3D显示技术原理及发展(比较全面)
三维立体显示技术

对观察者头部旳位置和观察角度有较严格旳限制 ;
不能显示或只能显示很有限旳运动视差图片 ;
水平辨别率损失,画面亮度较低 。
研究方向
更精确旳深度图;
区域移动补点研究 ;
运动视差图像旳研究 ;
新型构造和器件旳研究 。
返回
集成显示技术(Integral Imaging )
• 集成显示技术又称全景显示,于 1923年由 Lippmann发明。
体显示:G体像素
T体像素;
自动立体显示:到达上K旳可视区域;
MEMS器件在三维立体显示中旳应用;
全运动视差旳实现;
谢谢各位老师同学, 请提出宝贵意见。
被动发光旋转扫描体显示系统
Felix3D三维显示系统
可显示物体旳体像素数目10k。
被动发光旋转扫描体显示系统
Perspecta 3d显示屏
辨别率:768*768*192; 色彩格式:24bit RGB; 旋转屏转速:730rad; 体像素数:100M; 帧频:2409FPS; 接口数据率:4.68GB; 显示范围:10英寸; 可视角度:360°。
静态体三维显示技术
基于空间等离子体旳三维显示技术
静态体三维显示技术
DepthCube三维显示系统
体三维显示系统
最新进展
南加州大学研制旳三维显示系统
体三维显示系统
南加州大学研制旳三维显示系统旳 创新之处:
使用与水平成45度旳旋转镜来替代平面漫反射屏幕 。 研制了基于DLP旳帧频可高达5000fps旳超高速彩色投影机
体三维显示系统旳分类
目前,体三维显示系统从显示空间旳形成上划分可分为两
类:
•主动发光旋转扫描体 三维显示
•螺旋屏
3D技术原理及发展状况和前景

3D技术原理及发展状况和前景3D技术是指通过计算机技术、图像处理技术和各种显示技术,将现实世界中的物体或场景以立体的方式呈现给用户的一种技术。
它可以让用户感受到真实世界的深度和立体感,给人们带来更加沉浸式的视觉体验。
3D技术的原理主要是通过计算机生成的三维模型和图像处理的算法,结合不同的显示技术,如立体显示技术和3D眼镜等,将物体的立体信息呈现出来。
近年来,3D技术得到了快速发展和广泛应用,主要表现在以下几个方面:首先,3D技术在电影和游戏领域得到了广泛应用。
通过3D技术,电影和游戏可以给用户带来更加逼真的视觉感受,增加视觉冲击力和沉浸感。
例如,许多电影都会采用3D版本进行放映,在观众眼中呈现出更加真实和立体的画面效果。
同时,游戏领域也出现了许多使用3D技术的游戏,使玩家可以在游戏中获得更加真实的体验。
其次,3D技术在虚拟现实(VR)和增强现实(AR)领域的应用越来越广泛。
通过使用VR设备或AR眼镜,用户可以进入一个虚拟的世界或者在现实世界中叠加虚拟内容,从而实现更加真实的沉浸式体验。
这种技术在游戏、教育、医疗和设计等领域都有很大的应用潜力。
另外,3D技术也在制造业和建筑领域得到了广泛的应用。
通过使用3D打印技术,可以将设计师的三维模型直接打印出来,加快产品的开发和制造过程。
同时,建筑师可以使用3D建模软件来设计建筑物,并通过虚拟现实技术来展示给客户,帮助客户更好地理解和决策。
未来,3D技术有着广阔的发展前景。
随着计算机计算和图像处理能力的不断提高,3D技术的应用范围将会越来越广泛。
在娱乐领域,3D技术将会进一步提升电影和游戏的观影体验,让观众更加沉浸其中。
在教育领域,通过使用3D技术,学生可以更加直观地学习和理解各种知识。
在医疗领域,3D技术可以帮助医生更好地进行手术操作和疾病诊断。
总结起来,3D技术在不同领域得到了广泛应用,并且在不断发展和完善。
随着技术的进一步推动和创新,相信3D技术的应用将会更加广泛,给人们带来更加丰富和真实的体验。
3D技术原理及发展状况和前景

3D技术原理及发展状况和前景1 3D技术起源及原理人眼产生3D视觉的秘密——偏光原理:人眼在看任何物体时,由于两只眼睛在空间有一定间距约为5cm,即存在两个视角。
