九年级数学: 第二十五章_概率初步_复习课_教案
初中数学《概率初步-复习课》教案

“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。
2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。
统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。
学生已学完本章,通过小结,可使所学知识系统化。
3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。
4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。
4.2过程与方法目标通过复习,培养学生归纳总结能力。
4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。
5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。
5.2学习难点解答练习,提高学生解决实际问题的能力。
6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。
6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。
7.学习环境与资源设计7.1学习环境:多媒体教室。
7.2学习资源:教材、教学课件(多媒体课件)。
8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
评价方式为:随堂提问、作品展评、作业反馈。
9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。
第25章+++概率初步(知识点及考点精讲)课件+2024—2025学年人教版数学九年级上册

箱1
箱2
小结
一般地,随机事件发生的可能性是有大小的, 不同的随机事件发生的可能性大小可能不同
2
概率
情景引入 小白将一枚硬币抛向空中,落地后出现正面的可能性 有多大,出现背面的可能性多大?
概率 一般地,对于一个随机事件A,刻画其发生可能性大 小的数值,称之为随机事件A发生的概率,记为P(A)。 【注意】 ①每一次试验中,可能出现的结果只有有限个。 ②每一次试验中,各种结果出现的可能性相等。
频率
概率
试验值或统计值
理论值
区别
与试验次数变化有关
与试验人、时间、地点 有关
与试验次数变化无关
与试验人、时间、地点 无关
联系
试验的次数越多,频率越趋向于概率
一般地,如果在一次试验中,有n种可能的结果,且它们
发生的可能性相等,事件A包含其中的m种结果,那么事件A
发生的概率为:
P(A) m n
不
可 能
0
事
件
事件发生的可能性越来越小
事件发生的可能性越来越大 (概率的值率
列表法
当问题涉及两步试验(如一个骰(tou)子掷两次)或 一次试验要涉及两个因素(如同时掷两个骰子),且可能 出现的结果数目较多时,为不重不漏地列出所有可能的 结果,通常采用列表法。
思考 抽奖箱中有5个黄球,3个红球,摸出一个球是红球, 这一事件是随机事件吗?
不是。 原因:若红球比黄球大的条件下摸红球是必然事件
思考:增加什么限定条件,这一事件是随机事件? 这些球的形状、大小、质地等完全相同,即除颜色 外无差别。
思考 小白、小黄分别从箱1、箱2各抽取一球,两人摸出黄球 和红球的可能性一样大吗(除颜色外无差别)?
例:同时掷两个质地均匀的骰子,观察向上一面的点数, 求下列事件的概率: ①两个骰子点数的和是9.
人教版九年级上册数学《用频率估计概率》概率初步研讨复习说课教学课件

上一页 返回导航 下一页
数学·九年级(上)·配人教
能力提升
6.如图显示了用计算机模拟随机投掷一枚图钉的试验的结果.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向 上”的概率是0.616;
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
数学·九年级(上)·配人教
第二十五章 概率初步
用频率估计概率
第二十五章 概率初步
课件
上一页 返回导航 下一页
数学·九年级(上)·配人教
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(2)若这批树苗移植后要有18万棵成活,试估计需要移植多少棵树苗较为合适.
解:由(1)可知,这批树苗移植成活的概率约是0.9,则需要移植的树苗数量约为
18÷0.9=20(万棵).
第二十五章 概率初步
课件 课件
课件 课件
课件 课件
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
人教版九年级数学上册《概率初步》全册教案

第二十五章概率初步(本章第1课时)25.1 概率(共2课时)25.1.1 随机事件(第1课时)教学内容:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学目标:了解必然会发生、都不会发生事件和随机事件的概念;理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
设置问题情景,由问题抽象,归纳概念,利用概念归纳总结结论。
教学重点:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学难点与关键:难点:理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
关键:设置问题情景,概括概念。
教具、学具准备:小黑板、黑白小球若干个和骰子。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.2006年8月,某书店各学科点拨书销售情况如下图:(1)这个月语文点拨与数学点拨销售量的比是多少?(2)这个月总共销售了多少本书?(3)语文书占总销售量的百分之多少?(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?2.(1)你能说,进店又买点拨书,买哪一种点拨书可能性最大?买哪一种可能性最小?(2)进书店有买点拨书,有可能买数学点拨书吗?(3)进书店有可能买猪肉吗?(4)进书店又有买点拨书,就是买四种书籍(假如书店只有这四种书籍)的其中一种。
教师点评:(1)买语文点拨最大,买思品点拨最小;(2)有可能;(3)书店中没有买猪肉,因此在书店中是买不到猪肉的。
(4)进店又有买点拨书,肯定是四种中任意一种。
二、新课(探索新知):1.从回顾知识后导出今节学习的内容:(1)师生共同分析第136页“问题1”。
(2)师生共同分析第136页“问题2”。
2.引出结论:必然会发生、都不会发生事件和随机事件等概念。
三、训练(巩固练习):课本第138页练习题(抄于小黑板备用)。
人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
人教版九年级上册数学《用频率估计概率》概率初步教学说课复习课件巩固

