电力电子技术实验要点

合集下载

电子行业电力电子技术实验

电子行业电力电子技术实验

电子行业电力电子技术实验简介电力电子技术在电子行业中具有重要的地位和作用。

它涉及到电力的转换、传输和控制等多个方面。

电力电子技术实验是学习和掌握电力电子技术的关键环节。

本文将介绍电子行业电力电子技术实验的基本原理、实验步骤和实验注意事项。

基本原理电力电子技术实验的基本原理涉及到电力电子器件、电路拓扑和控制策略等几个方面。

电力电子器件电力电子器件是电力电子技术实验的基础。

常见的电力电子器件包括二极管、晶闸管、三极管、IGBT、MOSFET等。

这些器件的特性和应用范围不同,实验时需要根据具体的实验要求选择合适的器件。

电路拓扑电力电子技术实验常用的电路拓扑有逆变器、变频器、开关电源等。

不同的电路拓扑有不同的功能和应用场景。

在实验中,需要根据实验要求选择合适的电路拓扑,设计和搭建相应的电路。

控制策略电力电子技术实验中的控制策略主要包括脉宽调制(PWM)控制、谐振控制等。

控制策略的选择和实施对于实验结果的准确性和稳定性起着至关重要的作用。

在实验中,需要根据实验要求选择合适的控制策略,并正确地设置相关参数。

实验步骤下面以逆变器实验为例,介绍电子行业电力电子技术实验的基本步骤。

1.准备实验所需的器件和电路元件,如逆变器模块、电阻、电容等。

2.搭建实验电路,按照电路拓扑图连接电力电子器件和其他电路元件。

3.使用示波器和信号发生器等测试仪器,调试电路并测量电压、电流等参数。

4.进行实验前的准备工作,如设置实验参数、启动逆变器等。

5.运行实验,观察电路的工作状态和实验结果,并记录相关数据和现象。

6.分析实验结果,根据实验数据和现象判断电力电子技术的性能和稳定性。

7.结束实验,关闭逆变器和其他电路设备,清理实验现场并整理实验数据。

实验注意事项在进行电子行业电力电子技术实验时,需要注意以下几点:1.实验前应仔细阅读实验指导书,了解实验目的、步骤和安全注意事项。

2.实验时要佩戴适当的防护设备,如护目镜、手套等,以确保实验的安全性。

电力电子技术课程实训报告

电力电子技术课程实训报告

一、前言电力电子技术是一门研究电力电子器件及其在电力系统中的应用的学科,是电气工程及其自动化专业的一门核心课程。

为了更好地理解和掌握电力电子技术的理论知识,提高动手实践能力,我参加了电力电子技术课程实训。

以下是实训过程中的总结和体会。

二、实训目的1. 理解电力电子器件的工作原理和特性;2. 掌握电力电子电路的设计和调试方法;3. 培养动手实践能力,提高解决实际问题的能力;4. 提高团队合作意识,增强沟通能力。

