同济大学考研 结构动力学ppt
合集下载
高等结构动力学

ED、FD和M — 地震谱密度水平,通常可以忽略
SC — 地基土对地震谱影响
ξ — 阻尼比
T — 周期
同济大学土木工程防灾国家重点实验室、桥梁工程系
3.1确定合适的地震输入(续) ¾响应谱简化 S = S (SC ,ξ , T )
结论:地震土越硬,卓越周期越小,带宽越小
同济大学土木工程防灾国家重点实验室、桥梁工程系
&& }+ [C ]{∆δ & }+ [K ]{∆δ } = {∆p(t )}+ {p T (t )} [M ss ]{∆δ vs ss vs ss vs
&& }− ([C ]{∆δ& }+ [C ]{∆δ& }) {∆p(t )} = −[M ss ]{∆δ ps ss ps sg g
&& (t )}− [C ]{∆δ& (t )}− {F (t )} {p (t )} = {p(t )}− [M ]{∆δ
概率性线性地震反应分析 各态平稳随机过程 自相关函数、功率谱密度、概率分布 概率性非线性地震反应分析
同济大学土木工程防灾国家重点实验室、桥梁工程系
小结
桥梁地震反应分析
实际地震波输入 确定合适的地震输入 模拟地震波输入 分步计算增量方程 建立系统的数学模型 静力平衡解耦方程 非线性地震时程分析 选择有效的求解方法 逐步积分法求解
同济大学土木工程防灾国家重点实验室、桥梁工程系
1. 桥梁抗震设计现状(续)
1.3 引起震害原因
¾地震问题 砂土液化、地基下沉、岸坡滑移或开裂 ¾结构问题 形式、构造或连接措施不当引起的落梁 ¾地震力分布问题 桥梁各支承点的地面运动不一致 ¾设计问题 墩柱本身抗震能力不足造成的破坏
SC — 地基土对地震谱影响
ξ — 阻尼比
T — 周期
同济大学土木工程防灾国家重点实验室、桥梁工程系
3.1确定合适的地震输入(续) ¾响应谱简化 S = S (SC ,ξ , T )
结论:地震土越硬,卓越周期越小,带宽越小
同济大学土木工程防灾国家重点实验室、桥梁工程系
&& }+ [C ]{∆δ & }+ [K ]{∆δ } = {∆p(t )}+ {p T (t )} [M ss ]{∆δ vs ss vs ss vs
&& }− ([C ]{∆δ& }+ [C ]{∆δ& }) {∆p(t )} = −[M ss ]{∆δ ps ss ps sg g
&& (t )}− [C ]{∆δ& (t )}− {F (t )} {p (t )} = {p(t )}− [M ]{∆δ
概率性线性地震反应分析 各态平稳随机过程 自相关函数、功率谱密度、概率分布 概率性非线性地震反应分析
同济大学土木工程防灾国家重点实验室、桥梁工程系
小结
桥梁地震反应分析
实际地震波输入 确定合适的地震输入 模拟地震波输入 分步计算增量方程 建立系统的数学模型 静力平衡解耦方程 非线性地震时程分析 选择有效的求解方法 逐步积分法求解
同济大学土木工程防灾国家重点实验室、桥梁工程系
1. 桥梁抗震设计现状(续)
1.3 引起震害原因
¾地震问题 砂土液化、地基下沉、岸坡滑移或开裂 ¾结构问题 形式、构造或连接措施不当引起的落梁 ¾地震力分布问题 桥梁各支承点的地面运动不一致 ¾设计问题 墩柱本身抗震能力不足造成的破坏
《结构动力学》PPT课件

