高三数学复习圆的方程

合集下载

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程在平面解析几何直线与圆的教学中,向学生介绍圆系方程可为解题提供便利。

这里主研究常用的一类圆系方程。

定理1 过直线L:y=kx+b及圆C:x2+y2+Dx+Ey+F=0的两个交点的圆系方程为:x2+y2+Dx+Ey+F+λ(kx-y+b)=0 ①(其中λ为待定常数)。

首先证明方程①表示圆。

由于直线l与圆C交,故方程组:;有两组不同的实数解,消去y整理得:(k2+1)x2+(D+kE+2kb)x+b2+bE+F=0 ;Δ=(D+kE+2kb)2-4(k2+1)(b2+bE+F)>0 ;整理得: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F) ②将方程①变形为:x2+y2+(D+kλ)x+(E-λ)y+λb+F=0.要证此方程表示圆,即证:(D+kλ)2+(E-λ)2-4(λb+F)>0,即:(k2+1)λ2+(2kD-2E-4b)λ+D2+E2-4F>0.将它看作是关于λ的一元二次不等式,要证其成立,只需证明:Δ=(2kD-2E-4b)2-4(k2+1)(D2+E2-4F)<0 ③而此式等价变形为: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F).它与②完全一致,由于原方程组有两组不同的实数解,所以②式成立,故③式恒成立,方程①表示圆。

其次,证明圆①一定经过直线L与圆C的两个交点。

设两交点分别为A(x1,y1) ,B(x2,y2),∵点A既在直线L上又在圆C上,∴kx1-y1+b=0, x12+y12+Dx1+Ey1+F=0,∴x12+y12+Dx1+Ey1+F+λ(kx1-y1+b)=0,即点A在圆①上,同理点B亦在此圆上。

故圆①经过A、B两点。

综上,定理1得证。

定理2 经过两圆C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,的交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(包括圆C1,不包括圆C2,其中λ为常数且λ≠-1)特别地,当λ=-1时,即(D1-D2)x+(E1-E2)y+F1-F2=0表示两圆公共弦所在直线方程。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

圆的方程及性质课件-2023届高三数学一轮复习

圆的方程及性质课件-2023届高三数学一轮复习

3 3.
判断直线与圆的位置关系的两种方法 >0⇔相交,
(1)代数法:Δ=判―b别 ―2-→式4ac =0⇔相切, <0⇔相离.
(2)几何法:利用圆心到直线的距离 d 和圆半径 r 的大小关系:d<r⇔相交,d =r⇔相切,d>r⇔相离.
实际操作时,多用几何法.
练习 已知点 M(a,b)在圆 O:x2+y2=1 外,则直线 ax+by=1 与圆 O 的
①两条切线方程; ②直线 AB 的方程; ③线段 PA 的长度; ④线段 AB 的长度.
圆的切线方程的求法 (1)代数法:设切线方程为 y-y0=k(x-x0),与圆的方程组成方程组,消元后得到 一个一元二次方程,然后令判别式Δ=0 进而求得 k(当 k 不存在时,切线方程为 x =x0). (2)几何法:设切线方程为 y-y0=k(x-x0),利用点到直线的距离公式表示出圆心 到切线的距离 d,然后令 d=r,进而求出 k(当 k 不存在时,切线方程为 x=x0). (3)若点 M(x0,y0)在圆 x2+y2=r2 上,则过点 M 的圆的切线方程为 x0x+y0y= r2.
A.相交
B.相切
C.相离
D.不确定
【思路】 根据直线与圆的位置关系的判断方法——几何法或代数法求解, 也可以利用直线所过的定点,结合该定点与圆的位置关系求解.
【解析】 +m2-5=0,
方法一:由mx2x+-(y+y-1-1)m2==05,,消去 y,整理得(1+m2)x2-2m2x
因为 Δ=16m2+20>0,所以直线 l 与圆相交.
圆的定义 平面内到定点的距离___________的点的集合是圆,定点是圆心,定长是半 径. 注:平面内动点 P 到两定点 A,B 距离的比值为λ,即||PPAB||=λ, ①当λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当λ≠1 时,P 点轨迹是圆.

