第八章地基基础抗震详解
地基基础规范GB50007-2011宣贯课件第8章 宫剑飞

《建筑地基基础设计规范》GB50007-2011《建筑地基基础设计规范》GB50007-2011第八章基础宫剑飞中国建筑科学研究院地基基础研究所1、基础专题组修订总结•修订原则:•吸收了近十年来我国在该领域的科研成果以及成熟的工程实践经验,对纳入规范的内容进行了试算,并与试验、已建工程以及国外有关规范作了对比。
对征求意见稿的反馈意见逐条进行了分析研究后确定其取舍。
1、基础专题组修订总结•本次修订,增加的内容主要有:•1.明确了无筋扩展基础底面处的平均压力值超过300kPa时,验算墙(柱)边缘的受剪承载力公式适用于基底反力均匀分布的情况。
对岩石地基上无筋扩展基础,基底反力呈倒置马鞍形反力集中于立柱附近的基础,其抗剪验算条件应根据各地区的岩石类别经试验后确定。
•2.明确了扩展基础受力钢筋最小配筋率为0.15%;对阶形以及锥形独立基础,计算最小配筋率时可将阶形和锥形的截面宽度换算成等效的折算宽度。
• 3.增加了墙下条形基础墙边缘处受剪验算条款。
1、基础专题组修订总结•4.明确了柱下独立基础的冲切破坏锥体落在基础底面以内时,基础的截面高度由受冲切承载力控制;当基础底面宽度小于柱宽加两倍基础有效高度时,柱与基础交接处不存在受冲切的问题,仅需对基础进行斜截面受剪承载力验算。
•5.增加了四周与土层紧密接触带地下室外墙的整体式的筏基和箱基,结构基本自振周期处于特征周期的1.2倍至5倍范围,场地类别为Ⅲ类和Ⅳ类时,抗震设防烈度为8度和9度,按刚性地基假定分析的基底水平地震剪力和倾覆力矩可折减10%和15%。
•6.增加了对筏形基础的边柱和角柱进行冲切验算时,其冲切力应分别乘以1.1和1.2的增大系数。
1、基础专题组修订总结•7.增加了抗震设防烈度为9度的高层建筑,验算柱下基础梁、筏板局部受压承载力时,应考虑竖向地震作用对柱轴力的影响。
•8.补充完善了带裙房的高层建筑筏形基础与相连的裙房基础间的构造要求和措施。
•9.提出了控制平板式筏基整体挠曲度的指标,使基础具有足够的刚度,保证上部结构的安全。
土力学与地基基础第八章

4、特殊性地基,如湿陷性黄土、季节性冻土,要求采用 桩基础将荷载传到深层稳定的土层; 5、河床冲刷较大,河道不稳定或冲刷深度不易计算正确, 如果采用浅基础施工困难或不能保证基础安全时;
6、当施工水位或地下水位较高时,采用桩基础可减小施 工困难和避免水下施工;
7、地震区,在可液化地基中,采用桩基础可增加结构物 的抗震能力,桩基础穿越可液化土层并伸入下部密实稳定 土层,可消除或减轻地震对结构物的危害。
8.3.2 单桩竖向静载荷试验 静载荷试验是评价单桩承载力最为直观和可靠的方法,它 除了考虑地基的支承能力外,也计入了桩身材料对承载力 的影响。 对于灌注桩,应在桩身强度达到设计强度后方能进行静载 荷试验。对于预制桩,由于沉桩扰动强度下降有待恢复, 因此在砂土中沉桩7天后,粘性土中沉桩15天后,饱和软粘 土中沉桩25天后才能进行静载试验。 静载荷试验时,加荷分级不应小于8级,每级加载量宜为预 估限荷载的1/8~1/10。 测读桩沉降量的间隔时间为:每级加载后,第5、10、 15min时各测读一次,以后每15min测读一次,累计一小时 后每隔半小时测读一次。 在每级荷载作用下,桩的沉降量连续两次在每小时内小于 0.1mm时可视为稳定,稳定后即可加下一级荷载。
Quk Qsk Qpk u qsik li q pk Ap
二、 根据土的物理指标与承载力参数之间的经验关系,确定大直 径桩单桩极限承载力标准值时,可按下式计算:
8.2桩的类型
1、按承台位臵分:高桩承台基础和低桩承台基础 2 按承载性状分类: 摩擦型桩;端承型桩;
3 按成桩方法分类:非挤土桩;部分挤土桩;挤土桩;
