电力电子技术实验-打印的

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

电力电子实验打印版

电力电子实验打印版

电力电子实验打印版第一章电力电子实验的基本要求及注意事项§1-1电力电子实验的重要性和基本要求电力电子实验是《电力电子技术》课程理论与实践相结合的重要环节,由于电力电子技术的广泛应用,其重要性愈加突出,目前,电力电子技术已成为一门基础性和支持性很强的技术。

电力电子技术是一门实用性很强的技术,因此实验环节就显得很重要。

电力电子实验的目的就在于培养学生掌握基本的实验方法与操作技能,因此同学们在实验前一定要认真复习电力电子技术的有关内容,对实验有一个全面的了解,诸如实验线路如何连接?实验有哪几个步骤?要测量哪些波形、数据等?做了这些必要的准备工作后,就能在实验中做到心中有数。

实验结束后通过对所得到波形、数据的整理、分析和计算,得出必要的结论,并写出完整的实验报告。

整个实验过程中必须严肃认真,集中精力,以严谨的科学态度做好实验,切实掌握好电力电子这门技术。

一、实验前的准备实验前,应全面复习电力电子技术的相关内容,认真阅读电力电子实验说明书,了解实验的目的、内容、方法和步骤,并写一份预览报告,包括实验名称、实验电路图、实验步骤、数据计算公式、,实验的进行1.每次实验以小组为单位,每组由2~3人组成并推选组长1人。

组长负责组织实验的进行,合理分配接线、调节、测量及记录等项工作。

2.实验接线前应首先熟悉各个组件。

3.接线应文明,即导线长度应选择适当。

在任何一个节点上,最好不要有超过两个导体,并且应尽量减少导体的交叉,以提高实验的安全性。

4.接线完毕后务必请实验指导教师检查线路,确认合格后方可合闸进行实验。

若实如果在检查过程中需要更换接线,则必须关闭电源,并由讲师进行检查。

5.在实验操作过程中,如发生故障,首先应立即切断电源,并请指导教师检查分析故障原因,待故障排除后再进行实验。

6.实验结束后,将数据提交给讲师审核,经讲师批准后方可拆除导线,然后将实验设备、导线和工具整理到位。

3、实验报告实验报告应根据实验目的、实测数据及在实验中观察和发现的问题,经分析研究得出结论,或通过分析讨论写出心得体会。

电力电子技术实验报告册

电力电子技术实验报告册

湖北理工学院实验报告课程名称:电力电子技术专业:班级:学号:学生姓名:实验一单相桥式半控整流电路实验实验室电力电子技术实验室时间2012 年12 月8 日一、实验目的:1、加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。

2、了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。

二、实验主要仪器与设备:三、实验原理本实验线路如图1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。

VD3图1 单相桥式半控整流电路实验线路图四、实验内容及步骤1、实验内容:(1)锯齿波同步触发电路的调试。

(2)单相桥式半控整流电路带电阻性负载。

(3)单相桥式半控整流电路带电阻电感性负载。

2、实验步骤:(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V ,用两根导线将200V 交流电压接到DJK03-1的“外接220V ”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察“锯齿波同步触发电路”各观察孔的波形。

(2)锯齿波同步移相触发电路调试:其调试方法与实验三相同。

令Uct=0时(RP2电位器顺时针转到底),α=170o。

(3)单相桥式半控整流电路带电阻性负载:按原理图接线,主电路接可调电阻R ,将电阻器调到最大阻值位置,按下“启动”按钮,用示波器观察负载电压Ud 、晶闸管两端电压U VT 和整流二极管两端电压U VD1的波形,调节锯齿波同步移相触发电路上的移相控制电位器RP2,观察并记录在不同α角时U d 、U VT 、U VD1的波形,测量相应电源电压U2和负载电压Ud 的数值,记录表1中。

电力电子技术实验报告模版

电力电子技术实验报告模版

CENTRAL SOUTH UNIVERSITY 电力电子技术实验报告姓名学号班级任课老师完成时间实验1-1 三相脉冲移相触发电路一、实验目的:1.熟悉了解集成触发电路的工作原理及双脉冲形成过程2.掌握集成触发电路的应用二、实验内容:1.集成触发电路的调试2.各点波形的观察与分析三、实验电路原理三相脉冲移相触发电路,采用三片集成芯片KJ004(或KC04)及外电路组成,以锯齿波移相的方式确定六个晶闸管的触发脉冲,根据输入控制电压U ct的变化,改变晶闸管的整流控制角α或逆变控制角β。

