蛋白质的翻译后修饰

合集下载

第六章蛋白质翻译后修饰的鉴定

第六章蛋白质翻译后修饰的鉴定

04
抗体法在蛋白质翻译后修饰鉴定中的应用
抗体法原理及技术流程
原理
抗体法利用特异性抗体与蛋白质翻译 后修饰位点结合的原理,通过免疫学 方法进行检测和鉴定。
技术流程
包括抗原制备、抗体生产、抗体纯化 和特异性验证等步骤。
抗体法鉴定蛋白质翻译后修饰的优势与局限性
优势
高特异性、高灵敏度、可定量分析等。
局限性
化学方法
质谱分析
通过质谱技术检测蛋白质分子的质量和化学 性质,从而鉴定蛋白质的翻译后修饰类型和 位点。
荧光标记
利用荧光标记技术标记特定的修饰位点,通过荧光 信号的强度和分布来鉴定蛋白质的翻译后修饰。
蛋白质芯片技术
将蛋白质固定在芯片表面,利用特定的抗体 或配体检测蛋白质的翻译后修饰类型和位点 。
实例分析
第六章蛋白质翻译后 修饰的鉴定
汇报人:XX
目录
• 蛋白质翻译后修饰概述 • 蛋白质翻译后修饰的鉴定方法 • 质谱法在蛋白质翻译后修饰鉴定中的应用 • 抗体法在蛋白质翻译后修饰鉴定中的应用 • 其他方法在蛋白质翻译后修饰鉴定中的应
用 • 蛋白质翻译后修饰鉴定的挑战与未来发展
01
蛋白质翻译后修饰概述
数据准备
收集已知的蛋白质乙酰化修饰位点数据,包括蛋白质序列、修饰位点 的位置和化学性质等。
特征提取
从蛋白质序列中提取与乙酰化修饰相关的特征,如氨基酸组成、序列 模体、结构域等。
模型训练
利用机器学习或深度学习算法,如支持向量机、神经网络等,训练预 测模型。
预测与验证
将新的蛋白质序列输入到训练好的模型中,预测潜在的乙酰化修饰位 点,并通过实验验证预测结果的准确性。
其他方法
1 2 3

蛋白质翻译后修饰

蛋白质翻译后修饰

细胞应激反应
在应激条件下,如氧化应激和DNA损伤, 蛋白质翻译后修饰可以调控应激反应相关蛋 白的活性和功能,从而影响细胞的生存和凋
亡。
THANK YOU
泛素化作用
泛素化可以影响靶蛋白的稳定性、定位、活性以及与其他蛋白质的相互作用,从 而调控细胞内的多种生物学过程,如细胞周期、信号转导和自噬等。
泛素化可以标记受损或不需要的蛋白质,引导其被蛋白酶体降解,从而维持细胞 内蛋白质的平衡。
泛素化调控
泛素化过程受到严格的调控,涉及多种酶的协同作用。这些酶包括E1(泛素活化酶)、 E2(泛素结合酶)和E3(泛素连接酶)。
E3酶在泛素化过程中起着关键作用,它能够识别并结合特定的靶蛋白,将泛素分子准 确地连接到靶蛋白上。
此外,去泛素化酶能够逆转泛素化过程,去除已经结合在靶蛋白上的泛素分子,从而对 泛素化进行动态调控。
05
其他翻译后修饰
乙酰化
总结词
乙酰化是一种常见的蛋白质翻译后修饰,通过将乙酰基团连接到蛋白质的特定氨基酸残基上,可以调节蛋白质的 活性和功能。
翻译后修饰可以影响蛋白质的稳定性 ,通过增加或减少蛋白质的降解速率 ,从而影响细胞内蛋白质的水平和功 能。
蛋白质降解
某些翻译后修饰,如泛素化,可以标 记蛋白质进行降解,通过蛋白酶体途 径降解蛋白质,维持细胞内蛋白质的 动态平衡。
蛋白质功能调控
酶活性调节
亚细胞定位
许多蛋白质在翻译后被修饰以改变其酶活性, 例如,磷酸化可以激活或抑制酶的活性,从 而调控代谢过程和信号转导。
03
疾病与磷酸化
许多人类疾病与蛋白质磷酸化的异常有关。例如,一些癌症和神经退行
性疾病的发生与特定蛋白质的异常磷酸化有关。因此,对蛋白质磷酸化

