代数式单元测试卷附答案

合集下载

2022-2023学年苏科版七年级上册数学第3章 代数式单元测试卷含答案

2022-2023学年苏科版七年级上册数学第3章 代数式单元测试卷含答案

2022-2023学年苏科新版七年级上册数学《第3章代数式》单元测试卷一.选择题(共10小题,满分30分)1.计算﹣(4a﹣5b),结果是()A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b2.下列各式中,不是整式的是()A.3a B.C.0D.x+y3.给出下列程序:,已知当输入x值为1时,输出值为1;输入x值为﹣1时.输出值为﹣3.当输入值为时.输出值为()A.﹣B.C.0D.14.某商品每次降价20%,连续两次降价后的价格为m元,则原价为()A.1.2m元B.元C.元D.0.82m元5.如图,图(1)是由6块完全相同的正三角形地砖铺成,图(2)是由10块完全相同的正三角形地砖铺成,图(3)是由14块完全相同的正三角形地砖铺成,…,按图中所示规律.则图(8)所需地砖数量为()A.26块B.30块C.34块D.38块6.单项式﹣xy2的次数是()A.0B.1C.2D.37.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为()A.16,257B.16,91C.10,101D.10,1618.若4a2b n﹣1与a m b2是同类项,则m+n的值是()A.6B.5C.4D.39.有n个依次排列的整式:第1项是(x+1),用第1项乘以(x﹣1),所得之积记为a1,将第1项加上(a1+1)得到第2项,再将第2项乘以(x﹣1)得到a2,将第2项加上(a2+1)得到第3项,以此类推;下面4个结论中正确结论的个数为()①第4项为x4+x3+x2+x+1;②;③若第2022项的值为0,则x2023=1;④当x=﹣3时,第k项的值为.A.1B.2C.3D.410.下列代数式符合书写要求的是()A.B.ab÷c2C.D.mn•二.填空题(共10小题,满分30分)11.计算:=.12.若x﹣2y=3,则2(x﹣2y)﹣x+2y﹣5的值是.13.如果关于x,y的多项式xy|a|﹣+1是三次三项式,则a的值为.14.单项式a2b2的次数是.15.化简:﹣(﹣m+n)=.16.如果2x2﹣3x+3的值为5,则6x2﹣9x﹣5的值为.17.一公路全长xkm,汽车的速度是每小时ykm,如需提前1小时到达,则汽车的速度应变为每小时km.18.观察下列图形的构成规律,根据此规律,第9个图形中有个圆.19.赋予“3a”一个实际意义为.20.下列式子中:①﹣;②a+b,③,④,⑤a2﹣2a+1,⑥x,是整式的有(填序号)三.解答题(共5小题,满分90分)21.如图所示,在一块长为3x,宽为y(3x>y)的长方形铁皮的四个角上,分别截去半径都为的圆的.(1)试计算剩余铁皮的面积(阴影部分面积);(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(1)请你用生活解释6+(﹣2)=4的意义.(2)代数式(1+8%)x可以表示什么?23.(1)计算:(﹣10)+(+3)﹣(﹣6)﹣(+7);(2)合并同类项:x3﹣x+2x3﹣3x3.24.某企业有A、B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)第一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m和n有怎样的数量关系?若此时m与n 的和为6吨,则m和n的值分别为多少吨?25.如图,一扇窗户,窗框为铝合金材料,下面是由两个大小相等的长方形窗框构成,上面是由三个大小相等的扇形组成的半圆窗框构成,窗户半圆部分和两个长方形部分都安装透明玻璃(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含x,y的代数式表示)(2)一扇这样窗户一共需要玻璃多少平方米(铝合金窗框宽度忽略不计)?(用含x,y 的代数式表示)(3)某公司需要购进40扇窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:甲厂商报价为铝合金每米400元,透明玻璃不超过100平方米的部分每平方米180元,超过100平方米的部分每平方米140元;乙厂商报价为铝合金每米420元,透明玻璃每平方米160元,每购买1米铝合金送0.1平方米的透明玻璃.当x=1,y=3时,该公司在哪家厂商购买窗户合算?参考答案与试题解析一.选择题(共10小题,满分30分)1.解:﹣(4a﹣5b)=﹣4a+5b,故选:B.2.解:A、3a是整式,不符合题意;B、是分式,不是整式,符合题意;C、0是整式,不符合题意;D、x+y是整式,不符合题意;故选:B.3.解:根据题意可得,13×k+b=1,(﹣1)3×k+b=﹣3,解得:k=2,b=﹣1,当x=时,()3×2+(﹣1)=﹣.故选:B.4.解:原价为:(元);故选:B.5.解:∵图(1)所需要的正三角形地砖数为:6,图(2)所需要的正三角形地砖数为:10=6+4=6+4×1,图(3)所需要的正三角形地砖数为:14=6+4+4=6+4×2,…∴图(n)所需要的正三角形地砖数为:6+4(n﹣1)=4n+2,∴图(8)所需要的正三角形地砖数为:4×8+2=34,故选:C.6.