由三相脉冲移相触发电路产生的六路单窄脉冲分别输入到六路双脉冲形成芯片KJ041(或KC41)的1-6号脚,由芯片内的输入二极管完成“或”功能,形成补脉冲。

补脉冲按+A←-C,-C←+B,+B ←-A,-A←+C,+C←-B,-B←+A顺序列组合。

经电流放大后分别对应于15–10引脚输出间隔为60°的双窄脉冲,经功放后加至1-6号晶闸管(使三相桥式全控整流电路中的器件导通次序为VT1-VT2-VT3-VT4-VT5-VT6,彼此间隔60°,相邻器件成双接通)。

芯片KJ041(或KC41)的7号引脚为电子开关端口,当其为“0”电平时,允许各路输出触发脉冲,为“1”电平时,封锁各路输出触发脉冲。

实验电路原理如图1-1所示。

图1-1四、实验设备:1.YB4320A型双线方波路一台2.万用表一块3.实验挂箱:LY101,LY105-1,LY124五、实验步骤和方法:1.将挂箱LY101的给定信号输出接入LY105-1的U ct孔,并将LY105的U bif、U bir孔接地。

2.LY105-1的触发脉冲输出25芯插件与LY123 I组桥的触发脉冲输入25芯插件相连。

3.将LY124的±15V电源、地与LY105-1及LY101的±15V、地相连。

4.先合LY121中的三相交流总开关,再合直流控制电源开关(不允许合主电路电源开关),并用万用表直流电压档检查±15V电源是否在+15+1V范围内。

电力电子技术实验实验报告

电力电子技术实验实验报告

电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。

具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。

2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。

3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。

二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。

2、示波器:用于观测电路中的电压、电流波形。

3、万用表:测量电路中的电压、电流、电阻等参数。

4、电力电子器件模块:如晶闸管、IGBT 等。

三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。

(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。

2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。

(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。

(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。

3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。

(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。

(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。

四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。

(2)预习实验内容,理解实验原理和电路图。

2、进行实验(1)按照实验内容的要求,依次进行各项实验。

(2)在实验过程中,认真观察实验现象,准确记录实验数据。

3、实验结束(1)关闭实验设备的电源。

(2)整理实验仪器和设备,保持实验台的整洁。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。

实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。

通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。

在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。

通过实验,我们进一步理解了直流电源的工作原理和设计方法。

实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。

通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。

实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。

这些结果对于电力系统的稳定运行和节能优化具有重要意义。

实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。

通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。

实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。

这对于提高电力系统的能效和稳定性具有重要意义。

实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。

通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。

实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。

这对于推广和应用太阳能发电技术具有重要意义。

结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。

实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。

我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。

电力电子技术实验报告

电力电子技术实验报告一、实验背景电力电子技术作为一个新兴的学科领域,已经逐渐成为电力系统的重要组成部分和关键技术之一。

随着电力电子技术的不断发展和进步,电力电子设备的种类和应用范围也在不断扩大,特别是在实现电力系统的高效、可靠、智能化方面具有至关重要的作用。

因此,掌握电力电子技术的基本原理和实验操作技能,对于打造应用型电力电子专业人才具有十分重要的意义。

本次实验主要涉及了电力电子技术的基础实验内容,包括单相桥式整流电路、单相半控桥整流电路、交流调压电路、直流稳压电源实验等。

通过实验,学生不仅能够加深对电力电子技术的理论知识的深入理解,也能够掌握实际操作技能和实验数据分析方法,培养学生的综合实际应用能力和创新能力。