蛋白质翻译及翻译后修饰课件.ppt

蛋白质翻译及翻译后修饰课件.ppt

1.3 核糖体(ribosome)与核糖体rRNA
核糖体是rRNA 与几十种蛋白质的复合体,有大、小两个亚基构成。含有 合成蛋白质多肽链所必需的酶、起始因子(IF)、延伸因子(EF)、释放 因子(RF)等。
原核的核糖体(70S)= 30S小亚基 + 50S大亚基 30S小亚基: 16S rRNA + 21种蛋白质 50S大亚基: 23S,5SrRNA + 34种蛋白质
蛋白质翻译及翻译后修饰课件
tRNA的结构—“四环一臂”
倒L形的三级结构
蛋白质翻译及翻译后修饰课件
tRNA的功能是解读mRNA上的密码子和搬运氨基酸。 tRNA上至少有4 个位点与多肽链合成有关:即3’CCA氨基酸接受位
点、氨基酰-tRNA合成酶识别位点、核糖体识别位点和反密码子位点。 每一个氨基酸有其相应的tRNA携带, 氨基酸的羧基与tRNA的 3’
反应如下:
A A t R N A A T P 氨 酰 基 - t R N A 合 成 酶 A A - t R N A A M P P P i
氨基酸的羧基与tRNA 的3’端CCA-OH 以酯键相连,因此其氨基是自 由的。
蛋白质翻译及翻译后修饰课件
tRNAfmet fMet-tRNA合成酶
蛋白质翻译及翻译后修饰课件
分泌型蛋白质在翻译过程中通过信号肽协助转入内质网的机制
信号肽(signal peptide)是在新生的多肽链中,可被细胞识别系统识别的 特征性氨基酸序列,在蛋白质翻译过程中或翻译后的定位发挥引导的作用。
蛋白质翻译及翻译后修饰课件
本章结束
蛋白质翻译及翻译后修饰课件
氨酰基tRNA进入A位
新的氨基酸-tRNA的进位依赖Tu-Ts因子和GTP的协助

蛋白质翻译后修饰与加工

蛋白质翻译后修饰与加工

VS
信号转导
在信号转导过程中,蛋白质的翻译后修饰 可以影响蛋白质与其他信号分子或受体的 结合,从而调控信号转导通路的激活或抑 制。
蛋白质构象变化
构象变化
某些蛋白质在翻译后经过特定的化学修饰, 如磷酸化、乙酰化等,这些修饰可以改变蛋 白质的构象,从而影响蛋白质的功能。
结构域运动
蛋白质的结构域之间可以发生相对运动,这 种运动可以影响蛋白质与其他分子的结合或 构象变化,从而调控蛋白质的功能。
糖基化
总结词
糖基化是一种在蛋白质翻译后发生的修饰,通过将糖链连接到蛋白质的特定氨基酸残基上,影响蛋白质的结构和 功能。
详细描述
糖基化分为两种类型:N-糖基化和O-糖基化。N-糖基化发生在新生蛋白的N-端,而O-糖基化发生在丝氨酸或苏 氨酸残基上。糖基化可以影响蛋白质的稳定性、分泌和细胞间的相互作用,参与多种生物学过程,如细胞识别、 信号转导和免疫应答等。溶酶体途径Fra bibliotek溶酶体
是一种细胞器,内部含有多种水解酶,能够分解各种生物大分子。
溶酶体途径
是指通过溶酶体降解细胞内物质的过程。
04
蛋白质定位与转运
核定位信号
01
02
03
04
核定位信号(NLS)
是一种特殊的氨基酸序列,能 够引导蛋白质进入细胞核。
核输出信号(NES)
存在于某些蛋白质中,能够将 蛋白质从细胞核输出到细胞质 。
酶的激活
某些蛋白质在翻译后经过特定的化学 修饰,如磷酸化、乙酰化或甲基化等, 这些修饰可以改变酶的构象或电荷分 布,从而激活酶的活性。
酶的失活
某些蛋白质经过特定的化学修饰后, 如泛素化或糖基化等,会导致酶的活 性降低或完全失活,从而调控蛋白质 的降解或功能。

