选A 让小球在纸面内摆动,在摆角很小时,单摆以O 点为悬点,摆长为L ,周期为T =2πLg ,A 对,C 错;让小球在垂直纸面内摆动,摆球以OC 的延长线与AB 交点为中心摆动,摆长为L +L 2cos 30°=L +34L ,周期为T ′=2π (4+3)L4g ,B 、D 错.7.(多选)如图所示,为同一地点质量相同的甲、乙两单摆的振动图象,下列说法中正确的是( )A .甲、乙两单摆的摆长不相等B .甲摆的振幅比乙摆大C .甲摆的机械能比乙摆大D .在t =0.5 s 时有正向最大加速度的是乙摆解析:选BCD 分析振动图象读出两单摆的周期T =2 s ,两单摆的周期相同,根据单摆的周期公式T =2πLg 可知,同一地点g 相同,甲、乙两单摆的摆长L 相等,A 选项错误;甲摆的振幅为10 cm ,乙摆的振幅为7 cm ,则甲摆的振幅比乙摆大,B 选项正确;两单摆质量相等,摆长相等,甲摆振幅比乙摆大,甲摆的机械能比乙摆大,C 选项正确;在t =0.5 s 时,甲摆经过平衡位置,振动的加速度为零,而乙摆的位移为负的最大,则乙摆具有正向最大加速度,D 选项正确.8.如图所示是两个单摆的振动图象.(1)甲、乙两个摆的摆长之比是多少?(2)以向右的方向作为摆球偏离平衡位置的位移的正方向,从t =0起,乙第一次到达右方最大位移处时,甲振动到了什么位置?向什么方向运动?解析:(1)由题图可以看出,单摆甲的周期是单摆乙的周期的12,即T 甲=12T 乙,又由重力加速度一定,由单摆的周期与摆长的关系可知,l 甲∶l 乙=1∶4.(2)由题图可以看出,当乙第一次到达右方最大位移处时,t =2 s ,振动了14周期,甲振动了12周期,位移为0,位于平衡位置,此时甲向左运动.答案:(1)1∶4 (2)见解析「能力提升练」9.两个相同的单摆静止于平衡位置,使摆球分别以水平速度v 1、v 2(v 1>v 2)离开平衡位置,在竖直平面内做小角度摆动,它们的周期与振幅分别为T 1、T 2和A 1、A 2,则( )A .T 1>T 2,A 1=A 2B .T 1<T 2,A 1=A 2C .T 1=T 2,A 1>A 2D .T 1=T 2,A 1<A 2解析:选C 根据单摆周期公式T =2πLg ,相同的单摆,周期相同,即T 1=T 2.根据机械能守恒得,速度大者摆角大,则振幅也大,所以A 1>A 2,故A 、B 、D 错误,C 正确.10.一个物体在某行星表面受到的万有引力是它在地球表面受到的万有引力的14,在地球上走时正确的摆钟(设摆钟的周期与单摆简谐运动的周期相同)搬到此行星上,现要使摆钟在该行星与地球上的周期相同,下列可行的办法是( )A .将摆球的质量m 增加为4mB .将摆球的质量m 减少为m 4C .将摆长L 减短为L 4D .将摆长L 增长为4L解析:选C 根据在星球表面万有引力等于重力可知:某行星表面受到的万有引力是它在地球表面受到的万有引力的14倍,质量不变,所以该星球的重力加速度g ′=14g ;根据单摆的周期公式T =2πLg 可知,要使该单摆在行星与在地球上的周期相同,必须将摆长缩短为L 4,单摆的周期与摆球的质量无关,故A 、B 、D 错误,C 正确.11.如图所示,在竖直平面内有一段光滑圆弧轨道MN ,它对应的圆心角小于5°,P 是MN 的中点,也是圆弧的最低点.在NP 间的一点Q 和P 之间搭一光滑斜面并将其固定.将两个小滑块(可视为质点)同时分别从Q 和M 点由静止开始释放,则两个小滑块第一次相遇时的位置( )A .一定在斜面PQ 上的一点B .一定在PM ︵上C .一定在P 点D .不知道斜面PQ 的长短,无法判断解析:选A P 点是最低点,P 、Q 是圆弧上两点,对应圆弧半径为R ,由“等时圆”可知,Q 到P 历时t 1= 2×2Rg =2R g ,光滑圆弧轨道MN 所对应的圆心角小于5°,小滑块由M 到N 做简谐运动,由单摆周期公式T =2πLg 得t MP =T 4=π2R g ,所以t MP <t 1,故相遇时应在PQ 上的一点,A 项正确.12.(多选)小明在实验室做单摆实验时得到如图所示的单摆振动情形,O 是它的平衡位置,B 、C 是摆球所能到达的左右最远位置.小明通过实验测得当地重力加速度为g =9.8 m/s 2,并且根据实验情况绘制了单摆的振动图象如图乙所示.设图中单摆向右摆动为正方向,g ≈π2,则下列选项正确的是( )A .此单摆的振动频率是0.5 HzB .根据图乙可知开始计时摆球在C 点C .图中P 点向正方向振动D .根据已知数据可以求得此单摆的摆长为1.0 m解析:选AD 分析乙图可知,单摆的振动周期为2.0 s ,根据周期和频率的关系可知,频率为0.5 Hz ,A 选项正确;分析乙图可知,t =0是摆球处于负向最大位移处,开始向正方向运动,单摆向右摆动为正方向,所以开始计时摆球在B 点,B 选项错误;根据振动图象可知,P 点向负方向振动,C 选项错误;根据单摆的周期公式T =2πL g 可知,摆长L =gT 24π2=g ·224π2=1.0 m ,D 选项正确.13.已知摆钟的机械结构相同,摆钟摆锤的运动可近似看成简谐运动,如果摆长为L 1的摆钟在一段时间里快了n min ,另一摆长为L 2的摆钟在同样的一段时间里慢了n min ,则准确钟的摆长L 为多少?解析:设摆钟振动周期为T .T =2πLg ①摆长为L 1的钟摆的周期为T 1,T 1=2πL 1g ②摆长为L 2的钟摆的周期为T 2,T 2=2π L 2g ③ 设相同时间为t ;相同时内摆钟的走时之比等于频率之比,故有:T ∶T 1∶T 2=1t ∶1t +n ∶1t -n④ 联立①②③④得L =4L 1L 2L 1+L 2+2L 1L 2. 答案:4L 1L 2(L 1+L 2)2 14.如图1所示,将单摆的小球M 从图中位置由静止释放,小球经过时间t 第一次运动到O 点正下方的A 点.如图2所示,一可视为质点的小球N 从光滑斜面的最高点由静止释放,小球经过时间t 运动到斜面的最底端B 点.已知单摆的摆长与斜面的长度相同,均为L .试求斜面的倾角θ的正弦值.解析:小球M 从图中位置由静止释放,做单摆运动.根据单摆的周期公式T =2πL g 可知,从开始运动到第一次到达最低点的时间t =T 4联立解得t =π2Lg 小球N 沿着光滑斜面做匀加速直线运动,受到重力与支持力的作用.根据牛顿第二定律可知,加速度a =g sin θ,小球从静止开始做匀加速直线运动.位移L =12at 2解得t 2=2L a =2L g sin θ联立解得sin θ=8π2.8答案:π2。

相关文档
最新文档