二、实验原理(1)单相桥式整流电路单相桥式整流电路是电力电子技术最常见的电路之一。

其工作原理是通过控制四个二极管的导通和截止,将单相交流电转化为直流电,然后提供给直流负载使用。

这种电路结构简单、可靠性高、输出电压稳定等特点,被广泛应用于各种电力电子设备中。

(2)单相半控桥整流电路单相半控桥整流电路和单相桥式整流电路类似,不同之处在于只有一个晶闸管是可控的,其余三个二极管均为正向导通二极管。

这种电路可以实现对直流输出电压的连续调节,具有输出电压稳定、反向截止和可靠性高等特点,被广泛应用于变频调速、直流电动机控制等领域。

(3)交流调压电路交流调压电路是将变压器输出的交流电进行调制,通过控制可控硅的导通和截止,实现输出电压可调的电路。

这种电路在电力电子设备中广泛应用于电炉、电化学等领域,具有输出电压稳定、可靠性高、精度高等特点。

(4)直流稳压电源实验直流稳压电源实验是通过对不同的调节电路与稳压电路进行结合,实现直流电源输出电压、电流稳定的实验。

在电子学、通信、电力电子等领域中应用广泛,能够满足各种直流负载的需要。

三、实验步骤(1)单相桥式整流电路1. 将单相电源接入电路,调节电压调节器,使输出电压稳定。

南昌大学电力电子技术实验报告(打印上交)汇总

电力电子技术实验报告学生姓名:学号:学院名称:专业班级:目录实验一锯齿波同步移相触发电路实验 (1)实验二正弦波同步移相触发电路实验 (4)实验三单相桥式全控整流电路实验 (7)实验四单相桥式半控整流电路实验 (11)实验五三相桥式全控整流及有源逆变电路实验 (16)实验六直流斩波电路实验 (19)实验七三相半波可控整流电路的研究 (21)实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。

四.实验设备及仪器1.NMCL系列教学实验台主控制屏2.NMCL-32组件和SMCL-组件3.NMCL-05组件4.双踪示波器5.万用表五.实验方法图1-1 锯齿波同步移相触发电路1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。

2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。

3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。

用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

4.调节脉冲移相范围将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压Ub(即调RP2),使α=180˚。

调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180˚,Uct=Umax时,α=30˚,以满足移相范围α=30˚~180˚的要求。

电力电子技术实验报告

7实验一直流斩波电路实验一. 实验目的熟悉降压斩波电路、升压斩波电路及斩波控制电路的结构和工作原理,掌握以上两种基本斩波电路的工作状态和波形情况及调试方法。

二. 实验内容(1) 了解驱动电路的结构和实验电路的工作原理。

(2) 降压斩波电路的波形观察及电压测试。

(3) 升压斩波电路的波形观察及电压测试。

(4) 升降压斩波电路的波形观察及电压测试(选做,建议做)。

(5) Cuk 斩波电路的波形观察及电压测试(选做)。

(6) Sepic 斩波电路的波形观察及电压测试(选做)。

(7) Zeta 斩波电路的波形观察及电压测试(选做)。

(8) 电流测量(选做)。

三. 实验设备及仪器(1) 电力电子与运动控制教学实验平台(2) 示波器及高压隔离探头(3) 万用表(4) 连接导线四. 实验数据记录及整理分析1、了解MC0511 控制单元的工作原理,分析不同占空比和开关频率时波形的变化情况;分析驱动信号在连接MOSFET 前后波形的变化情况;说明“输出限幅”和“禁止”功能的作用。

在图1.1/1.2/1.3中,开关频率均为低频(5kHz),占空比依次为递增为20/40/60在图1.4/1.5/1.6中,占空比均为60,开关频率依次为为低频/高频/中频图1.7/1.8分别是将占空比旋钮调至最大所得到的波形。

输出限幅的接入可以限制输出波形占空比。

2、降压斩波电路性能研究(1)搭建电路如下所示(2)降压斩波电路测试结果表2.1 斩波电路测试结果电路形式:降压斩波电路开关频率:低频(5kHZ)负载情况:重载36V/90W表2.2 斩波电路测试结果电路形式:降压斩波电路开关频率:中频(12kHZ)负载情况:重载36V/90W表2.3 斩波电路测试结果电路形式:降压斩波电路开关频率:高频(20kHZ)负载情况:重载36V/90W(3)调节MC0511 控制单元上的“脉冲宽度调节”旋钮至约30%处,观察灯泡亮度的变化,用万用表测量并记录灯泡负载上的电压Uo 和斩波器输入直流电压E 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术实验-打印的-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII实验一单结晶体管触发电路实验一、实验目的(1) 熟悉单结晶体管触发电路的工作原理及各元件的作用。

(2) 掌握单结晶体管触发电路的调试步骤和方法。

序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK03 晶闸管触发电路该挂件包含“单结晶体管触发电路”等模块。

3 双踪示波器自备图1-8 单结晶体管触发电路原理图由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再经稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压Up时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单节晶体管的谷点电压Uv使V6关断,C1再次充电,周而复始,在电容c1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。

在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。

电容C1的充电时间常数由等效电阻等决定,调节RP1改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

单结晶体管触发电路的个点波形略。

四、实验内容(1) 单结晶体管触发电路的调试。

(2) 单结晶体管触发电路各点电压波形的观察。

五、思考题(1) 单结晶体管触发电路的振荡频率与电路中 C1 的数值有什么关系答:在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。