圆的方程

圆的方程

基础题例题
4.已知点 已知点P(x,y)为圆 x2+y2=4上的动点,则 x+y 的最大值为 上的动点, 的最大值为___ 已知点 为圆 上的动点
x = 2cosα ( 一 :设 (0 ≤α < 2 ) π 解法 ) y = 2sin α
x 则 +y = 2cosα +2sinα = 2 2sin α +π ) ≤ 2 2 ( 4 (法 ) x+ y =u 二 设
的方程为: (2)圆C的方程为: x −a) ) 的方程为 (
Hale Waihona Puke +(y −b) = r
2
2
2
练习1.写出过圆 上一点M的切线的方程 练习 写出过圆x2+y2=10上一点 的切线的方程 写出过圆 上一点 的切线的方程?
2、求经过圆外一点M(x0,y0)的切线的方程 。 、求经过圆外一点 ( 常用求法简介: 常用求法简介:

r
2.确定圆的方程必须具备 确定圆的方程必须具备 三个独立的条件 独立的条件。 三个独立的条件。
O
x
2.标准方程: 标准方程: 设圆心C(a,b),半径为r,则标准方程为 ,半径为 ,则标准方程为(x-a)2+(y-b)2=r2. 设圆心 当圆心在圆点时,圆的方程为 当圆心在圆点时,圆的方程为x2+y2=r2 3.一般方程: 一般方程: 当D2+E2-4F>0 时, 方程 2+y2+Dx+Ey+F=0叫做圆的一般 方程x 叫做圆的一般 1 D E (− ,− ) ,半径 r = D 2 + E 2 − 4F 方程. 方程 此时圆心为 半径 2 2 2
( 二 :设 心 解法 ) 圆 C(x0, y0), 则2x0 −y0 −7 = 0 Q 心 AB 垂 平 线 又 圆 在 的 直 分 y = −3上 , ∴y0 = −3 ∴ 0 =2 x

高三数学圆的方程

高三数学圆的方程

群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

= −1 + 2cos ,
1.(2024 ·宜春模拟)已知曲线ቊ
( 为参数)上任意一点 0 , 0 ,
= 1 + 2sin
[2 2, +∞)
不等式 ≥ 0 + 0 恒成立,则实数的取值范围是__________.
解析 根据题意,曲线ቊ
= −1 + 2cos ,
( 为参数),
利用圆的参数方程解决最值问题
一 利用圆的参数方程求代数式的最值
二 利用圆的参数方程求范围
三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
2
= 0 + cos ,
1. 圆的方程有标准方程、一般方程、参数方程,一般我们把方程ቊ
(
= 0 + sin
是参数)称为圆 − 0 2 + − 0 2 = 2 的参数方程.
当sin = 1时,取得最大值,最大值为1.
5
4
故实数的取值范围是[− , 1].
1 2
+
2
5
4
− .
06 利用圆的参数方程解决最值问题
10
利用圆的参数方程,采用代入法把求实数的取值范围问题转化为求三角函数的值域问
题,使问题迅速获解,可谓转化巧妙.
06 利用圆的参数方程解决最值问题
11
12
磨尖点三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
典例3 (2024 ·上海模拟)已知动圆 −
2
+ −
14
2
= 1经过原点,则动圆上的
2+2
点到直线 − + 2 = 0距离的最大值是_______.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

解析:由题设知 = , = , = ,所以
< < ,要使,,三点中的一个点在圆内,一个点在圆上,
一个点在圆外,所以圆以 为半径,故圆的方程为


+ + ��

= .
求圆的方程的两种方法
1.(多选)(2024·重庆模拟)设圆的方程是 −
= ,故 = − −
⋅ = − −
+ −



+ ,所以
+ + − = − .由圆的方程
= ,易知 ≤ ≤ ,所以,当 = 时, ⋅ 的值最大,
最大值为 × − = .
建立函数关系式求最值
所以点到两点的距离相等且为半径,
所以



+ −
=
+ −

= ,
即 − + + − + = ,解得 = ,
所以 , − , = ,
所以⊙ 的方程为 −

+ +

= .
方法三:设点 , , , ,⊙ 的半径为,则 =
10
则 + 的最大值为____.
2.设点 , 是圆 −

解析:由题意知 = −, − , = −, − − ,
所以 + = −, − ,由于点 , 是圆上的点,故其坐标满足方
程 −

+ = ,
故 = − −


+ = ,即表示以点 , 为圆心, 为半径
的圆.