三、实训内容1. 电力电子器件实验:实验内容包括晶闸管、二极管、可控硅等电力电子器件的伏安特性测试、开关特性测试等。

2. 电力电子电路实验:实验内容包括可控整流电路、逆变电路、斩波电路等电力电子电路的设计、搭建和调试。

3. 电力电子装置实验:实验内容包括电力电子装置的组成、工作原理、性能测试等。

四、实训过程1. 实验准备:根据实验要求,准备好实验所需的器件、仪器和设备。

2. 实验操作:按照实验步骤,进行电力电子器件的测试、电路的搭建和调试。

3. 结果分析:对实验数据进行整理和分析,找出实验过程中存在的问题,并提出改进措施。

4. 实验报告撰写:根据实验过程和结果,撰写实验报告。

五、实训成果1. 理解了电力电子器件的工作原理和特性,掌握了器件的伏安特性测试和开关特性测试方法。

2. 掌握了电力电子电路的设计和调试方法,能够根据电路原理图搭建和调试电路。

3. 提高了动手实践能力,能够独立完成电力电子电路的设计和调试。

4. 增强了团队合作意识,与团队成员共同完成实验任务。

六、实训体会1. 实践是检验真理的唯一标准。

通过实训,我深刻认识到理论知识与实际操作之间的紧密联系。

2. 电力电子技术是一门综合性较强的学科,需要掌握多个方面的知识。

在实训过程中,我意识到只有不断学习,才能提高自己的综合素质。

3. 实训过程中,我学会了如何与他人沟通和协作,提高了自己的团队协作能力。

4. 在实训过程中,我遇到了一些问题,通过查阅资料、请教老师和同学,最终解决了这些问题。

电力电子技术实验指导书最新版

电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。

电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。

电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。

电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。

波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。

因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。

由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。

二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。

1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。

可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。

电力电子技术实验实验报告

电力电子技术实验实验报告

电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。

具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。

2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。

3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。

二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。

2、示波器:用于观测电路中的电压、电流波形。

3、万用表:测量电路中的电压、电流、电阻等参数。

4、电力电子器件模块:如晶闸管、IGBT 等。

三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。

(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。

2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。

(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。

(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。

3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。

(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。

(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。

四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。

(2)预习实验内容,理解实验原理和电路图。

2、进行实验(1)按照实验内容的要求,依次进行各项实验。

(2)在实验过程中,认真观察实验现象,准确记录实验数据。

3、实验结束(1)关闭实验设备的电源。

(2)整理实验仪器和设备,保持实验台的整洁。

电力电子技术实验要点

电力电子技术实验要点

实验一、单相半控桥整流电路实验一、主要内容1.实现控制触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相范围及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相范围,观察失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw〔约230v〕到降压变压器〔MCL-35〕,输出单相电压〔约124v〕作为整流输入电压u2;◆在〔MCL-33〕两组基于三相全控整流桥的晶闸管阵列〔共12只〕中,选定两只晶闸管,与整流二极管阵列〔共6只〕中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。

思考:接通电源和控制信号后,如何判断移相控制是否同步?2.半控桥纯阻性负载实验:◆连续改变控制角α,测量并记录电路实际的最大移相范围,用数码相机记录α最小、最大和90o时的输出电压u d波形〔注意:负载电阻不宜过小,确保当输出电压较大时,Id 不超过0.6A〕;思考:如何利用示波器测定移相控制角的大小?◆在最大移相范围内,调节不同的控制量,测量控制角α、输入交流电压u2、控制信号u ct和整流输出Ud的大小,要求不低于8组数据。

3.半控桥阻-感性负载〔串联L=200mH〕实验:◆断开总电源,将负载电感串入负载回路;◆连续改变控制角α,记录α最小、最大和90o时的输出电压u d波形,观察其特点〔Id 不超过0.6A〕;◆固定控制角α在较大值,调节负载电阻由最大逐步减小〔分别到达电流断续、临界连续和连续A值下测量。

注意Id ≤0.6A〕,并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果;思考:如何在负载回路获取负载电流的波形?◆调整控制角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号〔模拟将控制角α快速推到180o〕,制造失控现象,记录失控前后的u d波形,并思考如何判断哪一只晶闸管失控;三、实验报告要求1.实验根本内容〔实验工程名称、条件及实验完成目标〕2.实验条件描述〔主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人〕3.实验过程描述〔含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等〕;4.实验数据处理〔含原始数据记录单、计算结果及工程特性曲线,〕;5.实验综合评估〔对实验方案、结果进行可信度分析,提出可能的优化改良方案〕;6.思考:◆阐述选择实验面板晶闸管序号构成半控桥的依据。

电力电子技术实验教案

电力电子技术实验教案

电力电子技术实验教案一、实验目的:1、了解电力电子技术的基本原理和应用领域;2、学习电力电子元器件的基本特性和使用方法;3、掌握电力电子实验仪器的使用方法;4、通过实验了解电力电子技术的各种调制方式和控制技术;5、培养学生的动手实践和问题解决能力。

二、实验内容:1、电力电子元器件的特性测试;2、单相桥式整流电路实验;3、直流调压电路实验;4、单相逆变电路实验;5、三相逆变电路实验;6、电力电子调制与控制技术实验。