基于质谱的蛋白质翻译后修饰富集技术

基于质谱的蛋白质翻译后修饰富集技术

基于质谱的蛋白质翻译后修饰富集技术一、蛋白质翻译后修饰概述蛋白质翻译后修饰(Post-translational modifications, PTMs)是指在蛋白质合成后,通过酶促反应在蛋白质的特定氨基酸残基上添加或移除化学基团的过程。

这些修饰对蛋白质的结构、功能和稳定性具有重要影响,是细胞内信号传导、代谢调节和细胞周期控制等生物学过程的关键调控机制。

PTMs的种类繁多,包括磷酸化、乙酰化、甲基化、糖基化、泛素化等。

1.1 蛋白质翻译后修饰的重要性蛋白质翻译后修饰在细胞内发挥着多种生物学功能,包括但不限于:- 调节酶活性:通过修饰可以激活或抑制酶的活性,从而影响代谢途径。

- 控制蛋白质稳定性:某些修饰可以作为蛋白质降解的信号,影响其在细胞内的半衰期。

- 参与信号传导:修饰后的蛋白质可以作为信号分子,参与细胞内外的信号传递。

- 影响蛋白质定位:修饰可以改变蛋白质的亚细胞定位,如核定位信号。

1.2 蛋白质翻译后修饰的类型蛋白质翻译后修饰主要包括以下几种类型:- 磷酸化:在丝氨酸、苏氨酸或酪氨酸残基上添加磷酸基团。

- 乙酰化:在赖氨酸残基上添加乙酰基团。

- 甲基化:在赖氨酸或精氨酸残基上添加甲基基团。

- 糖基化:在天冬酰胺或色氨酸残基上添加糖链。

- 泛素化:通过泛素蛋白的添加,标记蛋白质进行降解。

二、质谱技术在蛋白质翻译后修饰研究中的应用质谱技术是一种高灵敏度、高特异性的分析技术,能够精确测定蛋白质和肽段的分子量,是研究蛋白质翻译后修饰的重要工具。

2.1 质谱技术的原理质谱技术通过将样品分子离子化,然后根据质荷比(m/z)分离这些离子,并检测其信号强度,从而获得样品的组成信息。

在蛋白质翻译后修饰研究中,质谱技术可以用于鉴定修饰类型、定位修饰位点以及定量修饰水平。

2.2 质谱技术的优势质谱技术在蛋白质翻译后修饰研究中具有以下优势:- 高通量:可以同时分析数千个蛋白质和修饰位点。

- 高灵敏度:能够检测到低丰度的修饰蛋白质。

蛋白翻译后修饰综述

蛋白翻译后修饰综述

蛋白翻译后修饰综述蛋白质翻译后修饰 (Protein translational modifications,PTMs) 通过功能基团或蛋白质的共价添加、调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质组的功能多样性。

三羧酸循环是葡萄糖在线粒体代谢的一个重要环节。

葡萄糖产生的乙酰辅酶A进入三羧酸循环,产生大量还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotide,NADH)和还原型黄素腺嘌呤二核苷酸(reduced flavin adenine dinucleotide,FADH2),为呼吸链提供电子,推动氧化磷酸化反应合成三磷酸腺苷(adenosine triphosphate,ATP)。

