2019届高考数学专题09线性规划

培优点九 线性规划

1.简单的线性规划问题应注意取点是否取得到

例1:已知实数x ,y 满足24240x y x y y -≥??

+≤??≤?

,则32z x y =-的最小值是( )

A .4

B .5

C .6

D .7

【答案】C

【解析】不等式组对应的可行域如图所示: 由当动直线322

z

y x =

-过()2,0时,z 取最小值为6,故选C . 2.目标函数为二次式

例2:若变量x ,y 满足1

20x x y x y ≤??≥??++≥?,则22

z x y =+的最大值为( )

A 10

B .7

C .9

D .10

【答案】D

【解析】目标函数22

z x y =+可视为点到原点距离的平方,

所以只需求出可行域里距离原点最远的点即可,作出可行域, 观察可得最远的点为()1,3B -,所以2

max 10z OB ==.

3.目标函数为分式

例3:设变量x ,y 满足约束条件22022010

x y x y x y --≤??-+≥??+-≥?,则1

1y s x +=+的取值范围是( )

A .31,2??????

B .1,12??????

C .[]1,2

D .1,22??????

【答案】D 【解析】所求1

1

y s x +=

+可视为点(),x y 与定点()1,1--连线的斜率. 从而在可行域中寻找斜率的取值范围即可, 可得在()1,0处的斜率最小,即()

()min 011112

k --==--,

在()0,1处的斜率最大,为()()

max 11201k --=

=--,

结合图像可得11y s x +=+的范围为1,22??

????

.故选D . 4.面积问题

例4:若不等式组03434x x y x y ≥??

+≥??+≤?

所表示的平面区域被直线4y kx =+分成面积相等的两部分,则

k 的值为( )

A .

73

B .

37

C .173

-

D .317

-

【答案】C

【解析】在坐标系中作出可行域,

如图所示为一个三角形,动直线4y kx =+为绕定点()0,4的一条动直线, 设直线交AC 于M ,若将三角形分为面积相等的两部分,则ABM BCM S S =△△, 观察可得两个三角形高相等,所以AM MC =,即M 为AC 中点,

联立直线方程可求得40,3A ??

???,()1,1C ,则17,26M ?? ???,代入直线方程可解得173

k =-.

一、单选题

1.若实数x ,y 满足0010x y x y ≥??

≥??+-≤?

,则z x y =-的最大值为( )

A .2

B .1

C .0

D .1-

【答案】B

【解析】由图可知,可行域为封闭的三角区域, 由z x y =-在y 轴上的截距越小,目标函数值越大, 所以最优解为()1,0,所以z 的最大值为1,故选B .

对点增分集训

2.已知实数x ,y 满足线性约束条件3023004x y x y x +-≤??

--≤??≤≤?

,则其表示的平面区域的面积为( )

A .

94

B .

274

C .9

D .

272

【答案】B

【解析】满足约束条件3023004x y x y x +-≤??

--≤??≤≤?

,如图所示:

可知14x ≤≤范围扩大,实际只有03x ≤≤,

其平面区域表示阴影部分一个三角形,其面积为1327

33224

S ??=+?= ???.故选B .

3.已知实数x ,y 满足1

22022x y x y x y -≤??

-+≥??+≥?

,若z x ay =-只在点()43,

处取得最大值,则a 的取值范围是( ) A .()1-∞-, B .()2-+∞, C .()1-∞,

D .12??

+∞ ???

,

【答案】C

【解析】由不等式组122022x y x y x y -≤??

-+≥??+≥?

作可行域如图,

联立22

1x y x y -=-??

-=?,解得()43C ,,当0a =时,目标函数化为z x =, 由图可知,可行解()43,

使z x ay =-取得最大值,符合题意; 当0a >时,由z x ay =-,得1z

y x a a

=-,此直线斜率大于0, 当在y 轴上截距最大时z 最大,

可行解()43,

为使目标函数z x ay =-的最优解,1a <符合题意; 当0a <时,由z x ay =-,得1z

y x a a

=

-,此直线斜率为负值, 要使可行解()43,

为使目标函数z x ay =-取得最大值的唯一的最优解, 则1

0a

<,即0a <.

综上,实数a 的取值范围是()1-∞,

.故选C . 4.已知实数x ,y 满足约束条件2

22020

x x y x y ≤??

-+≥??++≥?,则5x z y -=的取值范围为( )

A .2433??-????

,

B .4233??

-????

,

C .3324?

???

-∞-+∞ ??

??

???

,, D .3342?

???

-∞-+∞ ??

??

???

,, 【答案】C

【解析】画出不等式表示的可行域,如图阴影三角形所示, 由题意得()22A ,

,()24B -,. 由5x z y -=得10

5

y z x -=-, 所以

1

z

可看作点()x y ,和()50P ,

连线的斜率,记为k , 由图形可得PA PB k k k ≤≤,

又202253PA k -=

=--,404253PB k --==-,所以24

33

k -≤≤, 因此32z ≤-或34z ≥,所以5x z y -=的取值范围为3324?

