【精选】代数式单元测试卷 (word版,含解析)

合集下载

代数式单元测试题(Word版 含解析)

 代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

最新人教版七年级数学上册 代数式单元复习练习(Word版 含答案)

最新人教版七年级数学上册 代数式单元复习练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

代数式检测题(WORD版含答案)

 代数式检测题(WORD版含答案)

一、初一数学代数式解答题压轴题精选(难)1.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

代数式单元测试卷(含答案解析)

 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)第三章代数式综合测试卷一、选择题1.2014年我国启动“家电下乡”工程,国家对购买家电补贴13%。

若某种品牌彩电每台售价a元,则购买时国家需要补贴( B )。

A。

XXXB。

13%a元C。

(1-13%)a元D。

(1+13%)a元2.代数式2(y-2)的正确含义是 ( C )。

A。

2乘y减2B。

2与y的积减去2C。

y与2的差的2倍D。

y的2倍减去23.下列代数式中,单项式共有 ( D )。

312322,x+y,x+y,-1,abcx2A。

2个B。

3个C。

4个D。

5个4.下列各组代数式中,是同类项的是 ( A )。

1121A。

5xy与xyB。

-5xy与XXXC。

5ax与XXXD。

8与x5.下列式子合并同类项正确的是 ( C )。

22A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=0D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有( C )。

A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是 ( B )。

A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为( B )。

2222A。

97πcmB。

18πcmC。

3πcmD。

18πcm9.下面选项中符合代数式书写要求的是 ( D )。

a2b12A。

2cbaB。

ay·3C。

D。

a×b+c4310.下列去括号错误的共有 ( B )。

①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a-[-(-a+b)]=a-a-bA。

1个B。

2个C。

3个D。

4个11.a、b互为倒数,x、y互为相反数,且y≠,则(a+b)(x+y)-ab-ax的值是 ( A )。

A。

B。

1C。

-1D。

不确定12.随着计算机技术的迅速发展,电脑价格不断降低。

某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( D )。

【精选】人教版七年级数学上册 代数式检测题(Word版 含答案)

【精选】人教版七年级数学上册 代数式检测题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.3.电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)10.2+0.820.4+0.830.6+0.840.8+0.8……;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.4.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),由题意得:s+b=t+a=4,∴b=4﹣s,a=4﹣t,∵四位数为能被11整除,∴ =1000s+100t+10a+b,=1000s+100t+10(4﹣t)+4﹣s,=999s+90t+44,=1001s+88t+44+2t﹣2s,=11(91s+8t+4)+2(t﹣s),∵91s+8t+4是整数,∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,∵1≤s≤9,∴﹣9≤﹣s≤﹣1,∵0≤t≤9,∴﹣9≤t﹣s≤8,∴t﹣s只能为0,即t=s,∵是整数,4﹣s≥0,4﹣t≥0,∴s=t=2或s=t=4,当s=t=2时,a=b=2,当s=t=4时,a=b=0,综上所述,这个四位“对称等和数”有2个,分别是:2222,4400(2)解:证法一:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,则b+c=2x,d+e=2y,∵A+B+C=1800,∴B+C=1800﹣135=1665,∴ =1665,∴15≤b+d≤16,①当b+d=15时,x+y=16,c+e=5,∴b+d+c+e=15+5=20,即2x+2y=20,x+y=10≠16,不符合题意;②当b+d=15时,x+y=15,c+e=15,∴b+d+c+e=15+15=30,即2x+2y=30,x+y=15,符合题意;∴y=﹣x+15,③当b+d=16时,x+y=6,c+e=5,∴b+d+c+e=16+5=21,即2x+2y=21,x+y=10.5≠6,不符合题意;④当b+d=16时,x+y=5,c+e=15,∴b+d+c+e=16+15=31,即2x+2y=31,x+y=15.5≠5,不符合题意;综上所述,则y=﹣x+15.证法二:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,∵A+B+C=1800,即135+ + =1800,+ =1665,100m+10x+2x﹣m+100n+10y+2y﹣n=1665,99(m+n)+12(x+y)=1665,33(m+n)+4(x+y)=555,x+y= =139﹣8(m+n)+ ,∵0≤x≤9,0≤y≤9,且x、y是整数,∴是整数,∵1≤m≤9,1≤n≤9,∴2≤m+n≤18,∴3≤1+m+n≤19,则1+(m+n)=4,8,12,16,∴m+n=3,7,11,15,当m+n=3时,x+y=139﹣8×3+ =114(舍),当m+n=7时,x+y=139﹣8×7+ =81(舍),当m+n=11时,x+y=139﹣8×11+ =48(舍),当m+n=15时,x+y=139﹣8×15+ =15,∴y=﹣x+15【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。