高三-圆的标准方程和一般方程

高三-圆的标准方程和一般方程

复习课:圆的标准方程和一般方程教学目标重点:掌握圆的标准方程和一般方程,能根据题目条件选择恰当的形式求圆的方程,理解圆的一般方程和标准方程之间的关系,并能互化.灵活运用圆的几何性质解决问题.了解参数方程的概念,理解圆的参数方程.难点:与圆有关的综合题的求解方法.能力点:等价转化的数学思想、数形结合的数学思想的应用,逻辑推理能力的培养和训练. 自主探究点:了解参数方程的概念,理解圆的参数方程,利用参数方程解决求最值问题. 易错点:运算出现错误,对问题分析不全面导致漏解. 学法与教具1.学法:学生动脑、动手总结规律,梳理知识,解决问题.2.教具:投影仪. 一、【知识梳理】1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹)叫圆.在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 2.圆的方程(1)标准式:222()()x a y b r -+-= ,其中r 为圆的半径,(,)a b 为圆心. (2)一般式:22220 (40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E--,半径(3)过圆与直线(或圆)交点的圆系方程:i) 22()0x y Dx Ey F Ax By C λ+++++++=,ii) 2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1-=λ时为一条过两圆交点的直线,该方程不包括圆C 2)(4)二元二次方程220 Ax By Cxy Dx Ey F +++++=表示圆的充要条件:220,0,40A B C D E AF =≠=+->.二、【范例导航】题型1:求圆的方程【例1】(1)求经过点(5,2),(3,2)A B ,圆心在直线230x y --=上的圆的方程;(2)求圆心在直线30x y -=上,与y 轴相切,且被直线y x =截得的弦长为. 【分析】本题可以设圆的标准方程,建立关于圆心(,)a b 和半径r 的三个方程构成的方程组. 【解析】(1)解法一:设圆的标准方程为222()()x a y b r -+-=根据题意可得222222(5)(2)(3)(2)230a b r a b r a b ⎧-+-=⎪-+-=⎨⎪--=⎩,解得45a b r ⎧=⎪=⎨⎪=⎩所求圆的方程为22(4)(5)10x y -+-=.解法二:因为圆过(5,2),(3,2)A B 两点,所以圆心在线段AB 的中垂线4x =上,又因为圆心在直线230x y --=上,联立解得4,5a b ==.进而求得圆的半径r 圆方程为:22(4)(5)10x y -+-=.(2)因为圆与y 轴相切,且圆心在直线30x y -=上, 故圆方程可设为222(3)()9x b y b b -+-=又因为直线y x =截圆得弦长为则有2229b +=,解得1b =±, 故所求圆方程为:22(3)(1)9x y -+-=或22(3)(1)9x y +++=【点评】求圆的方程时,根据题目条件选择合适的方程形式,同时注意圆的几何性质的充分利用,如在第(1)问解法二中,利用圆心在线段AB 的中垂线上,可以使简化运算.第(2)问求解时注意两组结果.变式训练:求半径为4,与圆22:4240A x y x y +---=相切,且和直线0y =相切的圆的方程.【解析】由题意,设所求圆的方程为圆222:()()C x a y b r -+-=.圆C 与直线0y =相切,且半径为4,所以圆心C 的坐标为1:(,4)C a 或2:(,4)C a -. 又已知圆22:4240A x y x y +---=的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则两圆心之间的距离437CA =+=或431CA =-=.(1) 当1:(,4)C a 时,222(2)(41)7a -+-=,或222(2)(41)1a -+-= (无解),故可得2a =±∴所求圆方程为22(2(4)16x y -++-=或22(2(4)16x y --+-=. (2) 当2:(,4)C a -时,222(2)(41)7a -+--=,或222(2)(41)1a -+--= (无解),故2a =±∴所求圆的方程为22(2(4)16x y -+++=或22(2(4)16x y --++=. 【点评】对本题,易发生以下误解:(1)忽略圆心在x 轴下方的情形,(2)只考虑两圆相外切的情况.题型2:轨迹问题【例2】(1)已知点M 与两个定点(0,0),(3,0)O A 的距离的比为12,求点M 的轨迹方程. (2) 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.【分析】第(1)问用直接法求轨迹方程,第(2)问用相关点代入法求轨迹方程,所得轨迹都是圆. 【解析】(1)设所求轨迹上任意一点(,),M x y 根据题意:12MOMA =,即:2MO MA =,即= 故所求轨迹方程为:22(1)4x y ++=.(2)设AB 的中点(,)M x y ,点00(,)A x y ,则004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得 002423x x y y =-⎧⎨=-⎩,又因为A 在圆周上运动,故可得:22(241)(23)4x y -++-=,所求轨迹方程为:2233()()122x y -+-=.【点评】本题是比较简单的两道题目,分别用了直接法和相关点代入法求轨迹方程,旨在让学生复习求轨迹方程的方法,同时更进一步了解哪些点的运动轨迹是圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学复习圆的方程
5.圆的方程
一、内容归纳
1. 知识精讲.
①圆的方程
(1)标准式:(x-a)2+(y-b)2=r2(r0),其中r为圆的半径,(a,b)为圆心。

