电力电子5个实验
电力电子实验内容

实验一 单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、阻—感性负载及反电势负载时的工作。
3.熟悉NMCL —05锯齿波触发电路的工作。
二.实验线路及原理1、参见图4-7。
2、晶闸管导通条件:承受正向电压、控制极有触发脉冲;3、电阻负载时,输出电压平均值为:21cos 0.9()2d U U θ+=,且0θπ≤≤; 阻感负载时,输出电压平均值为:20.9cos d U U θ=,且02πθ≤≤;4、阻感负载情况下,阻抗角==控制角的时候,负载电流临界连续;因此,调整负载R 的大小、控制角的大小,均可以改变负载电流的连续情况。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.NMCL 系列教学实验台主控制屏。
2.NMCL —18组件(适合NMCL —Ⅱ)或NMCL —31组件(适合NMCL —Ⅲ)。
3.NMCL —33组件或NMCL —53组件(适合NMCL —Ⅱ、Ⅲ、Ⅴ) 4.NMCL —05组件或NMCL —05A 组件5.NMEL —03三相可调电阻器或自配滑线变阻器。
6.NMCL-35三相变压器。
7.双踪示波器 (自备) 8.万用表 (自备)五.注意事项1.实验开始前,先将NMCL-33组件上脉冲开关关闭(按下去),以免引起误触发;2.调节电阻RP到最大值,以免电流过大烧坏晶闸管;3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用NMCL-35三相变压器,原边线电压为220V,低压绕组为110V。
《电力电子技术》实验 指导书

《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。
(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。
电力电子实验报告

电力电子实验报告————————————————————————————————作者:————————————————————————————————日期:实验一SCR(单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。
2、熟悉晶闸管的触发与吸收电路。
二、实验内容1、晶闸管的导通与关断条件的验证。
2、晶闸管的触发与吸收电路。
三、实验设备与仪器1、典型器件及驱动挂箱(DSE01)—DE01单元2、触发电路挂箱Ⅰ(DST01)—DT02单元3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代)4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元5、逆变变压器配件挂箱(DSM08)—电阻负载单元6、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作图1-1 晶闸管及其驱动电路1、晶闸管的导通与关断条件的验证:晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。
打开系统总电源,将系统工作模式设置为“高级应用”。
将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。
电力电子技术实验报告 (2)

电力电子技术实验报告学院:专业:班级:姓名:实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路的原理图见DJK03-1挂件介绍中锯齿波同步移相触发电路原理图。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见DJK03-1挂件介绍部分和电力电子技术教材中的相关内容。
四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
(2)调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如下图所示。
电力电子5个实验

锯齿波同步移相触发电路及单相半波可控整流电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。
3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使 =180O。
调节MCL —18的给定电位器RP1,增加Uct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=Umax 时,α=30O ,以满足移相范围α=30O ~180O 的要求。
4.调节Uct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。
5.单相半波可控整流电路带电阻性负载断开触发电路“2”端与脉冲输出“K ”端的连接,“G ”、“K ”分别接至MCL —33(或MCL —53)的VT1晶闸管的控制极和阴极,注意不可接错。
负载R d 接可调电阻(可把MEL —03的900Ω电阻盘并联,即最大电阻为450Ω,电流达0.8A ),并调至阻值最大。
合上主电源,调节主控制屏输出电压至U uv =220V ,调节脉冲移相电位器RP ,分别用示波器观察α=30°、60°、90°、120°时负载电压U d ,晶闸管VT1的阳极、阴极电压波形U Vt 。
并测定U d 及电源电压U 2,验证2cos 1245.0α+=U U d6.单相半波可控整流电路带电阻—电感性负载,无续流二极管串入平波电抗器,在不同阻抗角(改变Rd 数值)情况下,观察并记录α=30O 、60O 、90O 、120O 时的U d 、i d 及Uvt 的波形。
电力电子实验报告