4 按桩径(设计直径d)大小分类:小直径桩:d ≤250mm; 中等直径桩: 250mm< d <800mm;大直径桩: d ≥800mm 5、按桩身材料分:木桩,钢筋混凝土桩和钢桩 6、按施工方法分:预制桩;灌注桩
《地基基础规范(8章)(2013)

8.2
扩展基础
8.2.12 基础底板配筋除满足计算和最小配筋率要 求外,尚应符合本规范第8.2.1 条第3 款的构造要 求。计算最小配筋率时,对阶形或锥形基础截面, 可将其截面折算成矩形截面,截面的折算宽度和截 面的有效高度,按附录U 计算。基础底板钢筋可按 式﹙8.2.12﹚计算: As= M/0.9 fyh0 (8.2.12)
8.2
8.2.13
扩展基础
当柱下独立柱基底面长短边
之比ω 在大于或等于2、小于或
等于3 的范围时,基础底板短向 钢筋应按下述方法布臵:将短向全 部钢筋面积乘以λ 后求得的钢筋 ,均匀分布在与柱中心线重合的宽
1-冲切破坏锥体最不利一侧的斜截面;2-冲切 破坏锥体的底面线
8.2
扩展基础
at——冲切破坏锥体最不利一侧斜截面的上边长(m),当计算 柱与基础交接处的受冲切承载力时,取柱宽;当计算基础变阶 处的受冲切承载力时,取上阶宽; ab——冲切破坏锥体最不利一侧斜截面在基础底面积范围内的 下边长(m),当冲切破坏锥体的底面落在基础底面以内(图 8.2.8a、b),计算柱与基础交接处的受冲切承载力时,取柱宽 加两倍基础有效高度;当计算基础变阶处的受冲切承载力时, 取上阶宽加两倍该处的基础有效高度; pj——扣除基础自重及其上土重后相应于作用的基本组合时的 地基土单位面积净反力(kPa),对偏心受压基础可取基础边缘 处最大地基土单位面积净反力; Al——冲切验算时取用的部分基底面积(m2)(图8.2.8a、b 中 的阴影面积ABCDEF); Fl——相应于作用的基本组合时作用在Al 上的地基土净反力设 计值(kPa)。
1:1.50 1:1.25
1:1.25
1:1.50 1:1.50
1:1.50
第8章 地基基础抗震

第8章 地基基础抗震
8.1.2 地震波及其特征
瑞雷波-R波
洛夫波-L波
第8章 地基基础抗震
8.1.3 地震的震级和烈度 震级
定义:对地震中释放能量大小的度量,由记录的
地震波的最大振幅确定。
该定义由里希特( 1935年)给出,其确定的地
震震级称为里氏震级,简称震级,以M表示。
M=LgA
500≥υ S>250
250≥υ S>150 υ S≤150
<5
<3 <3
≥5
3~50 3~15 >50 15~50 >80
第8章 地基基础抗震
8.2.2 场地类别和场地选择
场地覆盖层厚度的确定:
1. 一般情况下,应按地面至剪切波速大于500m/s的土层顶面; 2. 当地面5m以下存在剪切波速大于相邻上层土剪切波速2.5倍 的下卧土层,且下卧土层的剪切波速不小于400m/s时, 可按地面至该下卧土层顶面的距离确定; 3. 剪切波速大于500m/s的孤石、透镜体,应视同周围土层; 4. 土层中的火山岩硬夹层,应视为刚体,其厚度应从覆盖 土层中扣除。
第8章 地基基础抗震
第8章 地基基础抗震
第8章 地基基础抗震
8.2.1 地震震害及场地因素
场地和地质条件对震害的影响
地形
不良地形条件会孕育和诱发山体崩塌、滑坡、泥石流等 由于地震影响的原因,加剧地面运动,加重震害 孤立突出的山梁、山包、条状山嘴、高差较大的台地、 陡坡等,均对建筑物的抗震不利。
断层:发震断层和非发震断层,前者为具有潜在地震活
动的断层,后者在地震作用下不会产生新的错动
地下水位埋置深度(5m):地下水位在5m以内,震害影
响明显。
第8章 地基基础抗震
二建:建筑结构与建筑设备讲义. 第八章第二节 建筑结构抗震设计(三)

