美赛数模论文英文版

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MCM 2015 Summary Sheet for Team 35565

For office use only

T1________________ T2________________ T3________________ T4________________

Team Control Number

35565

Problem Chosen

B

For office use only

F1________________

F2________________

F3________________

F4________________ Summary

The lost MH370 urges us to build a universal search plan to assist searchers to locate the lost plane effi-ciently and optimize the arrangement of search plans.

For the location of the search area, we divided it into two stages, respectively, to locate the splash point and the wreckage‟s sunk point. In the first stage, we consider the types of crashed aircraft, its motion and different position out of contact. We also consider the Earth‟s rotation, and other factors. Taking all these into account, we establish a model to locate the splash point. Then we apply this model to MH370. we can get the splash point in the open water is 6.813°N 103.49°E and the falling time is 52.4s. In the second stage, considering resistances of the wreckage in different shapes and its distribution affected by ocean currents, we establish a wreckage sunk point model to calculate the horizontal displacement and the angle deviation affected by the ocean currents. The result is 1517m and 0.11°respectively. Next, we extract a satellite map of submarine topography and use MATLAB to depict seabed topography map, determining the settlement of the wreckage by using dichotomy algorithm under different terrains. Finally, we build a Bayesian model and calculate the weight of corresponding area, sending aircrafts to obtain new evidence and refresh suspected wreckage area.

For the assignment of the search planes, we divide it into two stages, respectively, to determine the num-ber of the aircraft and the assignment scheme of the search aircraft. In the first stage, we consider the search ability of each plane and other factors. And then we establish global optimization model. Next we use Dinkelbach algorithm to select the best n search aircrafts from all search aircrafts. In the second stage, we divide the assignment into two cases whether there are search aircrafts in the target area. If there is no search aircraft, we take the search area as an arbitrary polygon and establish the subdivision model. Considering the searching ability of each plane, we divide n small polygons into 2n sub-polygons by using NonconvexDivide algorithm, which assigns specific anchor points to these 2n sub-polygons re-spectively. If there exist search aircrafts, we divide the search area into several polygons with the search aircrafts being at the boundary of the small polygons. To improve search efficiency, we introduce” ma x-imize the minimum angle strategy” to maximize right-angle subdivision so that we can reduce the turning times of search aircraft. When we changed the speed of the crashed plane about 36m/s, the latitude of the splash point changes about 1°.When a wreck landing at 5.888m out from the initial zone, it will divorce from suspected searching area, which means our models are fairly robust to the changes in parameters. Our model is able to efficiently deal with existing data and modify some parameters basing the practical situation. The model has better versatility and stability. The weakness of our model is neglect of human factors, the search time and other uncontrollable factors that could lead to deviation compared to practical data. Therefore, we make some in-depth discussions about the model, modifying assumptions establish-

相关文档
最新文档