这样形成左右两眼所看的图像不完全一样,称为视差。
这种细微的视差通过视网膜传递到大脑里,就能显示出物体的前后远近,产生强烈的立体感。
这是1839年,英国科学家温斯特发现的一个奇妙的现象,至今为止几乎任何3D 影像技术都是基于这个原理开发的。
2 3D技术发展状况2.1 3D成像技术种类3D成像技术有很多种,分为不闪式3D技术、互补色技术、时分法技术、光栅式技术、普式技术、全息式技术等。
而其中以时分法为当今所广泛应用,而不闪式技术和互补色技术也有着较为广泛的应用。
为了方便说明我们用互补色技术解释立体电影的形成(光的三原色原理——红、绿、兰)⑴互补色技术是目前比较多电影院采用的技术,依据人眼的成像原理,以两台摄影机模拟人眼左右眼所成的像。
再在放映过程中使用两台放映机它将不同视角上的成像用不同的颜色印刻1/ 7在同一副画面下,互补色3D眼镜采用的技术也就是色分法,色分法会将两个不同视角上拍摄的影像分别以两种不同的颜色印制在同一副画面中。
如果在这样的情况下,我们直接利用肉眼去观看红蓝、红绿等多种模式类的电影,就会出现模糊的重影图像。
这样我们就无法观看到红蓝、红绿等多种模式类的电影的立体效果。
再让用户通过红蓝立体镜片来观看到立体效果。
由于技术成熟而且眼镜造价相对低廉,所以广为当今的电影院所接受。
⑵时分法即是(快门法)通过提高屏幕刷新率把图像按帧一分為二,形成左右眼连续交错显示的两组画面,通过快门式3D 眼镜的配合,使得这两组画面分别进入左右双眼,最终在大脑中合成3D立体图像。
计算机可以用显卡将普通2D影像生成3D效果,成为未来用户接触3D视觉的主流设备。
它也包括红蓝色分法,但这只是为了让不具备硬件条件的用户也能体验3D视觉的次级方案,它主要是利用快门原理的时分法技术。
3D立体显示技术之发展

•
平面顯示器的方案的話,比較常見的方法則有: 平面顯示器的方案
裸眼式立體顯示系統這部分,算是比較單純,基本上都是平面顯示器(例如液晶螢幕、電 裸眼式立體顯示系統 漿電視這一類),應該是沒有辦法做成投影的模式的。
常見技術 1:不需要戴眼鏡 2:有觀看位置 視角 上的限制 3 :可以做2D/3D 模式的切換
特性 可以做成多視角 解析度會隨著視角 數量的增加而降低 不會降低解析度 較適合小型顯示裝置
因位置的前後差異,而產生的移動時的差異;
比如說在坐車時,會覺得較近的物體移動地比較快。 透視(perspective) 透視 主要是「線性透視(linear perspective)」和「空氣透視(aerial perspective)」。 線性透視 最好的例子就是站在火車軌道上往遠方看,兩條平行的鐵軌會在遠 方交接。 則是指在地球的大氣中,因為空氣的影響使遠方的物體會有蒙上一層霧的 感覺,而近距離的物體相形之下則顯得清晰。
立體重現
立體視覺的呈現 主要還是來自雙眼的視覺 最主要的還是該如何讓兩眼看到左右眼各自不同的畫面 目前的立體技術來說 首要是以”要不要戴眼鏡“這個條件來區分
需要配戴眼鏡(with glasses)
目前立體ቤተ መጻሕፍቲ ባይዱ示技術的方法分類
主動式眼鏡(active glasses) 被動式眼鏡(passive glasses) 彩色眼鏡(anaglyph) 偏光眼鏡(polarizer) 波長多路式(wavelength multiplex)
透鏡(lenticular) 空間多工 視差屏(barrier ) 分時多工 指向性背光
目前的技術來說,裸眼立體顯示都還有一些使用上的限制,所以一般來說, 立體效果是不會比要帶眼鏡的立體系統好; 主要優點,就是不用配戴特殊的眼鏡了~
3D显示技术概述

18:54
3
➢交错显示(Interlacing)
交错显示(Interlacing):就是依序显示第1、3、5……等单数扫描线,然 后再依序显示第2、4、6……等偶数扫描线的周而复始的循环显示方式。