三、单层工业厂房(一)单层钢筋混凝土柱厂房1.一般规定(本节内容主要适用于装配式单层钢筋混凝土柱厂房) (1)厂房的结构布置应符合下列要求:1)多跨厂房宜等高和等长,高低跨厂房不宜采用一端开口的结构布置。
2)厂房的贴建房屋和构筑物,不宜布置在厂房角部和紧邻防震缝处。
3)厂房体形复杂或有贴建的房屋和构筑物时,宜设防震缝;在厂房纵横跨交接处、大柱网厂房或不设柱间支撑的厂房,防震缝宽度可采用100~150mm,其他情况可采用50~90mm。
4)两个主厂房之间的过渡跨至少应有一侧采用防震缝与主厂房脱开。
5)厂房内上起重机的铁梯不应靠近防震缝设置;多跨厂房各跨上起重机的铁梯不宜设置在同一横向轴线附近。
6)厂房内的工作平台、刚性工作间宜与厂房主体结构脱开。
7)厂房的同一结构单元内,不应采用不同的结构形式;厂房端部应设屋架,不应采用山墙承重;厂房单元内不应采用横墙和排架混合承重。
8)厂房柱距宜相等,各柱列的侧移刚度宜均匀,当有抽柱时,应采取抗震加强措施。
(2)厂房天窗架的设置,应符合下列要求:1)天窗宜采用突出屋面较小的避风型天窗,有条件或9度时宜采用下沉式天窗。
2)突出屋面的天窗宜采用钢天窗架;6~8度时,可采用矩形截面杆件的钢筋混凝土天窗架。
3)天窗架不宜从厂房结构单元第一开间开始设置;8度和9度时,天窗架宜从厂房单元端部第三柱间开始设置。
4)天窗屋盖、端壁板和侧板,宜采用轻型板材;不应采用端壁板代替端天窗架。
(3)厂房屋架的设置,应符合下列要求:略(4)厂房柱的设置,应符合下列要求:1)8度和9度时,宜采用矩形、工字形截面柱或斜腹杆双肢柱,不宜采用薄壁工字形柱、腹板开孔工字形柱、预制腹板的工字形柱和管柱。
2)柱底至室内地坪以上500mm范围内和阶形柱的上柱宜采用矩形截面。
2.抗震构造措施(1)有檩屋盖构件的连接及支撑布置,应符合下列要求:1)檩条应与混凝土屋架(屋面梁)焊牢,并应有足够的支承长度。
2)双脊檩应在跨度1/3处相互拉结。
建筑结构抗震设计场地、地基和基础

• 抗震设计概述 • 场地选择与抗震设计 • 地基与抗震设计 • 基础与抗震设计 • 案例分析
01
抗震设计概述
地震对建筑的影响
01
02
03
建筑物损坏
地震产生的震动会导致建 筑物结构破坏,如开裂、 倒塌等。
设备损坏
地震会导致建筑内的设 备、管道等设施损坏,影 响建筑物使用功能。
基础局部稳定性评价
分析基础在地震作用下的局部稳定性,防止基础开裂、屈曲等现 象。
05
案例分析
案例一:某高层建筑的抗震设计
总结词
考虑多种因素,综合抗震措施
详细描述
高层建筑由于其高度和结构特点,在抗震设计中需要综合考虑多种因素,包括地震烈度、场地条件、结构类型和 建筑材料等。设计时需要采取综合抗震措施,包括加强结构整体性、设置多道抗震防线、提高结构延性等,以确 保建筑在地震中的安全性能。
适用于一般民用建筑, 具有施工简便、造价低
廉的特点。
条形基础
适用于荷载较大的高层 建筑,能够提供较大的
承载能力。
筏形基础
适用于软弱地基或地下 室结构,能够提供较大
的整体刚度。
桩基基础
适用于高层或大跨度结 构,能够提供较高的竖 向承载力和水平抗震能
力。
基础抗震承载力分析
静力分析法
基于静力平衡条件,计算地震作用下的基础内力 和变形。
局和保护也是抗震设计的重要内容。
THANKS
感谢观看
构破坏。
02
场地选择与抗震设计
场地分类与选择
场地分类
根据地震活动性、地质条件和地 形地貌等因素,将场地划分为有 利、一般和不利三类。
场地选择原则
地基基础抗震课件

响,波速、加速度等参数会有所不同。
地震动参数
03
地震动参数包括峰值加速度、峰值速度和反应谱等,是抗震设
计的重要依据。
地基抗震承载力计算
地基抗震承载力
地基在地震作用下能够承受的竖向承载力和水平 承载力。