(2)一般式:x2+y2+Dx+Ey+F=0(D2+E2-4F0),其中圆心为(-,-),半径为,
(3)直径式:(x-x1)(x-x2)+(y-y1)(y-y2)=0,其中点(x1,
y1),(x2,y2)是圆的一条直径的两个端点。

(用向量法证之)(4)半圆方程:等
(5)圆系方程:
i)过圆C:x2+y2+Dx+Ey+F=0和直线l:Ax+By+C=0的交点的
圆的方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0
ii)过两圆C1:x2+y2+D1x+E1y+F1=0,C2:
x2+y2+D2x+E2y+F2=0的交点的圆的方程为
x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)该方
程不包括圆C2;
(时为一条直线方程,相交两圆时为公共弦方程;两等圆
时则为两圆的对称轴方程)
(6) 圆的参数方程
圆心在(0,0),半径为r的圆的参数方程为为参数
圆心在(a,b),半径为r的圆的参数方程为为参数
②圆的一般方程与二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0的
关系;
二元二次方程表示圆的充要条件A=C≠0,B=0 ,D2+E2-4AF0。

二、问题讨论
例1、根据下列条件,求圆的方程。

(1)和圆x2+y2=4相外切于点P(-1,),且半径为4;
(2)经过坐标原点和点P(1,1),并且圆心在直线2x+3y+1=0上;
(3)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得
的线段长为4,求圆的方程。

解:(1)设圆心Q的坐标为(a,b) ∵⊙O与⊙Q相外切于P ∴O、P、Q共线,且λ==-=- 由定比分点公式求得a=-3,
b=3
∴所求圆的方程为(x+3)2+(y-3)2=16
(2)显然,所求圆的圆心在OP的垂直平分线上,OP的垂直平分线方程为:
= 即x+y-1=0
解方程组 x+y-1=0
2x+3y+1=0 得圆心C的坐标为(4,-3)。

又圆的半径
r=|OC|=5
∴所求圆的方程为(x-4)2+(y+3)2=25
(3)设圆的方程为x2+y2+Dx+Ey+F=0 ①将P、Q点的坐标分别代入①,得:
4D-2E+F=-20 ②
D-3E-F=10 ③令x=0,由①得y2+Ey+F=0 ④
由已知|y1-y2|=4,其中y1、y2是方程④的两根。

∴(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48 ⑤
②、③、⑤组成的方程组,得
D=-2D= -10
E=0 或 E= -8
F= -12F=4
故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0
[思维点拔]无论是圆的标准方程或是圆的一般方程,都有三
个待定系数,因此求圆的方程,应有三个条件来求。

一般地,已知圆心或半径的条件,选用标准式,否则选用一般式。

例2、(优化设计P112例1)设为两定点,动点P到A点的距
离与到B点的距离的比为定值,求P点的轨迹。

解:设动点P的坐标为(x,y). 由.化简得当,整理得. 当a=1时,化简得x=0.
所以当时,P点的轨迹是以为圆心,为半径的圆;
当a=1时,P点的轨迹为y轴。