电容C1的充电时间常数由等效电阻等决定,调节RP1 改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

(2) 单结晶体管触发电路的移相范围能否达到180°答:能六、实验方法(1) 单结晶体管触发电路的观测将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧 , 使输出线电压为 200V (不能打到“交流调速”侧工作,因为 DJK03 的正常工作电源电压为220V ± 10% ,而“交流调速”侧输出的线电压为 240V 。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“ DZSZ-1 型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到 220V 左右,然后才能将电源接入挂件),用两根导线将 200V 交流电压接到 DJK03 的“外接220V ”端,按下“启动”按钮,打开 DJK03 电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“ 1 ”点的波形,经稳压管削波得到“ 2 ”点的波形,调节移相电位器 RP1 ,观察“ 4 ”点锯齿波的周期变化及“ 5 ”点的触发脉冲波形;最后观测输出的“ G 、K ”触发电压波形,其能否在30° ~170° 范围内移相(2) 单结晶体管触发电路各点波形的记录当α= 30 o 、 60 o 、 90 o 、 120 o 时,将单结晶体管触发电路的各观测点波形描绘下来,并与图 1-9 的各波形进行比较。

七、实验报告画出α=60°时,单结晶体管触发电路各点输出的波形及其幅值.答:如图所示。

八、注意事项双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

九、实验总结通过实验,加深了课堂上学习的知识.第一次做这种实验,运用示波器的时候以为和其他的一样,刚开始并没有看注意事项,导致波形观察不是很清楚.后来采用了两个示波器观察.实验二锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

(2)掌握锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路的原理图见DJK03-1挂件介绍中锯齿波同步移相触发电路原理图。

锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见DJK03-1挂件介绍部分和电力电子技术教材中的相关内容。

四、实验内容(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形的观察和分析。

五、思考题(1)锯齿波同步移相触发电路有哪些特点?答:锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?答:与电容C1、电位器RP1、电位器RP2、电位器RP3等参数有关。

六、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V 左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。

②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。

③调节电位器RP1,观测“2”点锯齿波斜率的变化。

④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。

(2)调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如下图所示。

锯齿波同步移相触发电路(3)调节Uct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。

U1 U2 U3 U4 U5 U6幅值(V)0.48 0.34 0.11 0.34 0.8 0.038宽度(ms)20 20 20 7.2 5 10七、实验报告(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。

答:数据见表格。

(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?答:调节RP3电位器即可。

八、注意事项(1) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2)由于正弦波触发电路的特殊性,我们设计移相电路的调节范围较小,如需将α调节到逆变区,除了调节RP1外,还需调节RP2电位器。

(3)由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。

九、实验心得体会锯齿波同步移相触发电路1、2由同步检测、锯齿波形成、移相控制、脉冲放大等环节组成,通过本实验使我更加理解锯齿波同步移相触发电路的工作原理及各元件的作用,并基本掌握掌握锯齿波同步移相触发电路的调试方法。

实验三单相半波可控整流电路实验一、实验目的(1) 掌握单结晶体管触发电路的调试步骤和方法。

(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。

(3) 了解续流二极管的作用。

2 DJK02 三相变流桥路该挂件包含“晶闸管”,以及“电感”等几个模块。

3 DJK03 晶闸管触发电路实验该挂件包含“单结晶体管触发电路”模块。

4 DJK06 给定﹑负载及吸收电路该挂件包含“二极管”以及“开关”等几个模块。

5 DK04 滑线变阻器串联形式: 0.65A ,2k Ω并联形式: 1.3A ,500 Ω6 双踪示波器自备7 万用表自备单结晶体管触发电路的工作原理及线路图已在 1-3 节中作过介绍。

将 DJK03 挂件上的单结晶体管触发电路的输出端“ G ”和“ K ”接到 DJK02 挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的 R 负载用 DK04 滑线变阻器接成并联形式。

二极管 VD1 和开关 S1 均在 DJK06 挂件上,电感 L d 在 DJK02 面板上,有 100mH 、200mH 、 700mH 三档可供选择,本实验中选用 700mH 。

直流电压表及直流电流表从 DJK02 挂件上得到。

图 3-3 单相半波可控整流电路四、实验内容(1) 单结晶体管触发电路的调试。

(2) 单结晶体管触发电路各点电压波形的观察并记录。

(3) 单相半波整流电路带电阻性负载时U d /U 2 = f(α) 特性的测定。

(4) 单相半波整流电路带电阻电感性负载时续流二极管作用的观察。

五、思考题(1) 单结晶体管触发电路的振荡频率与电路中电容 C1 的数值有什么关系答:在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。

电容C1的充电时间常数由等效电阻等决定,调节RP1 改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

相关文档
最新文档