第三章《代数式》单元练习(含答案)

第三章《代数式》单元练习(含答案)

第三章《代数式》单元练习时间:100分钟 满分:100分 姓名:_______一、单选题(共10题,每题3分,共30分)1.下列式子,符合代数式书写规范要求的是( )A .1m-B .157bC .5xy D .()x y z+÷2.用式子表示“x 的3倍与y 的和的平方”是( )A .()23x y +B .23x y +C .223+x y D .()23x y +3.代数式21a b-的正确解释是( )A .a 的平方与b 的差的倒数B .a 与b 的差的平方的倒数C .a 与b 的倒数的差的平方D .a 的平方与b 的倒数的差4.已知4a b -=,则代数式445a b --的值为( )A .9B .11C .7D .11- 5.如图,在一块长方形的钢板上钻了4个圆孔,如果每个圆孔的半径为,则钢板的长为( )A .cm x )125(-B .cm x )125(+C .cm x )245(-D .cmx )245(+6.请仔细分析下列赋予实际意义的例子中错误的是( )A .若葡萄的价格是4元,则表示买葡萄的金额B .若a 表示一个正方形的边长,则表示这个正方形的周长C .若4和a 分别表示一个两位数中的十位数字和个位数字,则表示这个两位数D .某款凉鞋进价为a 元,销售这款凉鞋盈利,则销售两双的销售额为元7.下面每个选项中的两种量成反比例关系的是( )A .路程一定,速度和时间B .圆柱的高一定,体积和底面积C .被减数一定,减数和差D .圆的半径和它的面积8.受今年高温天气的影响,我市某企业今年8月份产值为m 万元,9月份比8月份减少了5%,10月份比9月份增加了10%,则10月份的产值为( )A .()()5%10%m m +-万元B .()()5%10%m m -+万元C .()()15%110%m +-万元D .()()15%110%m -+万元9.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为( )A .1B .6C .45D .8110.如图, 用火柴棒摆出的系列图案, 第1个图形用了3 根火柴棒, 第2个图形用了5根 火柴棒, 那么第n 个图形用的火柴棒的根数是( )A .3nB .2n +C .31n -D .21n +二、填空题(共6题,每题3分,共18分)11.试写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是正数.12.同一个式子可以表示不同的含义,例如2.5m 可以表示长为2.5,宽为m 的长方形的面积,也可以表示更多的含义,请你再给2.5m 赋予一个含义 ____________________________________ .13.某校组织若干师生外出进行社会实践活动,学校租用45座客车x 辆,还有5个座位没人坐,请你列式表示师生的总人数为.14.一个三位数,个位上的数字8,十位数的数字b ,百位上的数字是a ,表示这个三位数的式子是 .15.当1=x 时,代数式53++bx ax 的值为1,则当1-=x 时,53++bx ax 的值为 .16.观察一列数:12,25-,310,417-,526,637-,根据规律,请写出第16个数是.三、解答题(共7题,共52分,解答应写出文字说明、证明过程或验算步骤)17.(满分6分)下列式子是一些书写规范吗?若不规范,请将它们的规范写法填在横线处;(1)20a ⨯;__________ ; (2)113x ;____________;(3)1mn -;____________;(4)s t ÷;____________;(5)2x y +元;____________; (6)aaa ;____________;18.(满分4分)用字母表示下列数:(1)x 的14与y 的倒数的和; __________ ; (2)a ,b 两数的和的平方; __________ ; (3)a ,b 的平方和; __________ ; (4)x 的36%与y 的平方的差.__________ ;19.(满分8分)用代数式表示:(1)小明每季度有零花钱a 元,拿出b 元捐给爱心基金,平均每月剩余的零花钱是多少?(2)七年级(1)班共有a 名学生,其中有b 名男生,男生的三分之一去参加篮球比赛了,班级剩余多少人?(3)某种汽车油箱装满后有油a 升,每小时耗油b 升,行驶了3小时,油箱剩余油量是多少?(4)某商品原价每件a 元,商场打折,现价每件b 元,现买3件可以省多少元?20.(满分9分)当2,3a b ==-时,求下列各代数式的值;(1)2a b -; (2)221a ab -+;(3)2222b a b a -+21.(满分8分)木工师傅制作如图所示的一个工件(黑色部分)(1)用代数式表示图形的面积.(2)当8a =厘米,12b =厘米时,图形的面积是多少?(结果用含π的式子表示)22.(满分9分)某机床要加工一批机器毛绒玩具,每小时加工的件数与加工的时间如下表:每小时加工件数(件)3020189…加工时间(小时)12182040(1)这批毛绒玩具共多少件?(2)加工时间是怎样随着每小时加工件数的变化而变化的?(3)用x 表示每小时加工毛绒玩具的件数,用y 表示加工时间,用式子表示y 与x 之间的关系. x 与y 成什么比例关系?23.(满分8分)某中学七年级(1)班4名老师决定带领本班m名学生去某革命胜地参观.该革命胜地每张门票的票价为30元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠(1)请用含m的代数式分别表示选择A、B两种方案所需的费用;m 时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠.(2)当学生人数40第三章《代数式》单元练习答案一.选择题(本大题共10小题,每题3分,共30分)。