交错显示模式的工作原理:将一个画面分为二个图场,即单数扫描线所构 成的奇图场与偶数扫描线所构成的偶图场。将左眼图像与右眼图像分置于单图 场和偶图场(也可反之)中,即立体交错格式。
景深感受形象举例:
1、大家可以轮流闭上一只眼试试--看同
一个东西,侧面不同
2、单眼对笔尖--比双眼困难很多
18:54
1
3D显示技术的发展概况
18:54
2
配合立体眼镜的3D图像格式分类以及原理
最常见的3D图像格式有以下四种: ➢交错显示模式(Interlacing) ➢线遮蔽模式(Line-Blanking) ➢画面交换模式(Page-Flipping) ➢画面同步倍频模式(Sync-Doubling)
立体成像实现:使用立体眼镜与这类立体显示模式搭配,只需要将垂直
同步讯号作为快门切换同步讯号即可达成立体显像的目的。
a、送出左眼图像(或右眼图像)
b、送出一个画面垂直同步讯号,
18:c54、再接着送出右眼图像(或左眼图像)。
6
➢画面同步倍频(Sync-Doubling)
工作原理:通过外加电路的方式在左右画面间(即上下画 面间)多安插一个画面垂直同步讯号 。
原理:人类的左眼和右眼在水平方向上有5~6.5cm的位移,因此 左右眼所看见的画面中对应实际物体上同一点存在一定距离,通过这 种差别判断物体的远近和深度,即视差原理。
根据“视差”原理,把同一景像用两只眼睛视角的差距制造出两 个影像,然后让两只眼睛各看到对应自己一边的影像,就能刺激大脑 产生3D(3Dimensions)立体效果的。
3d显示屏原理

3d显示屏原理3D显示屏原理引言:在现代科技发展的今天,3D显示技术已经逐渐成为人们生活中不可或缺的一部分。
无论是电影院还是电视机,我们都可以看到栩栩如生的3D影像。
那么,3D显示屏背后的原理是什么呢?一、3D显示屏的基本原理3D显示屏的基本原理是通过在屏幕上投射出两个不同的图像,让人眼产生立体感。
这需要借助于特殊的技术和装置来实现。
二、立体成像原理立体成像是3D显示屏最核心的部分,它是实现立体感的关键。
立体成像原理主要有两种:主动式和被动式。
1. 主动式立体成像原理主动式立体成像利用特殊的眼镜,通过快速切换屏幕上两个不同图像的显示,使每只眼睛只能看到其中一个图像。
在眼镜上有一个快速切换的装置,配合屏幕上的两个图像切换,以达到立体效果。
常见的主动式3D显示技术有LCD分屏和快速液晶切换技术。
2. 被动式立体成像原理被动式立体成像主要是利用特殊的滤光器,将屏幕上的两个图像分别投射到左右眼上。
被动式3D显示技术主要有偏振光技术和交错扫描技术。
其中,偏振光技术是通过屏幕上的特殊偏振滤光器,将左右眼的图像分别偏振,再通过佩戴特殊的偏振眼镜,使每只眼睛只能看到对应偏振方向的图像,从而产生立体效果。
交错扫描技术则是通过屏幕上的特殊线条或格子结构,将左右眼的图像分别交错显示,再通过佩戴特殊的眼镜,使每只眼睛只能看到对应的图像,从而产生立体效果。
三、3D显示屏的应用3D显示屏的应用非常广泛,在电影院、电视机、游戏设备等等领域都有涉及。
1. 电影院在电影院中,3D显示屏可以给观众带来更加真实的观影体验。
观众可以通过佩戴特殊的3D眼镜,享受到电影中栩栩如生的立体画面和身临其境的感觉。
2. 电视机3D显示技术已经逐渐应用到家庭电视机上。
通过佩戴3D眼镜,观众可以在家中享受到电影院般的3D观影体验,更加真实地感受到影像的立体效果。
3. 游戏设备游戏设备中的3D显示屏可以让玩家更加沉浸在游戏世界中。
玩家可以透过屏幕看到游戏中真实的立体画面,增强游戏的乐趣和体验感。
3D立体显示技术的研究与应用

3D立体显示技术的研究与应用随着科技的不断发展,3D立体显示技术已经成为互联网发展中的一个热门领域,越来越多的人们将其应用于娱乐、教育、医疗等领域。
3D立体显示技术的应用涵盖面广,成为了各行各业竞相探索的领域,由此发展起了一个完整的产业链。
本文将介绍3D立体显示技术的研究与应用。