解:单项式﹣xy2的次数为:1+2=3,故选:D.7.解:第二行第一个数的规律是2n+2,∴a=10,第一行第二个数的规律是2n,∴c=16,第二行第二个数是的规律是b=ac+1,∴b=160+1=161,故选:D.8.解:∵4a2b n﹣1与a m b2是同类项,∴m=2,n﹣1=2,∴m=2,n=3,∴m+n=2+3=5,故选:B.9.解:根据题意:第1项为x+1,a1=(x+1)(x﹣1)=x2﹣1,a1+1=x2,第2项为x2+x+1,a2=(x2+x+1)(x﹣1)=x3﹣1,a2+1=x3,第3项为x3+x2+x+1,a3=(x3+x2+x+1)(x﹣1)=x4﹣1,a3+1=x4,......∴第4项为x4+x3+x2+x+1,故①正确;a41=x42﹣1,故②错误;若第2022项为0,则x2022+x2021+......x4+x3+x2+x+1=0,∴a2022=(x2022+x2021+......x4+x3+x2+x+1)(x﹣1)=0,∴x2023﹣1=0,即x2023=1,故③正确;当x=﹣3时,设S=(﹣3)k+(﹣3)k﹣1+......+(﹣3)2+(﹣3)+1(Ⅰ),∴﹣3S=(﹣3)k+1+(﹣3)k+......+(﹣3)3+(﹣3)2+(﹣3)(Ⅱ),(Ⅰ)﹣(Ⅱ)得:4S=1﹣(﹣3)k+1,∴S=,故④错误,∴正确的有①③两个.故选:B.10.解:A、带分数要写成假分数,原书写错误,故此选项不符合题意;B、应写成分数的形式,原书写错误,故此选项不符合题意;C、符合书写要求,故此选项符合题意;D、系数应写在字母的前面,原书写错误,故此选项不符合题意.故选:C.二.填空题(共10小题,满分30分)11.解:﹣ab2﹣3ab2=(﹣﹣3)ab2=﹣ab2.故答案为:﹣.12.解:原式=2x﹣4y﹣x+2y﹣5=x﹣2y﹣5,当x﹣2y=3时,原式=3﹣5=﹣2,故答案为:﹣2.13.解:∵关于x,y的多项式xy|a|﹣+1是三次三项式,∴|a|=2且a﹣2≠0,解得,a=﹣2.故答案为:﹣2.14.解:单项式a2b2的次数是4.故答案为:4.15.解:原式=m﹣n,故答案为:m﹣n.16.解:∵2x2﹣3x+3=5,∴2x2﹣3x=2,∴6x2﹣9x﹣5=3(2x2﹣3x)﹣5=3×2﹣5=1,故答案为:1.17.解:根据题意知,汽车的速度应变为每小时km.整理,得.故答案为:.18.解:第1个图形中,圆的个数为1+1=2个;第2个图形中,圆的个数为2×2+1=5个;第3个图形中,圆的个数为3×3+1=10个;…第9个图形中,圆的个数应该是9×9+1=82个.故答案为:82.19.解:赋予“3a”一个实际意义为:若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额;若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长;故答案为:若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额(答案不唯一).20.解:①﹣,是单项式,符合题意;②a+b,是多项式符合题意,③,是单项式,符合题意;④,是分式不合题意,⑤a2﹣2a+1,是多项式符合题意,⑥x,是单项式,符合题意;即是整式的有:①②③⑤⑥.故答案为:①②③⑤⑥.三.解答题(共5小题,满分90分)21.解:(1)由图形可知:S=3xy﹣π•()2阴影=3xy﹣y2答:剩余铁皮的面积为3xy﹣y2;(2)当x=4,y=8时,S=3×4×8﹣×82=48,阴影答:剩余铁皮的面积为48.22.解:(1)小明12月份赚了6千元,消费2千元,还剩下4千元(答案不唯一);(2)11月份的电费为x元,12月份的电费比11月份增长8%,(1+8%)x表示12月份的电费(答案不唯一).23.解:(1)(﹣10)+(+3)﹣(﹣6)﹣(+7)=﹣10+3+6﹣7=﹣17+9=﹣8;(2)x3﹣x+2x3﹣3x3=(1+2﹣3)x3﹣x=﹣x.24.解:(1)当a=b=1时,4a+1=5,2b+3=5.答:当a=b=1时,A生产线的加工时间为5小时,B生产线的加工时间为5小时.(2)由题意可知,,解得:a=2,b=3.答:分配到A生产线2吨,分配到B生产线3吨.(3)由题意可知,4(2+m)+1=2(3+n)+3,解得:2m=n,,解得:m=2,n=4.答:m和n的数量关系为2m=n,当m与n的和为6吨时,m为2吨,n为4吨.25.解:(1)一扇这样窗户一共需要铝合金=8x+2y+πx(米).(2)(平方米).(3)当x=1,y=3时,1个窗户铝合金的长度:8x+2y+πx=8×1+2×3+π×1=14+3=17,共40×17=680米,1个窗户玻璃的面积:=(平方米),共50×9=450平方米,∴甲厂的报价为:400×680+100×180+(450﹣100)×140=339000,乙厂的报价为:420×680+160×(450﹣680×0.1)=346720,∵339000<346720,∴该公司在甲厂商购买窗户合算.。