三、实验仪器和设备:1、实验箱;2、示波器;3、信号发生器;4、电流表和电压表;5、稳流电源和稳压电源;6、相关电力电子元器件。

四、实验步骤:1、电力电子元器件的特性测试(1)学习使用测量电流、电压和功率的三用电表,测量并记录不同电力电子元件的电流-电压特性曲线。

(2)测量并记录二极管的正向特性曲线。

(3)测量并记录晶闸管的控制特性曲线。

(4)测量并记录场效应管的传导特性曲线。

(5)测量并记录开关管(如开关二极管、开关三极管)的关断特性曲线。

2、单相桥式整流电路实验(1)搭建单相桥式整流电路,观察并记录电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

3、直流调压电路实验(1)搭建直流调压电路,观察并记录输出电压的波形。

(2)通过改变输入电压、负载电阻和调压器参数等方式,观察并分析输出电压的变化规律。

4、单相逆变电路实验(1)搭建单相逆变电路,观察并记录输出电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

5、三相逆变电路实验(1)搭建三相逆变电路,观察并记录输出电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

6、电力电子调制与控制技术实验(1)学习并使用PID控制器或DSP控制器,通过调整控制参数实现电力电子系统的输出电压和电流控制。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。

实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。

通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。

在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。

通过实验,我们进一步理解了直流电源的工作原理和设计方法。

实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。

通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。

实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。

这些结果对于电力系统的稳定运行和节能优化具有重要意义。

实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。

通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。

实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。

这对于提高电力系统的能效和稳定性具有重要意义。

实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。

通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。

实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。

这对于推广和应用太阳能发电技术具有重要意义。

结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。

实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。

我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、单相半控桥整流电路实验一、主要内容1.实现控制触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相范围及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相范围,观察失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw(约230v)到降压变压器(MCL-35),输出单相电压(约124v)作为整流输入电压u2;◆在(MCL-33)两组基于三相全控整流桥的晶闸管阵列(共12只)中,选定两只晶闸管,与整流二极管阵列(共6只)中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。

思考:接通电源和控制信号后,如何判断移相控制是否同步?2.半控桥纯阻性负载实验:◆连续改变控制角,测量并记录电路实际的最大移相范围,用数码相机记录α最小、最大和90o时的输出电压u d波形(注意:负载电阻不宜过小,确保当输出电压较大时, Id 不超过0.6A);思考:如何利用示波器测定移相控制角的大小?◆在最大移相范围内,调节不同的控制量,测量控制角、输入交流电压u2、控制信号u ct和整流输出Ud的大小,要求不低于8组数据。

3.半控桥阻-感性负载(串联L=200mH)实验:◆断开总电源,将负载电感串入负载回路;◆连续改变控制角α,记录α最小、最大和90o时的输出电压u d波形,观察其特点(Id 不超过0.6A);◆固定控制角α在较大值,调节负载电阻由最大逐步减小(分别达到电流断续、临界连续和连续0.5A值下测量。

注意 Id ≤0.6A),并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果;思考:如何在负载回路获取负载电流的波形?◆调整控制角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号(模拟将控制角α快速推到180o),制造失控现象,记录失控前后的u d波形,并思考如何判断哪一只晶闸管失控;三、实验报告要求1.实验基本内容(实验项目名称、已知条件及实验完成目标)2.实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)3.实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);4.实验数据处理(含原始数据记录单、计算结果及工程特性曲线,);5.实验综合评估(对实验方案、结果进行可信度分析,提出可能的优化改进方案);6.思考:◆阐述选择实验面板晶闸管序号构成半控桥的依据。

◆测绘电阻负载时u d = f (α)和u d = f (u ct)的实验特性曲线(注:由数据处理软件自动生成),其中将实验u d = f (α)与理论推算u d = f (α)特性曲线比较(在同一坐标系内),若存在误差,分析成因。

◆分析阻-感性负载时,为什么减小负载电阻输出电流的波形越趋平稳?基于有较大的感抗值,电路能否接纯感性负载工作,为什么?◆分析同样的阻感负载时,本电路与单相全控桥电路的输出电压u d特征差异,说明原因。