???

-∞-+∞ ??

??

???

,,.故选C . 5.若实数x ,y 满足约束条件2

2390x y x y x +≤??-≤??≥?

,则22

z x y =+的最大值是( )

A 10

B .4

C .9

D .10

【答案】D

【解析】由实数x ,y 满足约束条件22390x y x y x +≤??

-≤??≥?作出可行域,如图:

∵()03A -,,()02C ,

,∴OA OC >, 联立2

239x y x y +=??

-=?

,解得()31B -,, 22x y +的几何意义为可行域内动点与原点距离的平方,其最大值()2

2

23110OB =+-=.

故选D .

6.已知点()12A ,,若动点()P x y ,的坐标满足02x y x x y ≥??

≥??+≤?

,则AP 的最小值为( )

A 2

B .1

C .

22

D 5

【答案】C

【解析】作出可行域如图:

观察图象可知,AP 最小距离为点A 到直线20x y +-=的距离, 即max 1222

2

11

AP +-=

=

+,故选C . 7.x ,y 满足约束条件20220220x y x y x y +-≤??

--≤??-+≥?

,若z y ax =-取得最大值的最优解不唯一,则实数a

的值为( ) A .

1

2

或1- B .2或

12

C .2或1

D .2或1-

【答案】D

【解析】由题意作出约束条件20220220x y x y x y +-≤??

--≤??-+≥?

,平面区域,

将z y ax =-化为y ax z =+,z 相当于直线y ax z =+的纵截距, 由题意可得,y ax z =+与22y x =+或与2y x =-平行, 故2a =或1-;故选D .

8.若x ,y 满足不等式组40240 4

x y x y x +-≥??-+≥??≤?

,则

2

15y x ≤+成立的概率为( ) A .

1556

B .

1116 C .58

D .38

【答案】A

【解析】作出不等式组40240 4x y x y x +-≥??

-+≥??≤?表示的平面区域,如图所示:

因为()

011y y x x -=+--表示点(),P x y 与定点()1,0-连线的斜率,

所以

2

15

y x ≤+成立的点(),P x y 只能在图中ADE △的内部(含边界), 所以由几何概型得:2

15

y x ≤+成立的概率为ADE ABC S S △△,

由104x y x +-=??=?,得()40A ,,由210

4x y x -+=??=?,得()44B ,

, 由40240x y x y +-=??-+=?,得4833C ?? ???,,由()21510y x x y ?

=+???+-=?

,解得181077D ??

???,,

由()2154

y x x ?

=+???=?,解得()42E ,,所以141644233ABC S =-?=△,1181042277ADE S =?-?=△, 所以

2

15

y x ≤+成立的概率为10

15

716563

ADE

ABC S S ==△△,故选A . 9.若x ,y 满足不等式组20510080x y x y x y -+≥??

-+≤??+-≤?

,则32z x y =-+的最小值为( )

A .7

B .6

C .

265

D .4

【答案】C

【解析】画出可行城如图所示, 目标函数可化为1322

z

y x =-

-+,共图象是对称轴为3x =的两条射线, 由3 5100x x y =??-+=?得2z 取得最小值时的最优解为3

135x y =??

?=??

即min 1326

33255

z =-+?

=.故选C . 10.已知平面直角坐标系xOy 上的区域D 由不等式组02

22x y x y

?≤≤?

≤??

≤?给定.若()M x y ,为D 上

动点,点A 的坐标为)

2,1.则z OM OA =?的最大值为( )

A .42

B .32

C .4

D .3

【答案】C

【解析】如图所示:2z OM OA x y =?=+,即2y x z =-+,

首先做出直线0l :2y x =,将0l 平行移动, 当经过B 点时在y 轴上的截距最大,从而z 最大. 因为(

)

2,2B

,故z 的最大值为4.故选C .

11.若不等式组20510080x y x y x y -+≥??

-+≤??+-≤?

所表示的平面区域内存在点()00x y ,,使0020x ay ++≤成立,

则实数a 的取值范围是( ) A .[)1,-+∞ B .(],1-∞- C .(],1-∞ D .[)1,+∞

【答案】B

【解析】作出不等式20510080x y x y x y -+≥??

-+≤??+-≤?

,可行域如图:

∵平面区域内存在点()00,M x y ,满足0020x ay ++≤,

∴直线20x ay ++=与可行域有交点,解方程组20

5100x y x y -+=??-+=?

得()02B ,

. ∴点B 在直线20x ay ++=下方.可得0220a ++≤.解得1a ≤-.故选B .

12.已知圆()()

22

:1C x a y b -+-=,平面区域60:400x y x y y +-≤??

Ω-+≥??≥?

,若圆心C ∈Ω,且圆C 与x

轴相切,

则圆心(),C a b 与点()2,8连线斜率的取值范围是( ) A .77,,35????