最新七年级数学代数式单元测试卷(含答案解析)

最新七年级数学代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案

2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案

2023-2024学年青岛版七年级数学上册《第五章代数式与函数的初步认识》单元测试卷附答案学校:___________班级:___________姓名:___________考号:___________(共25题,共120分)一、选择题(共12题,共36分)1.(3分)下列各式中,代数式的个数有( )① a;② 2x=6;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba.A.2个B.3个C.4个D.5个2.(3分)2018年新年之后,大家期盼已久的第一场冬雪终于来临,俗语:“下雪不冷化雪冷”,温度由t∘C下降5∘C后是( )A.t−5∘C B.(t+5)∘C C.t+5∘C D.(t−5)∘C3.(3分)当a=1时,a+2a+3a+4a+⋯+99a+100a的值为( )A.5050B.100C.−50D.504.(3分)当x=1时,代数式ax5+bx3+cx−5的值为m,则当x=−1时,此代数式的值为( )A.−m B.−m−10C.−m−5D.−m+55.(3分)若a≤0,则∣a∣+a+2等于( )A.2a+2B.2C.2−2a D.2a−26.(3分)代数式y2+2y+7的值是6,则4y2+8y−5的值是( )A.9B.−9C.18D.−187.(3分)已知3−x+2y=−2,则整式x−2y的值为( )A.12B.10C.5D.158.(3分)当x=−3,y=2时,代数式2x2+xy−y2的值是( )A.5B.6C.7D.89.(3分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器10.(3分)下列关于变量x,y的关系,其中y不是x的函数的是( )A.B.C.D.11.(3分)下列各曲线中,不能表示y是x的函数的是( )A.B.C.D.,在这个函数关12.(3分)设路程为s(km),速度为v(km/h),时间为t(h),当s=50时t=50v 系式中( )A.路程是常量,t是s的函数B.速度是常量,t是v的函数C.时间是常量,v是t的函数D.s=50是常数,v是自变量,t是v的函数二、填空题(共6题,共18分)13.(3分)若实数a满足a2−2a=3,则3a2−6a−8的值为.14.(3分)“x与y平方的差”用代数式表示为,“x与y差的平方”用代数式表示为.15.(3分)若∣m+2∣+(n−1)2=0,则(m+n)2020的值为.16.(3分)已知x2+3x+7的值为11,则代数式3x2+9x−15的值为.17.(3分)已知a,b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c−d=.18.(3分)若a=2b+4,则5(2b−a)−3(−a+2b)−100=.三、解答题(共7题,共66分)19.(8分)如图所示,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1) 用a,b,x表示纸片剩余部分的面积;(2) 当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.20.(8分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?21.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1) 两种方案需的费用分别是多少元?(用含x,y的代数式表示并化简)(2) 若该客户需要购买20套西装,25条领带,则他选择哪种方案更划算?22.(8分)某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1) 分别用a,b表示两种方式出售水果的收人.(2) 若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?23.(10分)如图,圆柱的高是3cm,当圆柱的底面半径r cm由小到大变化时,圆柱的体积V cm3也随之发生了变化.(1) 在这个变化中,自变量是,因变量是.(2) 写出体积V与半径r的关系式.(3) 当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少cm3.24.(12分)据商务部监测,2018年10月1日至7日,全国零售和餐饮企业实现销售额约1.4万亿元.苏宁电器某品牌电烤箱每台定价1000元,电磁炉每台定价200元,十一期间商场开展促销活动,向顾客提供两种优惠方案:方案一:买一台电烤箱送一台电磁炉;方案二:电烤箱和电磁炉都按定价的90%付款.某顾客要准备购买微波炉10台,电磁炉x台(x>10).(1) 若该顾客选择方案一购买,他需付款元(用含x的代数式表示);(2) 若该顾客选择方案二购买,他需付款元(用含x的代数式表示);(3) 若x=20,请你通过计算说明按哪种方案购买更省钱?能省多少钱?25.(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1) 请用含x代数式分别表示顾客在两家超市购物所付的费用;(2) 李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3) 计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?答案一、选择题(共12题,共36分)1. 【答案】D【解析】① a;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba是代数式,② 2x=6是等式.2. 【答案】D3. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.4. 【答案】B【解析】将x=1代入ax5+bx3+cx−5=m,得:a+b+c−5=m 则a+b+c=m+5当x=−1时原式=−a−b−c−5=−(a+b+c)−5=−m−5−5=−m−10,故选:B.5. 【答案】B【解析】∵a≤0∴∣a∣=−a.原式=−a+a+2=2.6. 【答案】B【解析】∵y2+2y+7=6∴y2+2y=−1又∵4y2+8y−5=4(y2+2y)−5∴4y2+8y−5=−4−5=−9.7. 【答案】C【解析】∵3−x+2y=−2∴2y−x=−5,则x−2y=5.8. 【答案】D【解析】当x=−3,y=2时2x2+xy−y2=2×(−3)2+(−3)×2−22=2×9−6−4=18−6−4=8.9. 【答案】B【解析】因为热水器里的水温随所晒时间的长短而变化,所以所晒时间是自变量,水的温度是因变量.10. 【答案】B【解析】函数的定义:对于x的每一个取值,y都有唯一确定的值与之对应的关系,A,C,D中每一个x都只对应一个y,而B中一个x对应两个y,故B中y不是x的函数.11. 【答案】B【解析】A,C,D选项中自变量x取任何值,y都有唯一的值与之相对应,y是x的函数;B选项自变量x取一个值时y都有2个值与之相对应,则y不是x的函数.12. 【答案】D中,v为自变量,t为v的函数,50为常量.【解析】在函数关系式t=50v二、填空题(共6题,共18分)13. 【答案】1【解析】∵a2−2a=3∴3a2−6a−8=3(a2−2a)−8=3×3−8=1∴3a2−6a−8的值为1.14. 【答案】x2−y2;(x−y)2【解析】“x与y平方的差”用代数式表示为x2−y2“x与y差的平方”用代数式表示为(x−y)2.15. 【答案】1【解析】由题意得m+2=0,n−1=0解得m=−2,n=1∴(m+n)2020=(−2+1)2020=1.16. 【答案】−3【解析】∵x2+3x+7=11∴x2+3x=4∴3x2+9x=3⋅(x2+3x)=3×4=12∴3x2+9x−15=12−15=−3.17. 【答案】1【解析】由题意得a+b=0,∣c∣=0,d=−1∴a+b+c−d=1.18. 【答案】−108三、解答题(共7题,共66分)19. 【答案】(1) ab−4x2.(2) 依题意得:ab−4x2=4x2将a=6,b=4代入上式,得x2=3.解得:x1=√3,x2=−√3(舍去)即正方形的边长为√3.20. 【答案】(1) 若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元.若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元.(2) 当x=8000时,甲厂费用为1000+0.5×8000=5000元乙厂费用为:0.25×8000+2500=4500元∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元.21. 【答案】(1) 按方案①购买,需付款:200x+(y−x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x⋅90%+40y⋅80%=(180x+32y)(元).(2) 当x=20,y=25时,按方案①购买,需付款:40×25+160×20=4200(元);该客户按方案②购买,需付款:180×20+32×25=4400(元);∵4200<4400∴按方案①更划算.22. 【答案】(1) 市场销售的收入为:18000a−180001000×(25×8+100)−7800=18000a−5400−7800=18000a−13200.果园销售的收入为:18000b−7800.(2) 当a=1.3,b=1.1时市场销售收入为:18000×1.3−13200=23400−13200=10200(元)果园销售收入为:18000×1.1−7800=12000(元)∵10200<12000∴选择果园出售利润较高.23. 【答案】(1) r;V(2) V=3πr2.(3) 当r=1时V=3πr2=3π当r=10时V=3πr2=300π∵300π−3π=297π∴当底面半径由1cm变化到10cm时,圆柱的体积增加了297πcm3.24. 【答案】(1) (200x+8000)(2) (180x+9000)(3) 当x=20时,方案一的费用为200×20+8000=12000(元)方案二的费用为180×20+9000=12600(元)∵12000<12600∴方案一省钱,省600元.【解析】(1) 若该顾客选择方案一购买,他需付款1000×10+200(x−10)=200x+8000(元).(2) 该顾客选择方案二购买,他需付款90%×(10×1000+200x)=180x+9000(元).25. 【答案】(1) 设顾客在甲超市购物所付的费用为y甲顾客在乙超市购物所付的费用为y乙根据题意得:y甲=300+0.8(x−300)=0.8x+60;y乙=200+0.85(x−200)=0.85x+30.(2) 他应该去乙超市,理由如下:当x=500时y甲=0.8x+60=460,y乙=0.85x+30=455∵460>455∴他去乙超市划算.(3) 令y甲=y乙,即0.8x+60=0.85x+30解得:x=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.。