◆若以u d = f (u ct)的实验特性曲线作为控制电源的静态模型建模依据,该电源的近似放大系数Ks≈?我们需要什么样的专业课实验报告书?当进入大三以后,会面对很多专业课程的实验项目,如何让这些实验的报告体现出它应该有的“专业”性?撇开具体的实验内容不谈,实验报告应该具有以下共同的特质:1.报告具有尽可能丰富的实验信息。

例如实验的工作条件描述、实验团队的分工构成描述、实验预期结果的描述等等,这些都在为成就一个专业工程师做着有益的铺垫。

2.实验数据的处理手段应体现专业性。

面对大量的数据计算和分析,必须充分利用信息化手段,请即刻摒弃手绘坐标纸之类的落后方法处理数据,不要让报告失去应有的客观性和专业性。

3.实验结果不能如同陈列的僵尸躺在报告上,应该赋予它鲜活的血肉和生命力。

●测试结果(数据或波形图等)应附有明确的测试条件说明,应有足够的量纲标识;●实验结果与理论预期的比对是必要的,误差分析应该是实实在在的,不要务虚;●实验结果说明了什么?请拿出你的看法,如同一场电影看罢,总会有所评价一样,提炼和升华是学习的终极;●对现有实验方案的优劣应有所思考,可以试试提出优化方案或展望;●数据结果可以不准确,方案可以不完美,但发自内心原生态的思考是绝对不可或缺的和最最重要的,它是一份报告的价值所在,也为老师所乐见。

4.一次实验是有限的,但对它的思考应该是无限的。

报告在具备基本要素的前提下,不要太拘泥于固定的模板格式,不要太局限于实验本身的范畴,如果报告上出现了由此而衍生的许许多多,例如扩展仿真实验、扩展的方案讨论、扩展的的器件或设备描述、扩展的应用案例、扩展的…,对于教授者和学业者,就是莫大的幸事。

如果你是这样做的,就不用去重复做许多的实验,举一反三即可。

5.请强化报告的可读性,表现出你的热忱和投入。

写作考虑到读者的体验度了吗?要尽可能的提升条理性和可视性,不要提交一份只有自己才能读懂的报告,当你调用所有的资源和手段投入到这份报告之中时,或许能从中读出你的热情和心血,我们就该向你致敬了。

一句话概之,实验报告不仅仅是记录,更应该有思考和扩展……实验二、三相全桥整流及有源逆变实验四、主要内容1.观测整流状态下阻性负载、阻-感性负载时u d,u VT波形;2.观测逆变状态下(阻-感性-反电动势负载)u d,u VT波形及逆变功率测量;五、方法和要领1.连接三相整流桥及逆变回路◆由三相隔离变压器(MCL-32)二次绕组接至三相降压变压器(MCL-35),输出三相电源(线电压约110~130v)作为三相变流桥的交流输入;◆由三相隔离变压器(MCL-32)二次绕组接至由二极管组成的三相不可控全波整流桥,作为逆变时负载回路的电动势源(大小恒定的电压源);◆由双刀双置开关构成整流和逆变选择回路(严禁主回路带电时切换此开关);◆约定整流、逆变临界控制点为Uct = 0,当Uct﹥0时,处于整流移相控制;Uct﹤0时处于逆变移相控制:2.整流工作◆阻性(450)负载测试:双置开关选择整流回路,负载电阻设定为最大(约450),加正给定电压。

1)观测并记录整流状态下α≈0O,60O,90O时u d、u VT波形(注意限制Id≤0.6A);2)α≈0O时封锁任1只晶闸管的脉冲信号,记录u d的波形及大小值;3)α≈0O时封锁任2只晶闸管的脉冲信号,记录u d的波形及大小值;(一次:共阴极组2只;一次:阴极阳极组各1只)◆阻-感(300+ 700mH )负载测试:双置开关选择整流回路,观测并记录α=30O,90O时u d、u VT波形(注意限制Id≤0.6A);α=60O封锁分别1只和2只晶闸管的脉冲信号,记录u d的波形及大小值。