一、3D立体显示技术的发展历程3D立体显示技术的源起可以追溯到19世纪50年代,最初主要应用于印刷、摄影等领域。
20世纪80年代,3D技术得到了巨大的发展,电影、游戏、广告等行业开始采用3D技术,开启了3D技术在娱乐领域的广泛应用。
随着经济社会的不断发展,3D立体显示技术的应用领域不断扩大,进入了医疗、教育、智能交互等多个领域,而且一些公司也在不断尝试将3D技术与实际生产和生活融合。
二、3D立体显示技术的原理3D立体显示技术主要是基于视差原理实现的。
我们生活中所见到的物体就是以双眼观察到的不同视角融合后的图像。
3D立体显示技术就是将双眼观看的图像通过特殊的技术分别传递到左右眼,然后两幅图像在人的大脑中形成一个立体效果,从而突破平面的视觉显示效果,形成一种立体的效果。
三、3D立体显示技术的应用1、娱乐领域电影、游戏、VR等娱乐领域是3D立体显示技术最为广泛的应用领域之一。
电影作为传统的应用领域,3D电影也受到越来越多的观众欢迎。
3D电影依靠特殊的眼镜,将左右两侧影像投射在大银幕上,使观众感受到真实的立体感。
同时,随着VR技术的不断完善,将3D立体显示技术应用于游戏和VR已经不再成为梦想。
2、医疗领域3D立体显示技术在医学领域也具有广泛的应用前景。
3D打印技术通过扫描患者身体的CT或MRI扫描结果,将其转化为3D模型,再通过3D打印技术处理出病灶的立体模型,使医生可以更直观地进行手术操作,提高手术成功率,减少手术时间和难度,并能提高患者的治疗体验。
3、教育领域3D立体显示技术也是教育领域的一个重要应用方向。
在生物、地理、历史等学科中应用3D打印技术,可以将抽象的概念物体化,让学生更加直观地感受学科内容。
3D显示技术及原理

3D显示技术及原理目前,主流的3D显示技术主要包括以下几种:活动式立体显示技术(Active Stereo Display)、自动立体显示技术(Autostereoscopic Display)、延迟立体显示技术(Lenticular Display)、亮点调制立体显示技术(Parallax Barrier Display)和体感互动立体显示技术(Interactive Stereoscopic Display)。
下面对这几种技术进行详细介绍。
活动式立体显示技术是通过佩戴一副特殊的眼镜实现的。
这种眼镜通过活动式的方式,在用户的左右眼分别显示不同的图像,从而使得用户产生立体感。
这种技术的优点是成本相对较低,缺点是需要佩戴特定的眼镜才能够获得立体效果。
自动立体显示技术是一种无需佩戴额外设备就能够获得立体效果的技术。
这种技术利用了视差(parallax)原理,通过在屏幕上显示不同深度的图像,使得观众在不同角度观看时能够看到不同的图像。
这种技术的优点是使用方便,不需要额外设备,缺点是视角受限,仅适合单个观众使用。
延迟立体显示技术是通过在屏幕前方放置特殊的透镜来实现的。
这种透镜可以将左右眼的图像进行分隔,并且能够根据观众的位置调整透镜的倾斜程度,从而使得观众在不同位置观看时能够看到不同的图像。
这种技术的优点是观看角度较大,缺点是视角范围内存在图像的失真。
亮点调制立体显示技术是通过在屏幕上放置像素级的透镜来实现的。
这种透镜能够根据左右眼的视点位置调整透镜的透光率,从而使得观众的左右眼看到不同的图像。
这种技术的优点是图像清晰度高,缺点是成本较高,且需要较高的分辨率支持。
体感互动立体显示技术是将3D显示技术与体感技术相结合的一种显示技术。
这种技术通过传感器等设备获取观众的体感数据,根据观众的动作姿态来调整显示的立体图像,从而使得观众能够实现虚拟世界中的互动体验。