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)第三章代数式综合测试卷一、选择题1.2014年我国启动“家电下乡”工程,国家对购买家电补贴13%。

若某种品牌彩电每台售价a元,则购买时国家需要补贴( B )。

A。

XXXB。

13%a元C。

(1-13%)a元D。

(1+13%)a元2.代数式2(y-2)的正确含义是 ( C )。

A。

2乘y减2B。

2与y的积减去2C。

y与2的差的2倍D。

y的2倍减去23.下列代数式中,单项式共有 ( D )。

312322,x+y,x+y,-1,abcx2A。

2个B。

3个C。

4个D。

5个4.下列各组代数式中,是同类项的是 ( A )。

1121A。

5xy与xyB。

-5xy与XXXC。

5ax与XXXD。

8与x5.下列式子合并同类项正确的是 ( C )。

22A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=0D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有( C )。

A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是 ( B )。

A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为( B )。

2222A。

97πcmB。

18πcmC。

3πcmD。

18πcm9.下面选项中符合代数式书写要求的是 ( D )。

a2b12A。

2cbaB。

ay·3C。

D。

a×b+c4310.下列去括号错误的共有 ( B )。

①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a-[-(-a+b)]=a-a-bA。

1个B。

2个C。

3个D。

4个11.a、b互为倒数,x、y互为相反数,且y≠,则(a+b)(x+y)-ab-ax的值是 ( A )。

A。

B。

1C。

-1D。

不确定12.随着计算机技术的迅速发展,电脑价格不断降低。

某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( D )。

第四单元《代数式》单元测试卷(困难)(含解析)

第四单元《代数式》单元测试卷(困难)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.一个两位数x和一个三位数y,若将两位数x放在三位数y的左边组成一个五位数,则组成的这个五位数表示为( )A. xyB. 10000x+yC. 100x+1000yD. 1000x+y2.有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是( )A.x(6−x)米 2B. x(12−x)米 2C. x(6−3x)米 2D. x(6−32x)米 23.某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售.那么调整后每件衬衣的零售价是( )A. a(1+m%)(1−n%)元B. a(1+m%)n%元C. a⋅m%(1−n%)元D. a(1+m%⋅n%)元4.观察如图图形,它们是按一定规律排列的,依照此规律,第n个图形中的小点一共有( )A. 3n24个 B. 3n2+32个 C. 3n2+n4个 D. 3n2+3n2个5.由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州−兴宁−华城−河源−惠州−东莞−广州.那么要为这次列车制作的火车票有( )A. 6种B. 12种C. 21种D. 42种6.当x=2时,代数式ax3+bx+1值为3,那么当x=−2时,代数式ax3+bx+1的值是( )A. −3B. 1C. −1D. 27.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )A. 33B. 301C. 386D. 5718.下列代数式中,哪个不是整式( )A. x2+1B. −2C. 1xD. π9.在73x2−x、2πx3y、1x、−4、a中单项式的个数是( )A. 1B. 2C. 3D. 410.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是( )A. 3B. 9C. 6D. 811.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b−c>0;③a|a|+b |b|+|c|c=1;④bc−a>0;⑤|a−b|−|c+a|+|b−c|=−2a,其中正确的有个.( )A. 1B. 2C. 3D. 412.多项式8x2−3x+5与3x3−4mx2−5x+7多项式相加后,不含二次项,则m的值是( )A. 2B. 4C. −2D. −4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是____________万元.14.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图形中阴影部分小正方形的个数是.15.已知代数式x2−4x−2的值为5,则代数式2x2−8x−5的值为______ .16.如果数轴上表示a,b两数的点的位置如图所示,那么|a−b|+|a+b|的计算结果是______.三、解答题(本大题共9小题,共72分。

