九年级数学上册-随机事件与概率25.1.2概率教案新版新人教版
25.1.2概率 教案-九年级数学人教版上册

新人教版九年级上第25章25.1.2 概率——教案设计学习目标:知识与技能:理解概率的概念和表达形式;过程与方法:通过思考—观察—操作—归纳的过程,总结概率的计算方法;情感态度与价值观:通过学生的动手能力,提升他们的观察和总结能力,感知数学在生活中的存在,培养学生对数学的兴趣。
教学重点:概率的理解和计算。
教学难点:利用概率解决生活中的实际问题。
教具准备:乒乓球、骰子、扑克牌等。
教学过程:一、温故而知新——旧知复习通过一些生活实例,让学生判断属于哪种事件。
复习随机事件、必然事件、不可能事件。
二、讲授新课1、情境引入—数学拓展知识(1)概率的产生历史:相传早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢3局就算赢,全部赌本就归谁。
但是当其中一个人赢了2局,另一个人赢了1局的时候,由于某种原因,赌博终止了。
问:赌本应该如何分法才合理?”这个问题却让他苦苦思索了三年,三年后,也就是1657年,荷兰著名的数学家惠更斯企图自己解决这一问题,结果写成了《论赌博中的计算》一书,这就是概率论最早的一部著作。
可以说概率的发展是经历了很多年的思考和验证得出的结论。
从惠更斯的《论赌博中的计算》——雅各布.伯努利的《猜度术》——布丰的投针试验——拉普拉斯的《概率的解析理论》,可以说概率的发展史是复杂的,也是艰难的。
(2)时下各类彩票头奖的中奖几率:双色球头奖概率:1/17721088大乐透头奖概率:1/21425712七乐彩头奖概率:1/2035800七星彩头奖概率:1/10000000(3)网络一元购这样的随机事件几率有多大?你完全相信吗?通过观察当下几种彩票的中奖概率来引发学生的思考“这是怎么算出来的?”2、讲授新课(1)思考事件发生的可能性有多大?我们从抛掷硬币这个简单问题说起.(2)观察历史上,有些人曾做过成千上万次抛掷硬币的试验,他们的试验结果见下表 试验者 抛掷次数(n )“正面向上”次数(m )“正面向上”的频率( ) 莫弗2048 1061 0.518 布丰4040 2048 0.5069 费勒10000 4979 0.4979 皮尔逊12000 6019 0.5016 皮尔逊24000 12012 0.5005(3)操作 分组实验:1、每个小组都有一枚骰子,请每个同学都多掷几次,试猜想每一个面出现的概率是多少?应该如何表示?2、每个小组手上有不同张数的扑克牌,抽到每一张牌的概率将会不同,那么我们应该如何去表示这个概率?(4)归纳a 、概率是描述随机事件发生可能性大小的数值。
九年级数学上册 25.1.2 概率教案 (新版)新人教版(1)

25.1.2概率教学目标:了解概率的定义,会进行简单事件概率的计算.教学重点:简单事件概率的计算.教学难点:对概率的理解.一、问题引入:试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根.抽出签的简记号码有种可能,即它们分别是,每个号码被抽到的可能性,都是 .试验2:掷一个骰子,向上的一面的点数有种可能,即它们分别是,每种结果的可能性,都是.二、新知探究:1.概念:一般地,对于一个随机事件A,我们把刻画其发生,称为随机事件A发生的概率,记为P(A).总结:以上两个试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有(2)每一次试验中,各种结果出现的可能性 .对于具有上述特点的试验,我们用事件所包含的各种可能的结果个数在全部可能的结果总数中所占的比,表示事件发生的概率.如:在试验1中,“抽到5号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到5号)=再如:在试验1中,“抽到奇数号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到奇数号)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= .事件A发生的概率P(A)的范围是 .特别地:当A为必然事件时,P(A)= ;当A为不可能事件时,P(A)=例1. 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.例2:如图所示,有一个转盘,转盘分成7个相同的扇形,颜色分别为红、绿、简记黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会 恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形) 求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.三、课堂小结:用P(A)= n m计算概率的步骤:1. 列举出一次试验出现的所有等可能的结果(即求出 ).2. 找出要研究的事件中包括哪些事件(即求出 ).3. 用P(A)= 计算出所求事件的概率.四、当堂达标:1.在100件产品中,有95件合格品,有5件次品,从中抽取一件,下列说法正确的是( )A. 抽到合格品的概率是951; B. 抽到次品的概率是51;C. 抽到合格品的概率是95%;D.抽到次品的概率是1%2.从一副扑克牌中任意抽取一张,抽到K 牌的概率是3.袋子中有除颜色不同外其余均相同的3个红球,2个白球,1个黑球.从中随意 摸出一球是红球的概率是多少?五、教后反思:。
九年级数学上册(人教版)25.1.2概率教学设计