这种技术的优点是增强了用户的沉浸感和参与感,缺点是设备复杂且成本较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射式全息显示图像:透射式全息显示图像属于一种 最基本的全息显示图像。记录时利用相干光照射物体, 物体表面的反射光和散射光到达记录干板后形成物光 波;同时引入另一束参考光波(平面光波或球面光波) 照射记录干板。对记录干板曝光后便可获得干涉图形, 即全息显示图像。再现时,利用与参考光波相同的光 波照射记录干板,人眼在透射光中观看全息板,便可 在板后原物处观看到与原物完全相同的再现虚像。
透镜全息法:图像清晰逼真,景深较大 ,其光源激光会 带来特有的散斑效应的弊病,即再现像面 上附有微小而 随机分布的颗粒状结构。 反射全息法:消除了激光的散斑效应 ,但作大屏幕技术难 度较大;景深不太大,距记录介质平面较远 处的图像有点模糊不清。 全像全息法:全像片的取得容易且技术成熟,然而,影 像大小常受限于声光调变器晶体的大小, 且多面镜的扫描速度必须与三色雷射光源 在晶体传播速度同步。 体积式全息法:会产生散射的效应,缺点是影像中央必 须有一个旋转轴,靠近轴心的影像旋转速 度较慢,立体影像较不清晰。
全像式原理结构图
全像式成像图片
上图是一对从车的左右侧面采取的图像。 该图像是由本田的数据库研究部提供的概 念车本田EPX 。
体积式(Volumetric): 德州仪器(Texas Instrument, TI)提出一 种利用雷射扫描立体影像显示器,又有人称之为体 积式显示器。主要是利用一个快速旋转的圆盘,配 合由底下投影的雷射光源,藉由雷射光源投射到快 速旋转的旋转面时,会产生散射的效应,以扫描空 间中的每一点,其缺点是影像中央必须有一个旋转 轴,靠近轴心的影像旋转速度较慢,立体影像较不 清晰。
非全息
利用光学等方法产生立体的视觉效果, 但不能给人主观选择观看的视角 。 色分法:采用互补色色彩将图形或物体显示 在平面图片上,观视者通过光学滤色镜对图 片进行双眼同时观视,即可展现其图形成物 体的立体形态。
色分法成像的图
色分法的 互补色眼镜
光分法:利用偏光片(通过如百叶窗般排列 的矽晶体涂料薄膜(偏光膜))来滤原本朝 向不同方向震动的光线,会挡住与偏光膜方 向垂直的光线,只让与偏光膜方向相同的光 线通过从而产生视差。
视察挡板法合成图
后续厂商研发许多技术来改善视差屏障式 3D 立体显示萤幕的先天限制,像是采用可开关的 液晶薄膜来充当视差屏障,就能透过液晶屏障 的开关来切换 2D / 3D 显示模式,液晶屏障 排列方式也可以制作成水平与垂直两种方向, 配合横拿与直拿的需求切换。
视察挡板法显示器
透镜阵列法:在显示器前面板镶上一块柱透镜 板组成裸眼立体显示的光学系统,像素的光线 通过柱透镜的折射,把视差图像投射到人的左、 右眼,经视觉中枢的立体融合获得立体感。柱 透镜板由细长的半圆柱透镜紧密排列构成,下 图显示了柱透镜方法的原理。左右眼视图分别 位于奇列和偶列像素上,形成视图分区。
3D技术的优劣
3D显示技术从现阶段来看,是劣势多余优势。 但是,3D是新事物,是显示技术发展的方向, 存在较多不足是新事物走向成熟所必经的阶段。
3D技术的发展
3D电视需求预测
3000
3000万+
2500 2000
2500万+
LG公式预测全球 3D电视需求量:
Screen Digest 预测全球3D电视 需求量:
体积式原理图
体积式原理图
体积式显示器
各方法的优劣
色分法: 格 疲劳。 光分法: 但 方向的光。 时分法: 较 实现3维简易,对视场和景深无严
的限制。但易引起眼 部的
宽视域、大景深,成像质量优异,
头部倾斜是无法过滤掉另一
丞相优异,但眼镜由液晶构成成本
高。 视察挡板法: 无需其他辅助设备,能2D\3D切换, 但有效像素低,光源被遮挡, 亮度低。 透镜阵列法: 画面明亮,观看简便,但对屏面与柱 状透镜的配准位置要求较高, 图像的
反射式原理图
全像式