第2章代数式单元测试卷2024-2025学年七年级数学上册同步学与练「含答案」

第2章代数式单元测试卷2024-2025学年七年级数学上册同步学与练「含答案」

第2章 代数式单元测试卷姓名:___________班级:___________考号:___________一、选择题(共10小题,每小题3分,合计30分)1.若320x y ++-=,则x y +的值是( )A .5B .1-C .8D .5-2.下列说法中,正确的有( )①有理数分为正整数、负整数、正分数、负分数;②如果 ||3x =,那么3x = ;③2233a b c 是八次单项式;④432x x +是七次二项次;⑤315x -是单项式;⑥22ab 与23b a 是同类项.A .4个B .3个C .2个D .1个3.下列多项式中,是二次三项式的是( )A .23x y --B .33x y -C .222x xy y ++D .7x y ++4.下列运算正确的是( )A .2325a a a +=B .224a a a +=C .2222a b a b a b-+=D .33523a a -=5.某数m 的平方的5倍与1的差的一半,用代数式表示是( )A .2152m -B .21(5)2m -C .2(5)12m -D .2512m -6.下列各式是5次单项式的是( )A .55x yB .4xy -C .32xyD .23x x +7.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元(m n >)的价格进了同样的60包茶叶.如果以每包2m n+元的价格全部卖出这种茶叶,那么这家商店( )A .盈利了B .亏损了C .不盈不亏D .盈亏不能确定8.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去59.观察下列四个图形组成的一组图形,发现它们是按照一定规律排列的,依此规律排列下去,第2023个图形共有( )个点组成A .6063B .6065C .6067D .606910.实数 a b 、 满足 13259a a b b ++++++-= ,记代数式 22ab a b ++的最大值为m ,最小值为n ,则m n +的值为( )A .25-B .27-C .29-D .31-二、填空题(共8小题,每小题3分,合计24分)11.代数式332xy -的系数是 ,次数是 .12.合并同类项:15410x x x +-= .13.若实数x 、y 满足方程2340x y +-=,则代数式236x y ++的值是.14.为加快人工智能等新技术赋能,打造一批有竞争力的平台和企业,政府部门安排设备更新计划.经市场调研,某企业更新生产设备后,生产效率比更新前提高了20%,设更新设备前每天生产x 件产品,则更新设备后每天生产件产品(用含x 的式子表示).15.已知a 是()5---éùëû的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,则32a b c ++的值是 .16.若m n n m -=-,且4m =,3n =,则m n +=.17.当2x =时,35ax bx ++的值是2013-;当2x =-时,35ax bx ++的值18.如果一个自然数M 的个位数字不为0,且能分解成()A B A B ´³,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为8,则称数M 为“幸运数”,并把数M 分解成M A B =´的过程,称为“成功分解”.例如,因为5752325=´,23和25的十位数字相同,个位数字之和为8;所以575是“幸运数”.(1)最小的“幸运数”是;(2)把一个“幸运数”M 进行“成功分解”,即M A B =´,A 与B 的和记为()P M ,A 与B 的差记为()Q M ,若()()P M Q M 能被9整除,则M 的值为 .三、解答题(共8小题,合计66分)19.已知:210a a +-=,(1)求222a a +的值;(2)求3222019a a ++的值.20.已知a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,求32a bm cd m ++-的值.21.先化简,再求值:(1)2225435256x x x x x +----+,其中3x =-.(2)22113122323x x y x y æöæö--+-+ç÷ç÷èøèø,其中2x =,23y =-.22.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”,计算的结果是2232x x --.(1)求代数式B .(2)若x 是最大的负整数,求A B -的值.23.如图,在一个底为cm a ,高为cm h 的三角形铁皮上剪去一个半径为cm r 的半圆.(1)用含a ,h ,r 的代数式表示剩下铁皮(阴影部分)的面积;(2)求当20a =,15h =,4r =时剩下的铁皮面积(p 取3).24.定义一种新运算:对于实数x 、y ,有(),L x y ax by =+(其中a ,b 均为非零常数),由这种运算得到的数称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对(1)若(),27L x y x y =+,则()3,2L -= ,31,22L æö-=ç÷èø ;(2)已知:(),27L x y x y =+,则()7,2168L a b =,求()()2112a b a b ++++的值.25.观察下列等式,100222-=,211222-=,322222-=,433222-=,……(1)根据式子的规律,写出第n 个等式,并说明第n 个等式的成立;(2)根据上述规律计算:①01220242222++++L ;②0122023202422222----+L .26.对于有理数a ,b ,n ,d ,若a n b n d -+-=,则称a 和b 关于n 的“相对关系值”为d ,例如,21313-+-=,则2和3关于1的“相对关系值”为3.(1)4-和6关于2的“相对关系值”为 ;(2)若a 和3关于1的“相对关系值”为7,求a 的值;(3)若0a 和1a 关于1的“相对关系值”为1,1a 和2a 关于2的“相对关系值”为1,2a 和3a 关于3的“相对关系值”为1,…,30a 和31a 关于31的“相对关系值”为1.①01a a +的最大值为 ;②直接写出所有12330a a a a +++¼+的值.(用含0a 的式子表示)1.B【分析】本题考查了绝对值,求代数式的值的应用,能得出3,2x y =-=是解此题的关键.根据绝对值的非负性求出x 、y 的值,再代入求出即可.【详解】解:30,20,x y +³-³Q 320,x y ++-=Q 30,20.x y \+=-=3, 2.x y \=-=1.x y \+=-故选B .2.D【分析】本题考查了有理数的分类,绝对值的意义,整式的有关概念,根据有理数的分类,绝对值的意义,整式的有关概念逐项判断即可求解,掌握有理数的分类、绝对值的意义及整式的有关概念是解题的关键.【详解】解:①有理数分为正整数、负整数、0、正分数、负分数,该选项错误,不合题意;②如果 ||3x =,那么3x =±,该选项错误,不合题意;③2233a b c 是六次单项式,该选项错误,不合题意;④432x x +是四次二项次,该选项错误,不合题意;⑤315x -是多项式,该选项错误,不合题意;⑥22ab 与23b a 是同类项,该选项正确,符合题意;∴正确的只有1个,故选:D .3.C【分析】此题考查了多项式,用到的知识点:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:A. 23x y --是三次二项式,不符合题意;B. 33x y -是三次二项式,不符合题意;C. 222x xy y ++是二次三项式,符合题意;D. 7x y ++是一次三项式,不符合题意;故选:C .4.C【分析】本题考查合并同类项,熟练掌握以上知识是解题的关键.根据合并同类项的法则,以此判断即可求出答案.【详解】解:A 、因为325a a a +=,故错误,不符合题意;B 、因为2222a a a +=,故错误,不合题意;C 、因为2222a b a b a b -+=,故正确,符合题意;D 、因为333523a a a -=,故错误,不合题意;故选:C .5.D【分析】本题考查了列代数式.