九年级的学生已经具备了一定的数学基础,掌握了基本的运算方法和逻辑思维能力。在此基础上,他们对概率的认识ห้องสมุดไป่ตู้要来源于日常生活经验,但尚未形成系统的概率知识体系。因此,在本章节的教学中,教师需要关注以下几个方面:
1.学生对随机事件的理解:学生在日常生活中已经接触过许多随机事件,但对其概念的理解可能不够深入。教师应引导学生从具体实例中抽象出随机事件的本质特征。
-纠正:针对学生的错误,教师及时进行纠正,帮助学生掌握正确的概率计算方法。
3.教师挑选部分优秀解答,进行展示和表扬,激发学生的学习积极性。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结概率的定义、表示方法和计算技巧。
-提醒:概率是描述随机事件发生可能性大小的量,计算概率时要认真分析事件的特点。
(2)某班级有30名学生,其中有18名女生,12名男生。如果随机选取一名学生参加比赛,求选到女生的概率。
3.实践活动
(1)组织一次小组活动,利用硬币、骰子等工具进行实验,记录实验结果,计算实际概率,并与理论概率进行比较。
(2)调查家人或朋友在一周内使用手机的时间分布情况,计算每个人每天使用手机的概率。
1.教师介绍概率的定义,解释概率是描述随机事件发生可能性大小的一种量。
-举例说明:抛硬币正面朝上的概率是0.5,表示正面朝上和反面朝上的可能性相等。
2.讲解概率的表示方法,如分数、小数和百分比,并进行具体演示。
-练习:让学生将一些具体事件的概率用不同形式表示出来,加深理解。
3.介绍概率的计算方法,通过实例引导学生学会计算简单事件的概率。
(二)过程与方法
在教学过程中,教师引导学生通过以下方法来掌握概率知识:
1.实践操作:通过实验和观察,让学生亲身体验随机事件,从而引出概率的概念。
九年级数学上册25.1.2概率教案(新版)新人教版【精品教案】

25.1.2 概率一、教学目标1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.3.会进行简单的概率计算及应用.二、课时安排1课时三、教学重点会在具体情境中求出一个事件的概率.四、教学难点会进行简单的概率计算及应用.五、教学过程(一)导入新课1.什么是必然事件,不可能事件和随机事件?2.下列事件是必然事件,不可能事件还是随机事件?(1)北京市举办2022年冬季奥运会.(2)篮球明星Stephen·Curry投10次篮,次次命中.(3)打开电视正在播恒大夺冠的比赛.(4)一个正方形的内角和为361度.(二)讲授新课探究1: 概率的定义及适用对象思考在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.探究2:概率的定义数值15和16刻画了实验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).1.试验具有两个共同特征:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.具有这些特点的试验称为古典概率.在这些试验中出现的事件为等可能事件.具有上述特点的实验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.探究3:概率计算公式一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率()mP An活动2:探究归纳事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.(三)重难点精讲例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)= 13.例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.解:一共有7种等可能的结果.(1)指向红色有3种结果,P(指向红色)=__ 37 _;(2)指向红色或黄色一共有5种等可能的结果,P( 指向红或黄)=__57__;(3)不指向红色有4种等可能的结果P( 不指向红色)= _47 _.例3、如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析 下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772 ; 由于38> 772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.(四)归纳小结用P(A)=n m 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ). 2.找出要研究的事件中包括哪些事件(即求出 ). 3. 用P(A)= 计算出所求事件的概率.(五)随堂检测1. 1.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( ) A. 15 B. 310 C. 13 D. 122.话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子:如果掷到2的倍数就由八戒来刷碗;如果掷到3就由沙僧来刷碗;如果掷到7的倍数就由我来刷碗;徒弟三人洗碗的概率分别是多少!3.如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____.【答案】1.B2. 1(=2P 八戒刷碗);1(=6P 沙僧刷碗);(=0P 悟空刷碗) 3. 512;112六.板书设计 25.1.2随机事件与概率用P(A)= nm 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ).2.找出要研究的事件中包括哪些事件(即求出 ).3.用P(A)= 计算出所求事件的概率.例题1: 例题2: 例题3:七、作业布置课本P133练习1、2、3练习册相关练习八、教学反思。
九年级数学上册 第二十五章 25.1 随机事件与概率 25.1.2 概率备课资料教案 (新版)新人教版