土压力计算
根据土压力的性质和分布,采用不同的计算方法 ,如库仑土压力理论和朗肯土压力理论。
桩基抗震承载力
详细描述
扩基加固技术通常采用混凝土灌注、砖砌等方式,将建筑物的基础面积扩大, 增加建筑物底部的支撑面积,使建筑物在地震中能够更好地分散地震波的冲击 力。
土层锚杆加固
总结词
通过在土层中设置锚杆,将建筑物与土层紧密连接在一起,提高建筑物对地震的 抵抗能力。
详细描述
土层锚杆加固技术通常采用锚杆注浆、锚杆拉拔等方式,在土层中设置锚杆,将 建筑物的基础与土层紧密连接在一起,使建筑物在地震中能够更好地保持稳定, 防止建筑物出现倾斜或倒塌。
案例分析
某工业厂房的地基基础抗震加固采用了注浆、扩基、加深 基础等措施,同时加强了结构的支撑体系,提高了结构的 整体性和稳定性。
某大型桥梁的抗震性能评估与检测
01
大型桥梁的特点
跨度大、质量大、地震作用复杂。
02
抗震性能评估与检测要点
对桥梁进行全面的抗震性能评估和检测,确保其安全性和可靠性。
03
案例分析
03
地基基础抗震加固技术
Chapter
桩基加固
总结词
通过增加桩基的刚度和承载力来提高建筑物对地震的抵抗能 力。
详细描述
桩基加固技术通常采用桩基注浆、桩基扩基和桩基托换等方 法,通过增加桩基的截面面积、提高桩基的承载力和刚度, 使建筑物在地震中能够更好地承受地震波的冲击。
地基基础抗震详解

地震区场地特性
• 2)建筑物的典型震害 • 多层砖房的典型震害为外墙外闪、倾倒,纵横墙墙面出现
X裂缝,纵横墙开裂和屋顶塌落等。 • 多高层钢筋混凝土房屋的典型震害为梁柱节点破坏,柱子
上混凝土保护层脱落,钢筋外崩,呈灯笼状,在箍筋数量 不足时这种情况更加常见。钢筋混凝土墙的破坏形态与砖 墙差不多,但其裂缝比较分散且宽度较窄。
基础工程
第8章 地基基础抗震
4/3/2020
内容提要
➢地震的成因特征 ➢地震区场地特征 ➢地基基础抗震设计
4/3/2020
概述
地震成因
地震是地球内部构造运动的产物,是一种自然现象,是地壳内部或外部 因素作用下产生强烈震动的地质现象。全世界每年大约发生500多次地震, 绝大多数地震都很小,小地震约占一年中地震总数的99%,剩下的1%才 是人们感觉到的,而现在造成严重破坏的大地震,全世界平均每年大约发 生18次。地震按其成因可分为:构造地震、火山地震、陷落地震和诱发地 震。 全球地壳由六大块组成,即欧亚大陆、太平洋、美洲大陆、非洲大陆、 印澳与南极板块。各大板块内还可以划分为极小的板块。由于地壳的缓慢 变形,各板块之间发生顶撞、插入等突变、形成地壳振动,即构造地震, 多发生在各板块的边缘或沿海的岛屿。我国的台湾岛和日本都位于大板块 的交接处,所以是多地震区域。
4/3/2020
地震区场地特性
• 1.地震震害 • 地震发生时及发生后,将引起人们有震动的感觉、自然和人工环境的变化,通常称之
为地震后的宏观现象,常可概括为四类:人们的感觉、人工结构物的损坏、物体的反 应和自然状态的变化。研究这些现象不仅可以理解地震作用本质,更主要的是防止或 减少地震所产生的破坏与人民生命财产的损失。所以人工结构物的损坏,应该说是最 值得研究的宏观现象。通过它的研究不仅能定性地理解地震现象,而且可以总结经验 教训,为制定和改进抗震设计规范以及制定抗震防灾对策措施提供依据。地震所带来 的破坏活动主要表现在: • 1)地基震害 • 地基的主要破坏有:地基液化、震陷、山体崩裂、滑坡、地裂等现象。在地下水位较 高地区,地震时的强烈震动会使饱和粉细砂、细砂和粉土层液化,地下水夹着砂子往 往经裂隙或其他通道蹦出地面,形成喷砂冒水现象。产生液化的原因是由于地层短暂 时间里,孔隙水压力骤然上升来不及消散,有效应力降至零,土体呈现出近乎液体的 状态,强度完全丧失,即所谓液化。