数m 的平方为2m ,2m 的5倍是25m ,再表示25m 与1的差,最后表示出差的一半,即可.【详解】解:某数m 的平方的5倍与1的差的一半,用代数式表示是2512m -.故选:D .6.B【分析】本题考查单项式的次数的定义:单项式中所有字母指数的和为单项式的次数.利用单项式中所有字母指数的和为单项式的次数逐一判断即可.【详解】解:A 、单项式55x y 的次数是156+=次,本选项不符合题意;B 、单项式4xy -的次数是145+=次,本选项符合题意;C 、单项式32xy 的次数是112+=次,本选项不符合题意;D 、23x x +是多项式不是单项式,其次数是3次,本选项不符合题意;故选:B .7.A【分析】本题考查了整式加减运算的应用,解题的关键是理解利润=(售价-进价)´数量.由题意得,进货成本4060m n =+,销售额()50m n =+,根据题意列式求解即可.【详解】解:由题意得,进货成本4060m n =+,销售额()()4060502m nm n +=´+=+,故()()504060m n m n +-+50504060m n m n=+--()10m n =-∵m n >,∴()100m n ->,∴这家商店盈利.故选:A .8.C【分析】本题考查了代数式表示的意义,根据代数式的表示意义,即可求解,掌握代数式的表示是解题的关键.【详解】解:根据题意,()55y -表示的意义是y 与5的差的5倍,只有C 符合题意,故选:C .9.C【分析】本题考查了图形的规律变化类问题,根据第1个图形有1个点,第2个图形有1314+´=个点,第3个图形有1327+´=个点,第4个图形有13310+´=个点,可得第n 个图形有()131n +-个点,据此解答即可求解,根据图形找到变化规律是解题的关键.【详解】解:∵第1个图形有1个点,第2个图形有1314+´=个点,第3个图形有1327+´=个点,第4个图形有13310+´=个点,L ,∴第n 个图形有()131n +-个点,当2023n =时,共有()132********+´-=个点,故选:C .10.B【分析】本题考查了绝对值的意义,代数式求值,有理数的混合运算.熟练掌握绝对值的意义,代数式求值,有理数的混合运算是解题的关键.由绝对值的意义可知,当31a -££-时,13a a +++的值最小为132-+=,当25b -≤≤时,25b b ++-的值最小为257--=,由13259a a b b ++++++-=,可得31a -££-,25b -≤≤,当3a =-,5b =时,代数式 22ab a b ++的值最小,当3a =-,2b =-时,代数式 22ab a b ++的值最大,分别计算m ,n ,然后求和作答即可.【详解】解:由绝对值的意义可知,当31a -££-时,13a a +++的值最小为132-+=,当25b -≤≤时,25b b ++-的值最小为257--=,∵13259a a b b ++++++-=,∴31a -££-,25b -≤≤,当3a =-,5b =时,代数式 22ab a b ++的值最小,()()23523531n =´-´+´-+=-;当3a =-,2b =-时,代数式 22ab a b ++的值最大,()()()()2322324m =´-´-+´-+-=;∴43127m n +=-=-,故选:B .11.8- 4【分析】本题考查了单项式系数和次数的定义;单项式的系数指单项式中的数字因数,次数指单项式中所有字母的指数和,据此可得答案.【详解】解:代数式332xy -的系数是328-=-,次数是134+=,故答案为:8-,4.12.9x【分析】根据合并同类项的运算法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变解答即可.本题考查了合并同类项的运算法则,熟练运用合并同类项的运算法则是解题的关键.【详解】解:∵()15410154109x x x x x +-=+-=,故答案为9x .13.10【分析】此题考查代数式求值,熟练掌握运算法则是解本题的关键.由已知等式求出234x y +=,代入原式计算即可求出值.【详解】解:由2340x y +-=,得到234x y +=,则2364610x y ++=+=,故答案为:1014.1.2x【分析】本题主要考查了列代数式,根据更新生产设备后,生产效率比更新前提高了20%列式求解即可.【详解】解:由题意得,更新设备后每天生产()120% 1.2x x +=件产品,故答案为:1.2x .15.25【分析】本题考查相反数的定义.掌握最小的正整数是1,相反数等于它本身的数是0,据此即可求解..【详解】解:∵a 是()5---éùëû的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,∴51450a b c ==+==,,,∴323525025a b c ++=´+´+=,故答案为:25.16.1-或―7【分析】本题考查了绝对值及求代数式的值,根据题意得出m n £是解题关键.根据已知条件,结合绝对值的性质和乘方的意义得到m ,n 的值,再分别代入m n +中计算即可.【详解】解:∵m n n m -=-,∴0m n -£,即m n £.又4m =,3n =,∴4m =-,3n =或4m =-,3n =-.∴当4m =-,3n =时,1m n +=-;当4m =-,3n =-时,7m n +=-.故答案为:1-或―7.17.2023【分析】本题考查的是代数式求值,先根据题意得出822018a b +=-是解答此题的关键.直接将2x =代入得出822018a b +=-,进而将2x =-代入得出答案即可.【详解】解:∵当2x =时,35ax bx ++的值为2013-;8252013a b \++=-,822018a b \+=-,当2x =-时,有()35825825(2018)52023ax bx a b a b ++=--+=-++=--+=,故答案为:2023.18.1872907或2912或2915【分析】本题考查了整式加减的应用等知识点,正确理解“幸运数”的定义是解题关键.(1)根据“幸运数”的定义进行判断即可得;(2)设两位数A 和B 的十位数字均为m ,A 的个位数字为n ,则B 的个位数字为()8-n ,且m 为1至9的自然数,从而可得10108A m n B m n =+=+-,,则()208P M A B m +=+=,()28Q M A B n =-=-,得到()()208104284P m m Q n M M n ++==--,根据A B ³,自然数M 的个位数字不为0,以及()280Q M A B n =-=-¹,可得n 为7或6或5,然后根据()()P M Q M 能被9整除,分别求出m 、n 的值,由此可得.【详解】解:(1)∵自然数M 的个位数字不为0,121619213151951414196´=´=´=,,,当两个数的和一定时,差越大积越小,∴根据“幸运数”的定义,可得最小的“幸运数”为1117187M =´=,故答案为:187.(2)由题意,设两位数A 和B 的十位数字均为m ,A 的个位数字为n ,则B 的个位数字为()8-n ,且m 为1至9的自然数,∴10108A m n B m n =+=+-,,∴()208P M A B m +=+=,()28Q M A B n =-=-,∵A B ³,自然数M 的个位数字不为0,∴n 为7、6、5或者4.∵()280Q M A B n =-=-¹,∴n 为7或6或5,∴()()208104284P m m Q n M M n ++==--,∵()()P M Q M 能被9整除.∴当7n =时,()()104104743P M M m m Q ++==-,即1043m +能被9整除,因为m 为1至9的自然数,满足条件的整数m 只能是5.此时5751A B ==,,57512907M =´=;当6n =时,()()10410452464P M M m m m Q n ++===+--,即52m +能被9整除,因为m 为1至9的自然数,满足条件的整数m 只能是5.此时5652A B ==,,56522912M =´=;当5n =时,()()104104104454P M M m m m Q n ++===+--,即104m +能被9整除,因为m 为1至9的自然数,满足条件的整数m 只能是5.此时5553A B ==,,55532915M =´=;故答案为:2907或2912或2915.19.(1)2(2)2020【分析】本题考查了代数式求值.