n
n
随着试验次数的增大,频率 m 稳定在0.5的附近。
n
探究一:通过频率估计概率
活动3
m
掷图钉,观察随着抛掷次数的增加,“针尖向上”的频率 n 的变化趋势。
可能有同学会觉得老师用大量重复试验的方法得到掷一枚硬币 出现“正面向上”的概率未免也太大费周章了,而且最终还只是一 个概率的近似值!
谁都知道掷一枚硬币出现“正面向上”的概率为0.5,那么这种
探究一:通过频率估计概率
大家知道随机抛掷一枚图钉出现“针尖向上”的概率是多少 吗?
有的同学回答“针尖向上”概率为0.5,其实由于图钉不是 均匀物体,所以“针尖向上”和“针尖向下”两种事件的结果出 现的可能性不一样大。
你能想办法得到“针尖向上”的概率吗?
探究一:通过频率估计概率
类似抛掷硬币的活动,通过大量重复试验的频率估计“针尖向上”的概率。
200
250
销售人员首先从所有的柑橘中随机 300
抽取若干柑橘,进行“柑橘损坏率”统 350
400
计,并把获得的数据记录在右表中.请 450
你帮忙完成此表.
500
5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103
探究二:频率估计概率在生活实际问题中的应用
例2:小颖和小红两位同学在学习“概率”时,做投掷骰子(质地 均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:
朝上的点数 1 出现的次数 7
23 98
456 11 15 10
(1)计算“3点朝上”的频率和“5点朝上”的频率; (2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章概率初步复习课教学设计
一、教学目标:
1、知识技能目标
了解必然发生的事件、不可能发生的事件、随机事件的特点.
2、数学思考目标
学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.
3、解决问题目标
能根据随机事件的特点,辨别哪些事件是随机事件.
4、情感态度目标
引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.二、重点难点:
重点:随机事件的特点.
难点:判断现实生活中哪些事件是随机事件.
三、教学过程:
(一).知识网络
自我梳理本章知识网络:
设计意图:使学生进一步对概率
初步中涉及的各个知识点有了较
为系统的认识,正确理解频率与
概率的关系,进而认识数学是与
实际问题密不可分,人们的需要
产生数学。
(二).考点分类解析过程:
考点一:事件分类
1. 下列事件中,必然事件是()
A. 掷一枚硬币,正面朝上
B. a 是实数,|a|≥0
C. 某运动员跳高的最好成绩是 20.1 米
D. 从车间刚生产的产品中任意抽取一个,是次品
2. 有 4个红球、3个白球、2个黑球,放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情是()
A.随机事件 B.不可能事件
C.很可能事件 D.必然事件
考点二:对概率意义的理解
例1 在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是()
A. 这场比赛他这个队应该会赢
B. 若两个队打100场比赛,他这个队会赢60场
C. 若这两个队打10场比赛,这个队一定会赢6场比赛.
D. 若这两个队打100场比赛,他这个队可能会赢60场左右.
考点三:直接列举求简单事件的概率
例2 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1) 请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2) 若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
小结与反思:通过列表或画树状图可以不遗漏情况总量和成功事件数.
考点四:有无放回的概率(易错)
例3 (1)口袋里有4张卡片,上面分别写了数字1、 2、3、4、先抽一张,不放回,再抽一张,“两张卡片上的数字一奇一偶”的概率是多少?
(2)把一枚正方体骰子连掷两次,“朝上的数字一奇一偶”的概率是多少?
注意:在解答此类问题中,一定要分清实验是“有放回”还是“无放回”.
考点五:判断游戏是否公平(提高)
例4 在一个不透明的口袋中装有 4 张相同的纸牌,它们分别标有数字 1、2、3、4. 随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.
(1) 计算两次摸取纸牌上数字之和为 5 的概率;
(2) 甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.小结与反思:游戏公平问题实际是概率相等问题.
考点六:用频率估计概率
例5 在一个暗箱里放有 a 个除颜色外其它完全相同的球,这 a 个球中红球只有 3 个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.
通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出 a 大约是()
拓展应用
2. 如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300 次中,有100次是落在不规则图形内.
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150,试估计不规则图形的面积.
拓展小结:可以利用频率估计概率的实验方法估算不规则图形的面积
设计意图:把概率初步知识细分为六个考点,让学生通过猜想试验、分析讨论、合作探究的学习方式十分有益于加深学生对概率意义的理解,使之明确频率与概率的联系,经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提
高分析问题和解决问题的能力。
使本节课教学重难点得以突破.为今后的学习打
下了基础.
课堂小结
通过本节课,你对于解答概率题掌握了哪些方法,哪些方面还需要特别注意,总结一下,谈谈你的收获.
设计意图:回顾教学过程和数学方法,不仅加深了学生对知识的印象,同时也培养了学生的口头表达能力和概括总结能力.。