三羧酸循环有8个关键催化酶,它们的催化活性均受翻译后修饰的调节。

(一)乙酰化及琥珀酰化在调节三羧酸循环中,乙酰化的作用以抑制为主,而琥珀酰化以激活为主。

琥珀酸脱氢酶(succinate dehydrogenase,SDH)是三羧酸循环关键酶之一,位于线粒体内膜。

由A和B两个亚基组成。

SDH催化琥珀酸转为富马酸,并且产生FADH2。

A亚基(SDHA)活性既受乙酰化调节也受琥珀酰化调节,而两种修饰作用相反:乙酰化抑制该亚基活性,去乙酰化后该亚基活性提高[13]。

动物模型研究发现,胚胎期母亲低蛋白饮食可增加出生后肥胖及T2DM发生率,机制是SIRT3表达减少,增加SDH 乙酰化状态,降低SDH活性[14]。

柠檬酸合酶和异柠檬酸脱氢酶2(isocitrate dehydrogenase 2,IDH2)的催化活性也受乙酰化抑制[15,16]。

但是,乙酰化修饰也可增加三羧酸循环中某些酶的活性,如苹果酸脱氢酶(malate dehydrogenase,MDH)和顺乌头酸酶[16,17]。

与乙酰化修饰的作用相反,琥珀酰化增加SDH活性[13],但抑制IDH2的活性[18]。

翻译后修饰蛋白质组与代谢组整合分析

翻译后修饰蛋白质组与代谢组整合分析蛋白质的翻译后修饰(Post Translational Modifications, PTMs)是蛋白质在翻译中或翻译后经历的一个共价加工过程。

翻译后修饰蛋白质组是指细胞或组织等整体水平上的翻译后修饰蛋白质。

目前,已知的蛋白质翻译后修饰主要包括糖基化、磷酸化、酰化、泛素化、二硫键配对、甲基化和亚硝基化等等。

代谢组是细胞、组织或生物体内的小分子(通常称为代谢物)的整体水平。

翻译后修饰蛋白质可以调节细胞生物过程、影响机体的代谢变化。

影响代谢的翻译后修饰蛋白质不仅包括翻译后修饰转录因子,还包括翻译后修饰代谢酶。

因此,整合分析翻译后修饰蛋白质组和代谢组,比较它们的表达异同,有利于从不同层面解析生物的代谢机制,挖掘差异修饰蛋白质、代谢物、及它们参与的重要通路和相关基因,以进行后续深入研究。

百泰派克生物科技采用Thermo Fisher的Orbitrap Fusion Lumos质谱平台结合nanoLC-MS/MS纳升色谱,将磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键/亚硝基化等翻译后修饰鉴定服务,多种样品靶向和非靶向代谢组学分析服务,结合可定制化的生物信息学分析方法进行整合,为广大科研工作者提供基于质谱的翻译后修饰蛋白质组与代谢组整合分析服务。

翻译后修饰蛋白质组与代谢组整合分析流程翻译后修饰蛋白质组与代谢组整合分析流程。

应用领域农林领域:抗逆胁迫机制,物种保护研究等;畜牧业:致病机理研究,肉类及乳制品品质研究等;海洋水产:渔业环境与水产品安全等;微生物:致病机理,耐药机制,病原体-宿主相互作用研究等;生物医药:生物标志物,疾病机理机制,疾病分型,药物开发,个性化治疗等;环境科学:发酵过程优化,生物燃料生产,环境危害风险评估研究等;食品科学:食品储藏及加工条件优化,食品组分及品质鉴定,食品安全监检测等。