第二十五章 25.1.2概率知识点1:概率的意义和表示方法一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)= .若事件A发生的概率为P(A),则有0≤P(A)≤1.特别地,当事件A为必然事件时,P(A)=1;当事件A为不可能事件时,P(A)=0;当事件A为随机事件时,0<P(A)<1.关键提醒:(1)概率是从数量上刻画随机事件发生的可能性的大小;(2)事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0;(3)概率是根据大量重复试验中频率的稳定性得到的一个介于0到1的常数,它反映事件发生的可能性的大小,需要注意的是,概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.知识点2:事件概率的求法等可能事件的概率型:在一次试验中,如果不确定事件的可能结果只有有限个,且每一个结果发生的可能性都相等,求这种类型事件的概率称为等可能事件的概率型.等可能事件概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)=.区域事件发生的概率:在与图形有关的概率问题中,概率的大小往往与面积有关,这种类型的概率称为区域型概率.在区域事件中,某一事件发生的概率等于这一事件所有可能结果组成的图形的面积除以所有可能结果组成的图形的面积.关键提醒:(1)等可能事件概率要求试验的结果是有限个的,且这些结果出现的可能性相等,因此求等可能事件概率时,要关注某个事件在试验中可能出现哪些结果,以及这些结果发生的机会是否均等;(2)我们平常计算概率中出现的如摸球、掷硬币、掷骰子等都属于等可能性事件型概率;(3)区域型概率中随机事件的概率大小与随机事件所在区域的形状、位置无关,只与区域面积的大小有关.考点1:概率大小的判断【例1】甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球,这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.下列说法中正确的是( ).A. 从甲箱摸到黑球的概率较大B. 从乙箱摸到黑球的概率较大C. 从甲、乙两箱摸到黑球的概率相等D. 无法比较从甲、乙两箱摸到黑球的概率答案:B.点拨: 由于这两个箱子中都装有除颜色外没有其他区别的球,因此,搅匀两箱中的球,从箱中分别任意摸出一个球,所摸出的球都是等可能的,则从甲箱摸到黑球的概率为,从乙箱摸到黑球的概率为>,所以本题选B.考点2:概率与函数的综合运用【例2】已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从箱中随机取出一个白球的概率是多少?(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是,求y与x的函数解析式.解:(1)取出一个白球的概率P==.(2)∵取出一个白球的概率P=,∴=.∴5+x+y=6+3x,即y=2x+1.∴y与x的函数解析式是y=2x+1.点拨:因为“只有颜色不同的球”,所以从中任意摸出一个球的机会是等可能的,纸箱中共装有5个球,其中2个白球,3个红球.根据公式:P(随机事件)=,易使问题获解.考点3:概率知识的实际应用【例3】某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图(1),是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.解:(1)该抽奖方案符合厂家的设奖要求.(2)本题答案不唯一,下列解法供参考.如图(2),将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.点拨:(1)是否符合要求是指该数学老师设计的方案能否体现“10%得大奖,90%得小奖”的厂家意图,因此可将数学老师的方案用排列法或画树状图的方法得到概率.如用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=.即顾客获得大奖的概率为10%,获得小奖的概率为90%.数学老师设计的方案符合要求;(2)本题求解方法不唯一,画图时只需将该转盘(圆)平均分为10份,某种颜色占1份,另一种颜色占9份.顾客购买该型号电视机时获得一次转动转盘的机会,指向1份颜色获得大奖,指向9份颜色获得小奖即可.。
人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
九年级数学上册 25.1.2 概率教案 新人教版

P(摸到白球)=
P(摸到黄球)=
2、从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()
四、小结归纳
1.随机事件的概率的定义.
2.符合条件的概率的求法.
作业
设计
必做
完成P132习题25. 2、3、4
选做
课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
2、不可能事件:必然不会发生的事件;
3、随机事件:可能会发生,也可能不发生的事件.也叫不确定性事件。
二、探索新知
通过现实生活中的随机事件让大家感受随机事件发生的可能性的大小。在同样的条件下,随机事件可能发生也可能不发生,至于它发生的可能性是多大?能否用数值来刻画?这节课来讨论.
1.概率定义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).
情感态度
价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
教学重点
在具体情境中了解概率意义.
教学难点
对频率与概率关系的初步理解
课堂教学程序设计
二次备课
一、复习引入
我们前面学过哪些事件?
1、必然事件:在一定条件下,必然会发生的事件;
标有偶数号的有2,4两种可能,所以标有偶数号的概率
就为2/5
(球可能出现的结果,4是摸出一球所有可能出现的结果数。
2、盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少?
P(摸到黑棋子)=3/5
3、试分析:“从一堆牌中任意抽一张抽到红牌”这一事件是什么事件,能不能求出概率?
《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】