代数式单元测试卷(初中数学)附答案

代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.3.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。

(2)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况分别根据图表的收费标准列出代数式并计算即可得解。

4.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍(2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【解析】【分析】(1)算出十字框中的五个数的和,即可发现是16的5倍;(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出十字框中的五个数的和;(3)假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。

5.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.价目表每月用水量单价不超出6 m3的部分2元/m3超出6 m3但不超出10 m3的部分4元/m3超出10 m3的部分8元/m3注:水费按月结算.则应收水费________元;(2)若该户居民3月份用水a m3(其中6<a<10),则应收水费多少元?(用含a的整式表示并化简)(3)若该户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元?(用含x的整式表示并化简)【答案】(1)8(2)解:根据题意得,62+4(a-6)=12+4a-24=4a-12(元)答:应收水费(4a-12)元.(3)解:由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,①当4月份用水量少于5m3时,则5月份用水量超过10m3,该户居民4,5月份共交水费为:2x+[62+44+8(15-x-10)]=2x+(12+16+40-8x)=-6x+68(元);②当4月份用水量不低于5m3,但不超过6m3时,则5月份用水量不少于9m3,但不超过10m3,该户居民4,5月份共交水费为:2x+[62+4(15-x-6)]=2x+(12+36-4x)=-2x+48(元);③当4月份用水量超过6m3,但少于7.5m3时,则5月份用水量超过7.5m3但少于9m3,该户居民4,5月份共交水费为:[62+4(x-6)]+[62+4(15-x-6)]=(12+4x-24)+(12+36-4x)=36.答:该户居民4,5月份共交水费为(-6x+68)元或(-2x+48)元或36元.【解析】【解答】(1)根据题意得,24=8(元)【分析】(1)根据表格中“不超出6 m3的部分”的收费标准,求出水费即可;(2)根据a 的范围,求出水费即可;(3)由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,进而再细分出三种情况:①当4月份用水量少于5m3时,②当4月份用水量不低于5m3,但不超过6m3时,③当4月份用水量超过6m3,但少于7.5m3时,分别求出水费即可.6.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“ ”看成“ ”,结果求出的答案为,请你替乔亚萍求出“ ”的正确答案.【答案】(1)解:设A的二次项系数为m,由题意可得mx2+4x+2(2x2-3x+1)=x2-2x+2mx2+4x+4x2-6x+2=x2-2x+2(m+4)x2-2x+2=x2-2x+2∴m+4=1解之:m=-3∴多项式A的二次项系数为-3.(2)解:∵A+C=x2-5x+2∴-3x2+4x+C=x2-5x+2∴C=x2-5x+2-3x2-4x=-2x2-9x+2∴A-C=-3x2+4x-(-2x2-9x+2)=-3x2+4x+2x2+9x-2=-x2+13x-2【解析】【分析】(1)设A的二次项系数为M,将其代入可得到mx2+4x+2(2x2-3x+1)=x2-2x+2,就可求出m的值.(2)根据题意可得到A+C=x2-5x+2,代入求出多项式C,然后求出A-C即可。