实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。
可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。
整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。
在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。
三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。
触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。
电组R=2Ω,电感L取6.5mH。
四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。
相加大概为110V 左右,实验时占空比是50%,正好是110V。
电压突变是晶闸管由断态转向触发时所致。
电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。
电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。
电感很大的时候会没有跳变或跳变很小。
电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。
五、心得体会:通过本次实验基本上学会了此软件的基本用法。
同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。
实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。
华中科技大学电力电子实验

TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:
(28 - 1)
输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。
(2)基于PWM芯片的控制电路设计。
(3)调试验证电路的正确性
(4)分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能
(5)掌握PWM控制芯片的工作原理和外围电路设计方法。
2、实验原理及方案设计
TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下:(参考PCB资源网的学习资料)
实验二十九DC/DC—PWM升压、降压变换电路性能研究
1、实验目的
(1)验证研究DC/DC PWM降压变换电路的工作原理和特性。
电力电子实验报告

第三章实验十二单相交流调压电路实验
一、原理概述
通过改变反并联晶闸管或双向晶闸管的控制角α,从而改变交流输出电压的大小。因为触发脉冲为窄脉冲时,会造成晶闸管工作不对称,所以交流调压电路通常采用宽脉冲或脉冲列触发。
二、实验报告
(2)α=30°时
α=60°时α=90°时
阻感性负载和阻性负载波形相同在此略
(3)在负载侧并联一个续流二极管,使负载电流通过续流二极管续流,而不再经过T1、D1或T3、D2这样可使晶闸管恢复阻断能力。
三、思考题
(1)电路在正常运行情况下,突然把触发脉冲切断或者α角增大到180°,就会产生“失控”。
三、思考题
实现有源逆变的条件有两个
(1)外部条件:外部有一个直流电势,方向与晶闸管导通方向一致,值稍大于变流器侧输出的平均电压。
(2)内部条件:逆变电路的主电路为全控结构,α>90°,处于逆变区。
本电路直流电势由整流输出电压提供,使用心式变压器进行升压,使直流电势值稍大于变流器侧输出的平均电压。
第三章实验八三相半波可控整流电路实验
二、实验报告
(1)当α=90°时,Ud、UVT波形如图所示。
(2)
(3)由波形可以看出当晶闸管导通时输入电压全部加在输出电压Ud两端,当晶闸管截止时,输入电压全部加在晶闸管两端;带感性负载时,由于电流不能突变,输出电压出现负压,此时电压由变压器提供。
三、思考题
(1)由 知C1越大, 越小,反之,C1越小, 越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锯齿波同步移相触发电路及单相半波可控整流电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。
3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使 =180O。
调节MCL —18的给定电位器RP1,增加Uct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=Umax 时,α=30O ,以满足移相范围α=30O ~180O 的要求。
4.调节Uct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。
5.单相半波可控整流电路带电阻性负载断开触发电路“2”端与脉冲输出“K ”端的连接,“G ”、“K ”分别接至MCL —33(或MCL —53)的VT1晶闸管的控制极和阴极,注意不可接错。
负载R d 接可调电阻(可把MEL —03的900Ω电阻盘并联,即最大电阻为450Ω,电流达0.8A ),并调至阻值最大。
合上主电源,调节主控制屏输出电压至U uv =220V ,调节脉冲移相电位器RP ,分别用示波器观察α=30°、60°、90°、120°时负载电压U d ,晶闸管VT1的阳极、阴极电压波形U Vt 。
并测定U d 及电源电压U 2,验证2cos 1245.0α+=U U d6.单相半波可控整流电路带电阻—电感性负载,无续流二极管串入平波电抗器,在不同阻抗角(改变Rd 数值)情况下,观察并记录α=30O 、60O 、90O 、120O 时的U d 、i d 及Uvt 的波形。
注意调节R d 时,需要监视负载电流,防止电流超过R d 允许的最大电流及晶闸管允许的额定电流。