(E-Holography)主要是麻省理工学院所发 展的,是利用红、蓝、绿三色雷射光源,各自经过 声光调变器晶体(Acoustic Optical Modulator, AOM),产生相位型光栅,带着光栅讯息的雷射光经 过全像片合并之后,利用垂直扫描镜(Vertical Scanning mirror)及多面镜(Polygonal mirror), 进行垂直及水平的扫描,进而将立体影像呈现出来, 其优点为全像片的取得容易且技术成熟,然而,影 像大小常受限于声光调变器晶体的大小,且多面镜 的扫描速度必须与三色雷射光源在晶体传播速度同 步。
透镜阵列显示器及其合成原理
微透镜投影:将图像投影到由微透镜组成的显 示屏上,经过有微透镜折射产生相差来达到立 体成像。
为透镜投影显示器
微位相差板法:微位相差板法是台湾光电研究院研 究成功的一种裸眼立体显示技术。使用微位相差板 改变光的偏极态来达到左、右视图的分离。微位相 差板立体显示器不需要戴眼镜,但是视角很小,需 要和头部跟踪装置配合使用
反射式全息显示图像:将物体置于全息板的右 侧,相干点光源从左方照射全息板。将直接照射 至全息板平面上的光作为参考光;而将透过全息 板(未经处理过的全息板是透明的)的光射向物 体,再由物体反射回全息板的光作为物光,两束 光干涉后便形成全息显示图像。由于记录时物光 与参考光分别从全息板两侧入射,故全息板上的 干涉条纹层大致与全息板平面平行。再现时,利 用光源从左方照射全息板,全息板中的各条纹层 宛如镜面一样对再现光产生出反射,在反射光中 观看全息板便可在原物处观看到再现的图像。
谢谢!
3D Display
3D显示技术
第十组
HMD 头果
眼镜效果
视察挡板法:是在屏幕表面设置称为「视差 屏障」的纵向栅栏状光学屏障来控制光线行 进方向,让左右两眼接受不同影像产生视差 达成立体显示效果.視差遮屏,是以黑色于透 明相间的直线条纹,将起置于离液晶面板一 小段距离,让观赏者的其中一眼只能看到液 晶面板奇数画面,观赏者另一眼則只眼看到 液晶面板偶数画面。
3D Display
3D显示技术
讲解内容
什么是3D显示技术 3D显示技术的种类 3D显示技术的原理 3D显示技术的优劣 3D显示技术的发展
3D显示技术的展望
3D显示
3D显示技术就是利用一系列的光学方法 使人左右眼产生视差从而接受到不同的 画面,在大脑形成3D(3Dimensions) 立体效果的技术。
1500 1000 500 0 2010 2012 2013
保守 40万
乐观 200万
3D技术的展望
综观以上的技术,目前所提出的各种方式都仍有其 优缺点,但随着时间的进步,这些问题也渐渐的被解 决,正如当初的彩色显示器代替了黑白显示器,液晶 显示器代替CRT显示器一样,随着显示技术的革新, 没有辅助设备的三维显示技术代替平面显示技术将是 必然趋势
特殊照明法:线光源照明法的立体显示器在LCD 的像素层后使用一系列并排的线状光源给像素列 提供背光照明,线光源宽度极小并与液晶屏的列 像素平行。密集的线光源照明使奇、偶列像素的 图像传输路径分离,使左、右眼看到对应的画面。
3M公司的指向 光源显示屏
全息
全息:(Holography)特指一种可以让从物体 发射的衍射光能够被重现的3维技术,其位置和 大小同之前一模一样。从不同的位置观测此物 体,其显示的像也会变化。
光分法显示图解
圆偏振 光的形 成
3D图 像的 形成
采用交错偏光片的 3D 液晶电视
偏光片眼镜
时分法:(快门法)通过提高屏幕刷新率把图 像按帧一分为二,形成左右眼连续交错显示 的两组画面,通过快门式3D眼镜的配合,使 得这两组画面分别进入左右双眼,最终在大 脑中合成3D立体图像。
快门式3D眼镜
3D显示分类
非全息 辅助设备
色分法
3D显示 全息
裸眼式
视察挡板法
裸眼式
透镜全息法
反射全息法 全像全息法 体积全息法
透镜阵列法
光分法 时分法 微镜投影法 微位相差板法 指向光源法
3D显示原理
视差
人双眼能同时看相 同一方向,但是眼 间距仍有约65mm, 所以不能完全瞄上 一条直线,在一定 的范围内双眼看到 的图像会产生一定 的差异。