(1)利用整体代入计算即可求解;(2)由已知得到21a a +=,23a a a =-,再整体代入计算即可求解.【详解】(1)解:∵210a a +-=,∴21a a +=,∴()22222212a a a a +=+=´=;(2)解:∵210a a +-=,∴21a a +=,21a a =-,∴23a a a =-,∴3222019a a ++2222019a a a =-++22019a a =++12019=+2020=.20.9或7-【分析】本题考查代数式求值,根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值的意义,得到0,1,2a b cd m +===±,分类讨论代入代数式进行计算即可.【详解】解:由题意,得:0,1,2a b cd m +===±,当2m =时,原式3210819=+-=+=;当2m =-时,原式()3210817=-+-=-+=-;故32a b m cd m ++-的值为9或7-.21.(1)1x -,4-(2)23x y -+,950-【分析】本题考查了整式的加减中的化简求值,熟练掌握运算法则是解此题的关键.(1)合并同类项即可化简,再代入3x =-计算即可得出答案;(2)先去括号,再合并同类项即可化简,代入2x =,23y =-计算即可得出答案.【详解】(1)解:22254352561x x x x x x +----+=-,当3x =-时,原式314=--=-;(2)解:22113122323x x y x y æöæö--+-+ç÷ç÷èøèø22123122323x x y x y =-+-+23x y =-+,当2x =,23y =-时,原式22450326399æö=-´+-=-+=-ç÷èø.22.(1)223x x ---(2)7【分析】本题主要考查整式的加减运算及化简求值;(1)根据题意利用计算结果减去代数式A 即可;(2)将(1)中B 及A 代入计算,进而根据题意得出=1x -,代入求解即可.【详解】(1)解:根据题意知()2223231B x x x x =----+ 2223231x x x x =---+-223x x =---(2)()()223123A B x x x x -=-+----223123x x x x =-++++244x x =++∵x 是最大的负整数,∴x =―1,则原式()24114=´--+414=-+=723.(1)21122ah r p -(2)2126cm【分析】此题考查了列代数式,已知字母的值求代数式的值,正确理解图形面积的计算方法列得代数式是解题的关键.(1)先用代数式表示图中各个部分的面积,再根据各个部分面积之间的关系得出结果;(2)把20a =,15h =,4r =代入(1)中的代数式计算即可.【详解】(1)解:S S S =-阴影半圆三角形21122ah r p =-;(2)当20a =,15h =,4r =,3p =时,21122S ah r p =-阴影21120153422=´´-´´15024=-2126cm =.24.(1)8-,12-(2)151【分析】本题考查了新定义运算,代数式求值:(1)根据新定义计算即可求得答案;(2)根据新定义运算求得12a b +=,整体代入()()2112a b a b ++++计算即可.【详解】(1)解:Q (),27L x y x y =+,()()3,223726148L \-=´+´-=-=-,313171,273222222L æöæö-=´+´-=-=-ç÷ç÷èøèø,故答案为:8-,12-;(2)解:Q (),27L x y x y =+,则有()()7,22772141414168L a b a b a b a b =´+´=+=´+=,\12a b +=,\()()2112a b a b ++++21121212=+´+151=.25.(1)11222n n n ---=,理由见解析(2)①202521-;②3【分析】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.(1)利用已知等式找出规律可得11222n n n ---=,将2n 变形为122n -´即可证明;(2)①结合(1)中结论,利用裂项相消法求解;②结合(1)中结论,利用裂项相消法求解.【详解】(1)解:根据已知等式可得第n 个等式为:11222n n n ---=,理由如下:1111222222n n n n n -----==´-;(2)解:①01220242222++++L ()()()()1021322025202422222222=-+-+-++-L ()()()()1021322025202422222222=-+-+-++-L 0202522-=202521=-;②0122023202422222----+L ()0122023202422222=-++++L ()0213220242023202422222222=--+-++-+L ()02024120242222=--+020*******2222=-++0122=+12=+3=.26.(1)10(2)4-或6(3)①3;②465或494或030465a +或052530a -【分析】本题考查了绝对值的意义,化简绝对值.分类讨论是解题的关键.(1)由题意知,4-和6关于2的“相对关系值”为4262--+-,计算求解即可;(2)由题意知,1317a -+-=,即15a -=,计算求解即可;(3)①由题意知,01111a a -+-=,然后分当0111a a ³³,时;当0111a a ³<,时;当0111a a <³,时;当01a <,11a <时,化简绝对值,然后求解即可;②由题意知,01111a a -+-=,12221a a -+-=,23331a a -+-=……,303131311a a -+-=,分当00a =时;当01a =,10a =时;当01a =,12a =时;当001a <<时; 当012a <£,101a £<时;当012a <£,112a £<时,分别计算求出满足要求的解即可.【详解】(1)解:由题意知,4-和6关于2的“相对关系值”为42626410--+-=+=,故答案为:10;(2)解:由题意知,1317a -+-=,即15a -=,解得,4a =-或6a =,∴a 的值为4-或6;(3)①解:由题意知,01111a a -+-=,当0111a a ³³,时,01111a a -+-=,则013a a +=;当0111a a ³<,时,01111a a -+-=,则011a a -=,011123a a a +=+<;当0111a a <³,时,01111a a -+-=,则101a a -=,010123a a a +=+<;当01a <,11a <时,01111a a -+-=,则0113a a +=<;综上所述,01a a +的最大值为3,故答案为:3;②解:由题意知,01111a a -+-=,12221a a -+-=,23331a a -+-=……,303131311a a -+-=,∴当00a =时,10111a -+-=,解得,11a =;同理22a =,33a =,……. 3131a =,∴1233012330465a a a a =++++++¼=++L ;当01a =,10a =时,12222221a a a -+-=+->,此情况不成立;当01a =,12a =时,则23a =,34a =,……,3031a =,∴12330233031494a a a a +++=++¼+=++L ;当001a <<时,由题意得,112a <<,223a <<,……,303031a <<,∴01111a a -+-=,即101a a =+,同理,21012a a a =+=+,…...,30290130a a a =+=+,∴01230003001233030465a a a a a a a a a =+++++++++=+++¼L ;当012a <£,101a £<时,12221a a +-->,此情况不成立;当012a <£,112a £<时,01111a a -+-=,即103a a =-,同理,21034a a a =-=-,305a a =-,……,30032a a =-,∴30002013003453252530a a a a a a a a a =-+--++++-+=¼-+L ;综上所述,12330a a a a +++¼+的值为465或494或030465a +或052530a -.。