3.逆变工作断掉主回路电源,将负载回路切换到逆变条件,注意逆变电动势源的直流极性。

◆选负给定信号,保持负载为(450Ω+700mH),再合上电源,观测逆变状态下β=60O,90O时u d,u VT波形;◆在恒定负载情况下(电阻450Ω,电感700mH,直流反电动势E基本恒定),在最大逆变移相范围内,测定电网实际吸收直流功率Pk = f (Ud)的函数曲线(不低于8组数据点)。

已知,三相全控桥输出等效电阻Rn=12 。

六、实验报告要求:1.实验项目名称2.实验基本内容(已知条件及实验要求)3.实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)4.实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);5.实验数据处理(含原始数据清单、计算结果、特性曲线等);6.误差分析(分析方案、方法、仪器、操作等带入的必然、偶然误差因素);7.特别要求:◆分析比较整流工作时,阻性负载和阻感负载再缺相(丢失一路触发信号)故障下,Ud瞬时波形的差异性?◆整流状态下阻-感负载时,α=90O时ud的瞬时波形就一定有正负半波对称吗,为什么?◆说明逆变状态下,逆变电源的负载波形是电路上哪两端的波形?为什么逆变输出电压Ud越高,负载电流Id越小?◆对Pk = f (Ud)曲线结果作趋势分析。

实验三 半桥型开关稳压电源的性能研究一、主要内容1. 熟悉PWM 专用芯片SG3525的基本功能和应用特色,测试其典型功能端波形; 2. 测试和分析半桥型开关电源在开环和闭环两种模式下的输出性能二、主要实验内容和技术要领i. PWM 控制芯片SG3525的测试1) 连接:将开关S 1打向“半桥电源”,屏蔽误差调节器反馈输入端。

2)测试:用示波器分别观察锯齿波振荡器和A (或B )路PWM 信号的波形,并记录波形的频率和幅值,调节“脉冲宽度调节”电位器,记录其占空比可调范围(最大、最小占空比)。

3) 连接:断开主电路和控制电路的电源,将光电藕输出信号端与半桥电路中的Power-MOSFET 管正确相连。

4)测试:接通控制电路电源开关“S 2”,观察Power-MOSFET 管VT 1的栅极G 和源极S 间的电压波形,记录波形周期宽度T 、幅值U GS 及上升t r 、下降时间t f 。

ii. 构成开环电压系统向负载供电1)连接:断开主电路和控制电路的电源,将“主电源1”将直流电压输出至半桥电路的输入端,连接半桥输出负载R1+R2(负载电阻为33Ω)。

2) 测试:调节“脉冲宽度调节”电位器,记录不同占空比(不低于8组数据)时输出电源电压u o大小;iii. 构成闭环电源系统,测试稳压性能1)连接:开放误差调节器反馈输入端,从“半桥型开关稳压电源”输出端“13”取电压反馈信号连至SG3525的反馈输入“2”端,并将“半桥型稳压电源”的“9”端和“PWM 波形发生”的地端相连(共地):2)测试:半桥输出回路“9”,“11”端连通(负载电阻为3Ω),调节PWM 占空比使电源输出端电压u 0为5V ;然后断开“9”,“11”端连线,连接“9”,“12”端(负载电阻改变至33Ω),测量输出电压u 0的值,计算负载强度变化十倍时的电压调整率(抗负载变化的电压稳定能力):%100500⨯-U VU断开输出端“13”电压反馈信号,重新屏蔽误差调节器反馈输入端,回复到开环状态,重复上述3Ω和33Ω不同负载时“5V ”输出电压的电压调整率。

与闭环系统的结果进行比较。

三、实验报告要求1. 实验项目名称2. 实验基本内容(已知条件及实验要求)3. 实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)4. 实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);5.实验数据处理(含原始数据清单、计算结果及工程特性曲线,注:利用数据处理软件自动生成);6.误差分析(分析方案、方法、仪器、操作等可能带入的必然、偶然误差因素);7.特别要求:●根据实验数据,生成开环时Uo=f (σ%)的函数曲线(负载为R1+R2,不少于8组数据点)●为什么在2、3步要分别将“PWM波形发生”的“3”,“4”两点短接或断开?分析闭环后的稳压控制是如何实现的。

相关文档
最新文档