地基液化能使建筑物产生大量的沉降、不均匀沉 降及倾斜,埋在液化土层中的管道及地下罐等则会上浮。地震使地面产生巨大的附加 沉降称为震陷,多发生在松砂和软粘土中,震陷不仅使建筑物产生过大沉降,而且产 生较大的差异沉降和倾斜,影响建筑物的安全使用。地震时出现的地裂缝的数量、长 短和深浅等与地震强度、受力特征有关,如唐山地震时,地面出现一条长10km、水平 错动1.25m、垂直错动0.6m的大地裂,错动带宽约2.5m,致使在该断裂段内的房屋、道 路、地下管道等遭到及其严重的破坏,民用建筑几乎全部倒塌。强烈的地震往往造成 地面错动、山体崩塌和滑坡泥石流等,严重时还会堵塞河流,形成地震堰塞湖而使山 河改观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10/15/2018
场地因素
• 建筑场地的地形条件、地质构造、地下水位等对地震灾害的程度有显著的影 响。我国多次地震灾害调查表明,局部地形条件对地震时建筑物的破坏有较 大的影响。一般当局部地形高差大于30-50m时,震害就会有明显的差异,位 于高处的建筑物震害加重。1920年宁夏海原发生8.5级地震时,处于渭河谷地 姚庄的烈度为7度,而2km外的牛家山庄因位于高出百米的黄土梁上,其烈度 则达9度。综上所述,孤立突出的山梁、山包、条状山嘴、高差较大的台地、 陡坡等,均对建筑物的抗震不利。 断层是地质构造的薄弱环节,可将其分为发震断层和非发震断层,前者为 具有潜在地震活动的断层,后者在地震作用下不会产生新的错动。地震时, 发震断层附件地表可能发生新的错动,若在其上修建建筑物必招致严重破坏。 因此在具体进行场地布置时,不宜将建筑物横跨在断层上,以免可能发生的 错动和不均匀沉降带来危害。 地震对建筑物的危害程度与地下水位有明显关系,水位越浅震害越重。地 下水位深度在5m以内时,对震害影响最明显,当地下水位较深时影响较小。 对于不同类别的地基土,地下水位的影响程度也有差别。例如软弱土层(粉 砂、细砂、淤泥质土等)影响程度最大,对粘性土影响次之,对碎石、角砾 等影响较小。
10/15/2018
烈度
• 地震烈度是指地震时某一地区的地面和各类建筑物遭受到 一次地震影响的强弱程度。一次同样大小的地震,若震源 深度、离震中的距离和土质条件的因素不同,则对地面和 建筑物的破坏也不相同。这时,若仅用地震震级来表示地 震动的强度,还不足以区别地面和建筑物破坏轻重的程度。 虽然一次地震只有一个震级,但距离震中不同的地方,地 震的影响是不一样的,及地震烈度不同。一般来说,离震 中越近,地震影响越大,地震烈度越高;离震中越远,地 震烈度越低。震中区的烈度称为震中烈度,用I0表示。
基础工程
第 8 章 地基基础抗震
10/15/2018
内容提要
地震的成因特征 地震区场地特征 地基基础抗震设计
10/15/2018
概述
地震成因 地震是地球内部构造运动的产物,是一种自然现象,是地壳内部或外部 因素作用下产生强烈震动的地质现象。全世界每年大约发生500多次地震, 绝大多数地震都很小,小地震约占一年中地震总数的99%,剩下的1%才 是人们感觉到的,而现在造成严重破坏的大地震,全世界平均每年大约发 生18次。地震按其成因可分为:构造地震、火山地震、陷落地震和诱发地 震。 全球地壳由六大块组成,即欧亚大陆、太平洋、美洲大陆、非洲大陆、 印澳与南极板块。各大板块内还可以划分为极小的板块。由于地壳的缓慢 变形,各板块之间发生顶撞、插入等突变、形成地壳振动,即构造地震, 多发生在各板块的边缘或沿海的岛屿。我国的台湾岛和日本都位于大板块 的交接处,所以是多地震区域。
10/15/2018
地震的震级和烈度