中/英文项目报告在技术报告中,百泰派克会为您提供详细的中/英文双语版技术报告,报告包括:1. 实验步骤(中英文)。

蛋白质翻译后修饰指南

蛋白质翻译后修饰指南蛋白质是构成生物体的重要组成部分,其翻译后修饰对于蛋白质的功能和稳定性具有重要的影响。

本指南将介绍蛋白质翻译后修饰的主要类型和作用,以及在实验室中常用的技术和方法。

一、蛋白质翻译后修饰的类型1. 糖基化:糖基化是一种常见的蛋白质翻译后修饰方式,它可以增加蛋白质的稳定性和溶解性,并调节蛋白质的功能。

糖基化的糖链可以通过N-糖基化和O-糖基化两种方式与蛋白质结合。

2. 磷酸化:磷酸化是一种通过添加磷酸基团来改变蛋白质功能的修饰方式。

磷酸化可以调节蛋白质的酶活性、亲和力和细胞定位,从而影响细胞信号传导和许多生物学过程。

3. 乙酰化:乙酰化是一种通过添加乙酰基团来改变蛋白质的修饰方式。

乙酰化可以影响蛋白质的结构和亲和力,从而调节其功能、稳定性和细胞定位。

4. 甲基化:甲基化是一种通过添加甲基基团来改变蛋白质的修饰方式。

甲基化可以影响蛋白质的稳定性、DNA或RNA结合能力,从而调节基因表达和细胞分化。

二、蛋白质翻译后修饰的作用1. 调节蛋白质功能:翻译后修饰可以改变蛋白质的结构和活性,进而影响其功能。

例如,磷酸化可以调节酶的活性,糖基化可以影响蛋白质的折叠和稳定性。

2. 控制蛋白质降解:某些翻译后修饰方式可以促进或抑制蛋白质的降解,从而控制蛋白质在细胞内的寿命和稳定性。

例如,泛素化是一种促进蛋白质降解的修饰方式。

3. 调控细胞信号传导:许多翻译后修饰方式可以调节细胞内的信号传导通路。

例如,磷酸化可以激活或抑制信号蛋白的功能,从而影响细胞的生理过程。

三、蛋白质翻译后修饰的实验方法1. 质谱分析:质谱分析是研究蛋白质翻译后修饰的重要方法之一。

通过质谱仪可以检测修饰蛋白质的质量和结构,从而确定修饰的类型和位置。

2. 免疫印迹:免疫印迹是一种常用的蛋白质检测方法,可以用于检测特定修饰的蛋白质。

通过使用特异性的抗体,可以识别和分析特定修饰方式下的蛋白质。

3. 免疫组织化学:免疫组织化学是一种用于研究修饰蛋白质在细胞或组织中的定位和表达的方法。

蛋白质翻译后修饰及其功能

蛋白质翻译后修饰及其功能
蛋白质的修饰指的是对蛋白质分子的化学结构进行改变,从而影响蛋白质的功能和活性。

蛋白质修饰通常可以分为两大类:翻译后修饰和转录后修饰。

1.翻译后修饰:指的是在蛋白质合成完成后,通过一系列酶催化反应对蛋白质分子的氨基酸残基进行的化学修饰。

常见的翻译后修饰包括:-磷酸化:将磷酸基团(PO4)添加到蛋白质分子上,通过调节蛋白质的构象和活性,参与细胞信号转导、基因表达等过程。

-甲基化:在蛋白质的赖氨酸残基上添加甲基基团(CH3),参与DNA 修复、转录调控等生物学过程。

-乙酰化:在蛋白质的赖氨酸残基上添加乙酰基团(CH3CO),参与细胞代谢、染色体结构的调控等过程。

-泛素化:在蛋白质分子上附加小型蛋白物质泛素,参与蛋白质的降解、DNA修复等过程。

2.转录后修饰:指的是在蛋白质合成后,由酶催化将其他化学分子如糖类、脂类等与蛋白质分子非共价地连接起来,从而改变蛋白质的结构和性质。

常见的转录后修饰包括:
-糖基化:将糖类分子附加到蛋白质分子上,形成糖蛋白;参与细胞信号传导、免疫应答等过程。

-脂基化:将脂类分子如脂肪酸、胆固醇等附加到蛋白质分子上,形成脂蛋白;参与细胞信号传导、细胞膜的结构和功能调节等过程。

-辅酶修饰:将辅酶分子如辅酶A、辅酶FAD等与蛋白质分子结合,
参与能量代谢、酶催化等生物过程。

这些修饰能够调节蛋白质的稳定性、活性和功能,在细胞过程中起着
重要的调控作用。

不同的修饰方式和位置会导致蛋白质的不同功能和亚型,从而在生物体内发挥不同的生理作用。

蛋白翻译后修饰

常见的蛋白翻译后修饰包括磷酸化、 糖基化、乙酰化、甲基化、泛素化等 。
蛋白翻译后修饰的重要性
蛋白翻译后修饰是蛋白质功能多样化和动态调 控的重要机制,可以影响蛋白质的活性、稳定 性、定位和与其他蛋白质的相互作用。