7.单相半波可控整流电路带电阻,电感性负载,有续流二极管。
接入续流二极管,重复“3”的实验步骤。
三相可控整流电路实验一.实验目的了解三相半波可控整流电路的工作原理,熟悉三相桥式全控整流电路的接线及工作原理。
研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。
实验线路见图。
三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
3.研究三相桥式全控整流电路供电给电阻性负载时的工作。
4.研究三相桥式全控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器.5.双踪示波器。
6.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL—18电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
2.研究三相半波可控整流电路供电给电阻性负载时的工作合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V:(a)改变控制电压U ct,观察在不同触发移相角α时,可控整流电路的输出电压U d=f (t)与输出电流波形i d=f(t),并记录相应的U d、I d、U ct值。
(b)记录α=90°时的U d=f(t)及i d =f(t)的波形图。
(c)求取三相半波可控整流电路的输入—输出特性U d/U2=f(α)。
(d)求取三相半波可控整流电路的负载特性U d=f(I d)注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。
以下均同3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—33的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。
(a)观察不同移相角α时的输出U d=f(t)、i d=f(t),并记录相应的U d、I d值,记录α=90°时的U d=f(t)、i d=f(t),U vt=f(t)波形图。
(b)求取整流电路的输入—输出特性U d/U2=f(α)。
单相桥式全控整流及其有源逆变电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载时的工作。
3.熟悉MCL—05锯齿波触发电路的工作。
4.加深理解单相桥式有源逆变的工作原理,掌握有源逆变条件。
5.了解产生逆变颠覆现象的原因。
二.实验线路及原理参见图三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式有源逆变电路的波形观察。
4.有源逆变到整流过渡过程的观察。
5.逆变颠覆现象的观察。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。
2.断开MEL-02和MCL-33的连接线,合上主电路电源,调节主控制屏输出电压U uv至220V,此时锯齿波触发电路应处于工作状态。
MCL-18的给定电位器RP1逆时针调到底,使U ct=0。
调节偏移电压电位器RP2,使α=90°。
断开主电源,连接MEL-02和MCL-33。
注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。
以下均同3.单相桥式全控整流电路供电给电阻负载。
接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。
合上主电路电源,调节U ct,求取在不同α角(30°、60°、90°)时整流电路的输出电压U d=f(t),晶闸管的端电压U VT=f(t)的波形,并记录相应α时的U ct、U d和交流输入电压U2值。
若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。
4.单相桥式全控整流电路供电给电阻—电感性负载。
断开平波电抗器短接线,求取在不同控制电压U ct时的输出电压U d=f(t),负载电流i d=f(t)以及晶闸管端电压U VT=f(t)波形并记录相应U ct时的U d、U2值。
注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载电流不能超过0.8A,U ct从零起调。
改变电感值(L=100mH),观察α=90°,U d=f(t)、i d=f(t)的波形,并加以分析。
注意,增加U ct使α前移时,若电流太大,可增加与L相串联的电阻加以限流。
5.有源逆变实验(a)将限流电阻RP调整至最大(约450Ω),先断开MEL-02和MCL-33的连接线,合上主电源,调节U uv=220V,用示波器观察锯齿波的“1”孔和“6”孔,调节偏移电位器RP2,使U ct=0时,β=10°,然后调节U ct,使β在30°附近。
(b)连接MEL-02和MCL-33,三相调压器逆时针调到底,合上主电源,调节主控制屏输出使U uv=220V。
用示波器观察逆变电路输出电压U d=f(t),晶闸管的端电压U VT=f (t)波形,并记录U d和交流输入电压U2的数值。
注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。
以下均同(c)采用同样方法,绘出β在分别等于60°、90°时,U d、U VT波形。
6.逆变到整流过程的观察当β大于90°时,晶闸管有源逆变过渡到整流状态,此时输出电压极性改变,可用示波器观察此变化过程。
注意,当晶闸管工作在整流时,有可能产生比较大的电流,需要注意监视。
7.逆变颠覆的观察斩波电路实验一.实验目的熟悉六种斩波电路(buck chopper 、boost chopper 、buck-boost chopper、cuk chopper、sepic chopper、zeta chopper)的工作原理,掌握这六种斩波电路的工作状态及波形情况。