0
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
结构动力学-4节.ppt

fs ky (t) fd c y ( t) m y c y ky m u g
u g (t )
二、隔振设计 基底振动的隔离(对象是m,如地震) 力的传递与隔振(对象是地基,如 轻轨影响地基) 1.基底振动的隔离 设质量相对于地面的位移为yr
y ( t ) y ( t ) u ( t ) r g
y P i i y y cos t sin t ( 1 cos t ) i 1 i k
i 1 / y i sin t y i y cos t
P (t )
Pi
Pi 1
P i sin t k
2 2
3 2 tan 1 2 4 22
A 1 4 22 B ( 1 2)2 4 22
传导比
m y c y ky kB sin t cB cos t
A/ B
0
1/ 5
2
m
k
y (t )
c
1/ 4
1/ 3 1/ 3
k
y y d y yy k 1 k 1 y k 1 k 1 y ( ) k t d tk t t t 2 t k 1 k 1
t k 的加速度为: y y y y k 1 k 1 k k y 2 y y t t k 1 k k 1 y k 2 t ( t )
0
1 t y ( t ) p () s i n( t ) d 0 m
t
1 t ( p r ) s i n( t ) d 0 0 m
结构动力学课件PPT

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
同济大学高等结构动力学课件(全)

车辆振动作用 地震振动作用 风致振动作用
同济大学土木工程防灾国家重点实验室、 同济大学土木工程防灾国家重点实验室、桥梁工程系
主要内容
第一讲 单自由度系统自由振动 第二讲 单自由度系统强迫振动 第三讲 广义单自由度叠加方法 第四讲 广义单自由度分步方法 第五讲 多自由度系统动力问题 第六讲 特征值问题求解方法 第七讲 随机振动基础 第八讲 结构随机振动分析 第九讲 结构动力可靠性分析 第十讲 桥梁车辆振动作用 第十一讲 桥梁地震振动作用 第十二讲 桥梁风致振动作用
阻尼比计算:
2πξω vn = exp vn +1 ωD
Hale Waihona Puke 两边取对数: δ ≡ ln vn = 2πξ ≈ 2πξ = c
ξ≈
vn +1 1−ξ v n − v n +1
2mf
2πv n +1
ξ≈
vn − vn+m 2mπv n + m
振幅衰减值:振幅减小50%的振动次数
1. 1结构重力影响(续)
&&(t ) + cv &(t ) + k∆ st + kv (t ) = p (t ) + W mv
∵ k∆ st = W ∴ ∵ ∴
&&(t ) + cv &(t ) + kv (t ) = p (t ) mv
&&(t ) , v & (t ) &&(t ) = v ν &(t ) = v
A = 0,
B=− p0 β k 1 1 − β 2
无阻尼系统通解:
p v(t ) = 0 k 1 1 − β 2 (sin ω t − β sin ωt )
第12章结构动力学 ppt课件

§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
第十章结构动力学1 56页PPT文档

5.与其它课程之间的关系
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
(同济大学)结构动力学教程 第六章 结构动力学中常用的数值方法

(2) 求解位移向量: [K ]{x}t+θ∆t = {R}t+∆t
{x}t+∆t = a4 ({x}t+θ∆t − {x}t ) + a5{x}t + a6{
(3) 求解加速度、速度、位移向量:{x}t+∆t = {x}t + a7 ({x}t+∆t + {x}t ) {x}t+∆t = {x}t + ∆t{x}t + a8 ({x}t+∆t + 2{x}
({Q}t+θ∆t = {Q}t +θ ({Q}t+∆t −{Q}t )) 以位移 {x}t+θ∆t 为未知量建立求解方程,即:
[K ]{x}t+θ∆t = {R}t+θ∆t
式中,
[K ] = [K ] + 1 [M ] + 3 [C]
(θ∆t ) 2
θ∆t
{R }t +θ∆t
= {Q}t
+ θ ({Q}t+∆t
x
xt+∆
t + ∆t
用同样方法处理位移
泰勒展开:{x}t+∆t
= {x}t
+ {x}t ∆t +
1 {~x}∆t 2 2
类似地设 t → t + ∆t 时间间隔内:{x} = {x}t + 2δ ({x}t+∆t − {x}t )
(0 ≤ δ ≤ 0.5)
{x}t+∆t = {x}t + {x}t ∆t + (0.5 − δ ){x}t ∆t 2 + δ {x}t+∆t ∆t 2
与原矩阵a相关联的矩阵设矩阵a的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量仍为非奇异则的逆矩阵存在为其特征值相似即有可逆矩阵存在使的特征值也为特征向量为特征值的和与积设矩阵的特征值为则有供校核用特征向量规范化设矩阵的特征向量为的特征向量