【评述】上述解法是直接由题中条件,建立方程关系,,然后化简方程,这种求曲线方程的方法称为直接法。

例3、(优化设计P112例2)一圆与y轴相切,圆心在直线上,且直线截圆所得的弦长为,求此圆的方程。

解:因圆与y轴相切,且圆心在直线上,故设圆方程为,
由于直线截圆所得的弦长为,则有
解得,故所求圆方程为或
【评述】求圆的弦长方法
(1)几何法:用弦心距,半径及半弦构成直角三角形的三边(2)代数法:用弦长公式
例4、已知⊙O的半径为3,直线与⊙O相切,一动圆与相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹
方程。

解:取过O点且与平行的直线为x轴,过O点且垂直于
的直线为y轴,建立直角坐标系。

设动圆圆心为M(x,y),⊙O与⊙M的公共弦为
AB,⊙M与切于点C,则
AB为⊙O的直径,MO垂直
平分AB于O。

由勾股定理得
即:这就是动圆圆心的轨迹方程
【点评】建立适当的坐标系能使求轨迹方程的过程较简单、
所求方程的形式较"整齐"
备用题:
例5、设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹。

解:本题关键是找出动点P与定点M及已知动点N之间的联系,用平行四边形对角线互相平分这一定理即可。

设P(x,y),N(x0,y0),则线段OP的中点坐标为(,),线段MN的中点坐标为(,)。

因为平行四边形对角线互相平分,故=,=
从而 x0=x+3
y0=y-4
N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点:(-,)和(-,)
[思维点拔]:求与圆有关的轨迹问题,充分利用圆的方程和
圆的几何性质,找出动点与圆上点之间的关系或动点所满足
的几何条件。

例6、已知圆的方程是:x2+y2-2ax+2(a-2)y+2=0,其中
a≠1,且a∈R。

(1)求证:a取不为1的实数时,上述圆恒过定点;
(2)求与圆相切的直线方程;
(3)求圆心的轨迹方程。

解:将方程x2+y2-2ax+2(a-2)y+2=0整理得x2+y2-4y+2-a (2x-2y)=0
令 x2+y2-4y+2=0
x-y=0
解之得 x=1
y=1
∴定点为(1,1)
(2)易得已知圆的圆心坐标为(a,2-a),半径为|a-1|。

设所求切线方程为y=kx+b,即kx-y+b=0
则圆心到直线的距离应等于圆的半径,即=|a-1|恒成立。

整理得
2(1+k)2a2-4(1+k2)a+2(1+k2)=(k+1)2a2+2(b-2)(k+1)a+(b-2)2恒成立。

比较系数可得
2(1+k2)=(k+1)2
-4(1+k2)=2(b-2)(k+1)
2(1+k2)=(b-2)2解之得k=1,b=0。

所以,所求的切线方程是y=x。

(3)圆心坐标为(a,a-2),又设圆心坐标为(x,y),则有
x=a
y=2-a
消去参数得x+y=2为所求的圆心的轨迹方程。

[思维点拔]:本题是含参数的圆的方程,与圆的参数方程有本质的区别。

当参数取某一确定的值时,方程表示一个确定的圆,当a变动时,方程表示圆的集合,即圆系。

解本题(1)可用分离系数法求解;(2)可用待定系数法求解;(3)可用配方法求解。

一般地,过两圆C1:f(x,y)=0与C2:g(x,y)=0的交点的圆系方程为:f(x,y)+λg(x,y)=0(λ为参数)。

三、课堂小结
1、求圆的方程:主要用待定系数法,有两种求数,一是利
用圆的标准方程,求出圆心坐标和半径;二是利用圆的一般方程求出系数D、E、F的值。

2、已知圆经过两已知圆的交点,求圆的方程,用经过两圆
交点的圆系方程简捷。

3、解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算。

4、与圆有关的轨迹问题,可根据题设条件选择适当方法(如直接法、定义法、动点转移法等),有时还需要结合运用其他方法,如交轨法、参数法等。

四、【布置作业】优化设计P113。

相关文档
最新文档