第二十五章概率初步25.1 随机事件与概率25.1.2 概率教学设计(第1课时)一、教学目标1.了解概率的意义,渗透随机观念.2.能计算一些简单随机事件的概率.二、教学重点及难点重点:概率的意义.难点:概率的意义,判断试验条件的意识.三、教学用具多媒体课件.四、相关资源《杞人忧天》、《瓮中捉鳖》、《守株待兔》动画,《事情发生可能性与概率的关系》动画.五、教学过程【创设情境,引入新课】学习数学的人应该用数学的眼光看待周围的事物你如何用数学的眼光看待“杞人忧天”“瓮中捉鳖”“守株待兔”这几个成语呢?师生活动:教师提出问题,学生思考,归纳成语故事与数学的联系.设计意图:通过数学人用数学思想的角度,引导学生思考成语故事,让学生觉得新奇有趣,瞬间抓住学生的兴趣点引人入胜,带入数学课堂.【合作探究,形成新知】【知识点解析】概率,微课中系统介绍概率的基础知识及相应练习.问题1从分别标有1,2,3,4,5的五根签中随机地抽取一根,抽到的签号是5.这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?师生活动:提问一学生回答,教师根据学生的回答情况总结这个事件是随机事件,抽到5个号码中任意一个号码的可能性的大小一样.问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?师生活动:小组讨论、交流,教师巡查,关注学生是否真正讨论,指导学困生.归纳总结:这五根签中有五种可能,即1,2,3,4,5.因为签看上去完全一样,又是随机抽取,所以每个数字被抽到的可能性大小相等.我们用15表示每一个数字被抽到的可能性大小.问题3掷一枚质地均匀的骰子,向上的一面的点数有多少种可能?分别是什么?向上的点数是1,2,3,4,5,6的可能性的大小相等吗?它们都是总数的几分之几?师生活动:一学生回答,全班订正.【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件的基本属实.归纳总结:掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每种点数出现的可能性大小.问题4掷一枚质地均匀的骰子,向上的一面的点数有几种可能?出现向上一面的点数是1的可能性是多少?其它点数呢?师生活动:小组交流,小组代表汇报讨论结果,教师引导学生注意事件的特点.归纳总结:由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数分之一.设计意图:建构主义主张教学应从学生已有的知识体系出发,这样设计有利于引导学生顺利地进入学习情境.通过抽签的方式回答问题,让学生亲身体验,这样容易激发学生的学习兴趣.这样安排一方面复习了必然事件、随机事件和不可能事件的内容,而且还加深了对三种事件的理解;另一方面也为过渡到本节课的教学作了一个很好的铺垫.以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识设疑,从而激发学生的学习兴趣和求知欲望.通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时把学生带入下一环节.提问概率的定义是什么?问题1至问题4有什么共同特点?师生活动:小组讨论,一同学回答,不足地方其他学生补充,教师引导学生注意概率的共同特点.概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).问题1至问题4的共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.思考1你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出古典概型的概率的求法吗?师生活动:小组讨论、交流,教师在课件上显示古典概型的概率的求法.概率求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.思考2你知道m与n之间的大小关系吗?师生活动:师生共同总结m与n的大小关系.归纳总结:在P(A)=mn中,由m和n的含义,可知0≤m≤n,进而有0≤mn≤1.∴0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.易知:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.设计意图:通过对具体事件的特征的分析,使学生了解在现实生活中有些事件具备了两个基本特征,我们一般可称为“有限等可能型事件”,而这种随机事件的概率称为“古典概型”.思考1和思考2设置的目的在于帮助学生认识、理解概率的概念,以及分析概率是表示一个随机事件发生的可能性大小的一个比值,概率是一个常数,是一个客观值,结合数轴表示随机事件的概率意义,并形象的体会随着概率的改变,随机事件发生的可能性大小的变化.使数值更形象具体化,更利于理解和记忆.【例题分析,深化提升】例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.师生活动:一学生上黑板板演,全班订正,教师补充.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P(点数为2)=16.(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=36=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=36=12.设计意图:数学教学论指出数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对概率的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点,使学生初步会求随机事件发生的概率,从而解决实际问题,培养学生的应用意识.【练习巩固,综合应用】1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为().A.15B.25C.35D.452.风华中学七(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,组长是男生的概率为.3.开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( ).A.13B.23C.49D.594.从-1、0、13、π3中随机抽取一数,抽到无理数的概率是.5.掷一个质地均匀的正方体骰子,观察向上一面的点数.(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数为2的概率.参考答案1.C2.473.D4.255.解:掷一个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A)=36=12;(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种.他第六次掷得点数为2(记为事件B)有1种结果,因此P(B)=16.设计意图:巩固学生对概率定义的理解和认识,及对概率的计算公式的简单运用技能,以达到及时学习、及时应用,让学生从中找到成功的感觉,从而提高学生学习数学的兴趣.六、课堂小结1.概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).2.概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.其中0≤P(A)≤1,当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.设计意图:归纳总结不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段.为充分发挥学生的主体地位,让学生畅谈本节课的收获,加强学习反思,帮助学生养成系统整理知识的习惯.七、板书设计25.1 随机事件与概率——25.1.2 概率(1)1.概率的定义2.概率的求法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1.2 概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的.例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明.这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13.五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能,要求学生去仔细体会.。