7.观察下表:我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:(1)第 3 格的“特征多项式”为________第 4 格的“待征多项式”为________, 第 n 格的“特征多项式”为________.(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”. 【答案】(1)12x+9y;16x+16y;4nx+n2y(2)解:由(1)可得,第m格的“特征多项式”是4mx+m2y,∴(4mx+m2y)+(−24x+2y−5)=4mx+m2y−24x+2y−5=(4m−24)x+(m2+2)y−5,∵第m格的“特征多项式”与多项式−24x+2y−5的和不含有x项,∴4m−24=0,解得m=6,∴此“特征多项式”是24x+36y.【解析】【解答】解:(1)由表格可得:第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y,故答案为:12x+9y, 16x+16y, 4nx+n2y;【分析】(1)根据表格中的数据找出规律即可解答本题;(2)根据(1)中的结果可以写出第m格的“特征多项式”,然后根据“和不含有x项”可以求得m的值,从而可以写出此“特征多项式”.8.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.9.为提倡全民健身活动,某社区准备购买羽毛球和羽毛球拍供社区居民使用,某体育用品商店羽毛球每盒10元,羽毛球拍每副40元.该商店有两种优惠方案,方案一:不购买会员卡时,羽毛球享受8.5折优惠,羽毛球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按定价购买;方案二:每张会员卡20元,办理会员卡时,全部商品享受8折优惠.设该社区准备购买羽毛球拍6副,羽毛球盒,请回答下列问题:(1)如果一位体育爱好者按方案一只购买了4副羽毛球拍,求他购买时所需要的费用;(2)用含的代数式分别表示该社区按方案一和方案二购买所需要的钱数;(3)①直接写出一个的值,使方案一比方案二优惠;②直接写出一个的值,使方案二比方案一优惠.【答案】(1)解:如果一位体育爱好者按方案一只购买了4副羽毛球拍,则他购买时所需要的费用为:元(2)解:按方案一购买所需要的钱数为:(元,按方案二购买所需要的钱数为:(元);(3)解:①根据题意得:,解得:.答:购买(1 15 之间的整数即可)盒乒乓球时,方案一比方案二优惠;②根据题意得:,解得:.答:购买20(任意大于16的整数即可)盒乒乓球时,方案二比方案一优惠【解析】【分析】(1)直接按方案计算,可得购买时所需要的费用;(2)由方案一的优惠方案及该社区准备购买羽毛球拍6副,羽毛球盒,可得方案一购买所需要的钱;由方案二的优惠方案,可得及该社区准备购买羽毛球拍6副,羽毛球盒,可得方案一购买所需要的钱;(3)①由(2)和题意得:,解之可得答案;②由(2)和题意得:,解之可得答案.10.某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为4000 元/人,两家旅行社同时又对10 人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有n(n>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含 n 的代数式表示)(2)假如这个单位现组织共30 名员工到旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在十月份外出旅游七天,这七天的日期之和(不包含月份)为105,则他们于十月________号出发.【答案】(1)3000n;3200(n-1)(2)解:当n=30时:甲: (元),乙: (元),因为90000<92800,所以选择甲旅行社更优惠(3)12【解析】【解答】解:(1)甲旅行社的费用为乙旅行社的费用为故答案为3000n;3200(n-1);( 3 ) 设 x 号出发,则 x+x+1+x+2+x+3+x+4+x+5+x+6=105,解得 x=12,所以他们于十月 12 号出发.【分析】(1)按照两个旅行社的优惠方法,分别表示出各自的费用。

相关文档
最新文档