• 1.震级 • 地震强度通常用震级和烈度来反映。地震震级是地震固有 的属性,表示地震本身能量大小的尺度,用符号M表示, 其数值是根据地震仪记录的地震波图确定的。目前,国际 上比较通用的是里氏震级,原始定义是在1935年由里克特 (C. F. Richter)给出 • 震级表示一次地震释放能量的多少,也是表示地震强度 大小的指标,所以一次地震只有一个震级。
10/15/2018
地震区场地特性
• • 1.地震震害 地震发生时及发生后,将引起人们有震动的感觉、自然和人工环境的变化,通常称之 为地震后的宏观现象,常可概括为四类:人们的感觉、人工结构物的损坏、物体的反 应和自然状态的变化。研究这些现象不仅可以理解地震作用本质,更主要的是防止或 减少地震所产生的破坏与人民生命财产的损失。所以人工结构物的损坏,应该说是最 值得研究的宏观现象。通过它的研究不仅能定性地理解地震现象,而且可以总结经验 教训,为制定和改进抗震设计规范以及制定抗震防灾对策措施提供依据。地震所带来 的破坏活动主要表现在: 1)地基震害 地基的主要破坏有:地基液化、震陷、山体崩裂、滑坡、地裂等现象。在地下水位较 高地区,地震时的强烈震动会使饱和粉细砂、细砂和粉土层液化,地下水夹着砂子往 往经裂隙或其他通道蹦出地面,形成喷砂冒水现象。产生液化的原因是由于地层短暂 时间里,孔隙水压力骤然上升来不及消散,有效应力降至零,土体呈现出近乎液体的 状态,强度完全丧失,即所谓液化。地基液化能使建筑物产生大量的沉降、不均匀沉 降及倾斜,埋在液化土层中的管道及地下罐等则会上浮。地震使地面产生巨大的附加 沉降称为震陷,多发生在松砂和软粘土中,震陷不仅使建筑物产生过大沉降,而且产 生较大的差异沉降和倾斜,影响建筑物的安全使用。地震时出现的地裂缝的数量、长 短和深浅等与地震强度、受力特征有关,如唐山地震时,地面出现一条长10km、水平 错动1.25m、垂直错动0.6m的大地裂,错动带宽约2.5m,致使在该断裂段内的房屋、道 路、地下管道等遭到及其严重的破坏,民用建筑几乎全部倒塌。强烈的地震往往造成 地面错动、山体崩塌和滑坡泥石流等,严重时还会堵塞河流,形成地震堰塞湖而使山 河改观。
•
•
10/15/2018
地震波及其特征
• 纵波比横波的传播速度要快,在仪器观测到的记录图 上,纵波要先于横波到达。一般也把纵波叫P波(即初 波),把横波叫S波(即次波)。体波在地球内部的传播 速度随深度的增加而增大。由于地球的层状结构,因此 体波通过分层介质,在界面上将产生折射和反射;当一 个P波入射到一个界面时,不但产生折射和反射的P波而 且还发生折射和反射的S波,S波也是如此,此外,由震 源发出的震动首先通过岩层传到基岩表面,然后再经基 岩以上的地层传到地表面,在此过程中由于重复反射, 地表面的震动常常得到放大。
10/15/2018
地震波及其特征
• 地震引起的震动以波的形式从震源向各个方向传播并释 放能量,这就是地震波。它包含在地球内部传播的体波 和只限于在地球表面传播的面波,是一种弹性波。 体波包括纵波与横波两种,纵波是由震源向外传播的 胀缩波,质点的震动方向与波的前进方向一致,从而使 得介质不断的压缩和疏松,也称为压缩波或疏密波。在 空气里纵波就是声波。其特点表现为周期较短,振幅较 小。横波是由震源向外传播的剪切波,介质质点的震动 方向与波的前进方向相垂直,也称剪切波。其周期较长, 振幅较大。还应指出,横波只能在固体里传播,而纵波 在固体和液体里都能传播。
• •Βιβλιοθήκη 10/15/2018地震区场地特性
• 2)建筑物的典型震害 • 多层砖房的典型震害为外墙外闪、倾倒,纵横墙墙面出现 X裂缝,纵横墙开裂和屋顶塌落等。 • 多高层钢筋混凝土房屋的典型震害为梁柱节点破坏,柱子 上混凝土保护层脱落,钢筋外崩,呈灯笼状,在箍筋数量 不足时这种情况更加常见。钢筋混凝土墙的破坏形态与砖 墙差不多,但其裂缝比较分散且宽度较窄。