蛋白翻译后修饰在细胞信号转导、细胞周期调 控、细胞分化、肿瘤发生等多种生物学过程中 发挥重要作用。
磷酸化与信号转导
磷酸化
磷酸化是一种常见的蛋白翻译后修饰,通过将磷酸基团添加到蛋白质上,可以调节蛋白质的活性和功 能。磷酸化在信号转导过程中起着至关重要的作用,可以影响蛋白质之间的相互作用和细胞内的信号 传递。
信号转导
信号转导是指细胞对外界信号的响应和内部信号的传递过程。磷酸化可以调节蛋白质的活性,从而影 响细胞内的信号转导过程,参与细胞生长、分化、代谢和凋亡等多种生物学过程。
抗体特异性检测
总结词
抗体特异性检测是确保所使用抗体能 够特异性识别目标蛋白及其翻译后修 饰的重要手段。
详细描述
抗体特异性检测主要包括Western blot、免疫荧光染色和ELISA等方法。 通过这些方法,可以检测抗体的特异 性、灵敏度和交叉反应情况,确保抗 体的可靠性。
05
蛋白翻译后修饰与疾病的关系
甲基化改变与遗传性疾病
总结词
蛋白质甲基化是一种重要的翻译后修饰,与遗传性疾 病的发生和发展密切相关。
详细描述
甲基化改变会导致基因表达的异常调控,进而引发威 廉姆斯综合征、唐氏综合征和囊性纤维化等遗传性疾 病。
糖基化异常与免疫疾病
总结词
糖基化是一种重要的蛋白质翻译后修饰,与免疫疾病 的发生和发展密切相关。
未来研究方向和挑战
• 尽管对蛋白翻译后修饰的研究已经取得了一些重要进展,但仍有许多修饰类型 和相关酶缺乏深入了解。未来需要进一步探索这些未知领域,以全面揭示蛋白 翻译后修饰的多样性和复杂性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的翻译后修饰
蛋白质是生物体内最为重要的分子之一,其功能与结构多种多样,
而这些功能与结构的多样性与蛋白质的翻译后修饰密切相关。

在蛋白
质翻译过程结束后,细胞内往往还需要对蛋白质进行进一步的后修饰,以实现其功能的发挥。

这些后修饰包括糖基化、磷酸化、乙酰化等,
它们能够调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要
作用。

一、糖基化修饰
糖基化修饰是指在蛋白质分子上附加糖基的过程。

这种修饰可以发
生在蛋白质的Asn残基上,形成N-糖基化,也可以发生在蛋白质的
Ser或Thr残基上,形成O-糖基化。

糖基化修饰能够调节蛋白质的稳定性、可溶性和定位,还可以影响蛋白质与其他分子的相互作用。

例如,MUC1蛋白质的糖基化修饰在肿瘤细胞的侵袭和转移中起到重要的调
节作用。

二、磷酸化修饰
磷酸化修饰是指在蛋白质分子上附加磷酸基团的过程。

磷酸化修饰
通过蛋白激酶的作用来实现,它能够调节蛋白质的活性、稳定性和相
互作用,影响蛋白质的信号传导、细胞周期和调控等生理过程。

例如,磷酸化修饰能够激活转录因子NF-κB,参与细胞对炎症和免疫反应的
应答。

三、乙酰化修饰
乙酰化修饰是指在蛋白质分子上附加乙酰基的过程。

这种修饰通常
发生在蛋白质的赖氨酸残基上,通过乙酰转移酶来实现。

乙酰化修饰
能够调节蛋白质的稳定性、DNA结合能力和转录调控活性,对细胞发育、增殖和分化等过程具有重要作用。

例如,乙酰化修饰通过调控组
蛋白交换和染色质结构的紧凑性,影响基因的表达。

四、其他修饰形式
除了糖基化、磷酸化和乙酰化修饰外,蛋白质的翻译后修饰还包括
甲基化、泛素化、酰化等多种形式。

这些修饰过程能够进一步改变蛋
白质的结构与功能,从而参与调控细胞内的生物学过程。

例如,泛素
化修饰能够调节蛋白质的降解和稳定性,参与细胞凋亡和细胞周期控制。

总结
蛋白质的翻译后修饰是细胞内多种生物学过程的关键环节,它能够
调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要作用。


基化、磷酸化、乙酰化以及其他形式的修饰能够改变蛋白质的特性,
对细胞信号传导、基因表达和细胞周期等起到调控作用。

进一步研究
蛋白质的翻译后修饰,有助于揭示细胞内各种生物学过程的分子机制,为疾病治疗和新药研发提供理论基础。

相关文档
最新文档