《第3章 代数式》单元测试及答案

《第3章 代数式》单元测试及答案

《第3章 代数式》单元测试一、填空题:(每小题1分,共20分)1、小红家9月份用了a 度电,10月份比9月份节约了b 度电,已知每用一度电须缴电费53.0元,则小红家10月份应缴电费_______元.2、一辆汽车有甲地以每小时65千米的速度驶向乙地,行驶3小时即可到达乙地,则在行驶)30(≤<t t 小时后离甲地________千米,距乙地______千米.3、代数式x y y x -+-2312是 , ,三项的和,它们的系数分别是 , , .4、合并同类项:a a 83-=__________,a a a ---=___________.5、用代数式表示:a 与b 的平方和除以a 与b 的差的立方的商,应是__________6、若代数式2x 2+3x+7的值是12,则代数式4x 2+6x-10的值应是__________7、当x= __________时,12x-3 的值为自然数;8、a 是__________b1-a b 312=是最小的质数,则的倒数,9、三角形的面积为S ,底为a ,则高h= __________ 10、 -__________5y 2x 3的系数是11、去括号:-2a 2-[3a 3-(a-2)]= ______12、若3x n y 3与12 xy 1-2m 是同类项,则m+n= ;13、三个连续奇数中,中间的一个为n ,用代数表示这三个奇数的和为________;当n =13时,这个代数式的值是__________14、用语言描述下列代数式的意义:(1)(a+b )2可以解释为_____________________; (2)3x +3可以解释为_____________________;(3)代数式5m+2n 可以解释为_____________________15、在代数式:2中,344332552y x xyy x y x -+-一共有_______项,2x 2y3的系数应是________16、若单项式-2a n b m+1与4a 5b 5是同类项,则m=_______,n=________.17、三角形的底边长为acm ,高为hcm ,则其面积是_______cm 2.18、代数式a 2+b 2的意义是________.19、用n 表示三个连续偶数为__________.20、一个三位数的百位数字为5,十位数字为a ,个位数字为b ,则 (1)这个三位数是____________;(2)把个位数字和百位数字交换位置,所得的三位数是___________.二、用代数式表示:21、若-5x ²y ³+ax ²y ³=6x ²y ³,则a= ,22.、请写出25ab 的两个同类项,且这两个同类项与25ab 合并后为0,你给出的两个同类项为 (答案有多个,不止一种).23、已知a >b ,化简:I a-bI-Ib-aI=________,24、化简:[])72(532b a a b a ----=化简:16a-12(a+1)+13(a-1)=25、已知长方形的周长是b a 45+,长是a b 3+,则宽是______________26、已知yxam3-是关于y x ,的单项式,且系数为95-,次数是4,求代数式ma 5.03+的值。

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)七年级上数学代数式单元测试班级:______________ 姓名:______________一、选择题1.计算-2x2+3x2的结果是()A。

x2B。

5x2C。

-5x2D。

-x22.足球每个m元,篮球每个n元,XXX为学校买了4个足球,7个篮球共需要()A。

(7m+4n)元B。

28mn元C。

(4m+7n)元D。

11mn元3.已知代数式-3xy与yx是同类项,那么m,n的值分别是()A。

n=-3,m=-1B。

n=-3,m=-3C。

n=3,m=5D。

n=2,m=34.下列各组代数式中,是同类项的是()A。

11xy,2B。

-5xy,yxC。

5ax,yxD。

8,x5.下列式子合并同类项正确的是()A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有() A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是()A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3cm,高为2cm,则它的体积为() A。

97πcm3B。

18πcm3C。

3πcm3D。

18πcm39.下面选项中符合代数式书写要求的是()A。

5xy与2½B。

ay×3a2bC。

4a÷bD。

a×b+c10.已知a,b两数在数轴上的位置如图所示,则化简代数式a+b-a-1+b+2的结果是()A。

1B。

2b+3C。

2a-3D。

-111.在排成每行七天的月历表中取下一个3×3方块(图所示)。

若所有日期数之和为189,则n的值为()A。

21B。

11C。

15D。

912.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)10.2+0.820.4+0.830.6+0.840.8+0.8……;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.3.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.4.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值.(2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值.【答案】(1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6,∴m=3.k=6;(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1,∴b=3,a﹣9=﹣1,即a=8,b=3,∴b﹣a=﹣5.【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3)2+6,可知m=3.k=6,从而得出答案.(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b25.将连续的偶数2,4,6,8……,排成如下表:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和,(3)若将十字框上下左右移动,可框住另外的五个数,其它五个数的和能等于2010吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍(2)解:设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=2010,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010【解析】【分析】(1)按有理数的加法法则计算出十字框中的五个数的和,再将这个和除以最中间的数16,即可发现关系;(2)设中间的数为x,则左边的数是(x-2),右边的数是(x+2),上边的数是(x-10),下边的数是(x+10),将这5个数相加,再合并同类项即可得出答案;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)得这五个数的和是5x,由五个数的和等于2010,列出方程,求解,得出x的值,由于所得的x的值位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010。

6.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.7.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款________元;在乙店购买需付款________元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【答案】(1)(5x+60);(4.5x+72)(2)解:当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算(3)解:可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元【解析】【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.8.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.9.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲▲B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300,要使A店买的多反而便宜即是0.42x-300>0,解得:x>∴当x> 时,A店买的多反而便宜;②当购买数量为1500以上~2500时,B家需要的总价=500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200又总价=购买数量×单价+价格补贴∴价格补贴=1200元,当购买数量为2500以上部分时,B家需要的总价=500×6×95%+1000×6×85%+(2500-1500)×6×75%+(x-2500)×6×70%=4.2x+1950∴价格补贴=1950元.【解析】【分析】(1)A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+(700-500)×单价×85%;把相关数值代入求解即可;(2)根据“A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+1000×单价×85%+(x-1500)×单价×75%”;(3)①当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300;即可举例说明A店买的多反而便宜;②分别求出B家批发各个价格所需要的费用的等式即可求解.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为 ,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能(2)解:能,理由如下:设小长方形的长为a,宽为b,上面的长方形周长为:下面的长方形周长为:两式联立,总周长为:(由图可得)阴影部分总周长为【解析】【解答】解:(1)能;故答案为能;【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.11.观察下列等式:(1) ________,(2)猜想规律 ________,(3)有以上情形,你能求出下面式子的结果吗?________,(4)已知,求的值.【答案】(1)(2)(3)(4)解:∵∴∴∴x=1∴【解析】【解答】解:(1),故答案为:( 2 )猜想故答案为:( 3 )由以上情形,求出下面式子的结果:故答案为:【分析】(1)利用多项式乘以多项式的法则:用一个多项式的每一项分别去乘以另一个多项式的每一项,再把所得的积相加,最后合并同类项化为最简形式即可;(2)通过观察(1)中两个等式的左右两边的特点即可得出通用公式:;(3)此题直接逆用(2)发现的通过公式即可直接得出答案;(4)由等式的性质,在两边同时乘以(x-1),然后根据(2)发现的通用公式即可得出,解方程即可求出x的值,再代入代数式,按有理数的乘方运算即可算出答案。

相关文档
最新文档