-∞-+∞ ???????

B .77,,35????

-∞-+∞ ??????

C .77,35??- ???

D .77,35??-????

【答案】A

【解析】画出可行域如图,

由圆的标准方程可得圆心(),C a b ,半径为1, 因为圆C 与x 轴相切,所以1b =,

直线1y =分别与直线60x y +-=与40x y -+=交于点()51

B ,,()3,1A -, 所以35a -≤≤,圆心(),

C a b 与点()2,8连线斜率为8722b k a a -=

=---, 当32a -≤<时,7,5k ??∈+∞????;当25a <≤时7,3k ?

?∈-∞- ??

?;

所以圆心(),C a b 与点()2,8连线斜率的取值范围是77,,35?

???

-∞-+∞ ??

?????

,故选A . 二、填空题

13.设x ,y 满足10

302x y x y x +-≥??

-+≥??≤?

,则21z x y =++的最大值为____________.

【答案】13

【解析】如图,作出可行域(图中阴影部分),

目标函数21z x y =++在点()2,5A 取得最大值13.故答案为13.

14.若变量x ,y 满足约束条件2

10220x x y x y ≤??

-+≤??+-≥?

,则22z x y =+的最小值为_________.

【答案】1

【解析】作可行域,()0,1A ,22z x y =+表示可行域内点P 到坐标原点距离的平方, 由图可得22z x y =+最小值为21OA =.

15.已知实数x ,y 满足110

x y x y x -≤??+≤??≥?

,则22

x y x ++的最小值为______.

【答案】4

【解析】由实数x ,y 满足110x y x y x -≤??

+≤??≥?

,作出可行域如图,

联立11x y x y -=??+=?

,解得()10A ,,222

2x y y x x +++=+,

其几何意义为可行域内的动点与定点()02P -,连线的斜率加2. ∵0221PA k +==,∴22

x y x

++的最小值为4.故答案为4.

16.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地

养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为02.

,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1.为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万. 【答案】22.

【解析】设本地养鱼场平均年利润1ξ,远洋捕捞队平均平均年利润2ξ; 101020304050403E ξ=-?+?+?=.......,20607002020104E ξ=?+?-?=......;

设本地养鱼场投x 千万元,远洋捕捞队投y 千万元, 则利润之和0304z x y =+..,6

200x y y x x y +≤??

≤??≥≥?

,,

如图,当目标函数经过点()24B ,

时利润最大,03204422z =?+?=...千万元.

高考数学线性规划专题练习

高考数学线性规划专题练习 1. “截距”型考题 在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.【20xx 年高考·广东卷 理5】已知变量满足约束条件,则 的最大值为( ) 2. (20xx 年高考·辽宁卷 理8)设变量满足,则的最大 值为 A .20 B .35 C .45 D .55 3.(20xx 年高考·全国大纲卷 理13) 若满足约束条件,则 的最小值为 。 4.【20xx 年高考·陕西卷 理14】 设函数,是由轴 和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5.【20xx 年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 ,x y 241y x y x y ≤?? +≥??-≤? 3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤?? ≤≤??≤≤? 2+3x y ,x y 1030330 x y x y x y -+≥??? +-≤??+-≥??3z x y =-ln ,0 ()21,0x x f x x x >?=?--≤?D x ()y f x =(1,0)2z x y =-D

和韭菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50 6. (20xx 年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克; 生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元, 每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、 3100元 7. (20xx 年高考·安徽卷 理11) 若满足约束条件:;则的 取值范围为. 8.(20xx 年高考·山东卷 理5)的约束条件24 41x y x y +≤??-≥-?,则目标函数z=3x -y 的取值范围是 A . [32-,6] B .[3 2 -,-1] C .[-1,6] D .[-6, 3 2 ] 9.(20xx 年高考·新课标卷 理14) 设满足约束条件:; 则的取值范围为 . 2 . “距离”型考题 10.【2010年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥?? ≥??≥?所表示的平面区域是 1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A. 285 B.4 C. 12 5 D.2 11.( 20xx 年高考·北京卷 理2) 设不等式组,表示平面区域为D , 在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A B A B A B ,x y 02323x x y x y ≥?? +≥??+≤? x y -_____,x y ,013x y x y x y ≥?? -≥-??+≤? 2z x y =-???≤≤≤≤20, 20y x

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

近几年全国卷高考文科数学线性规划高考题

线性规划高考题 1.[2013.全国卷 2.T3]设,x y 满足约束条件10,10,3,x y x y x -+≥??+-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 2.[2014.全国卷2.T9]设x ,y 满足的约束条件1010330x y x y x y +-≥??--≤??-+≥? ,则2z x y =+的最大值为( ) A.8 B.7 C.2 D.1 3.[201 4.全国卷1.T11]设1,y 满足约束条件,1, x y a x y +≥??-≤-?且z x ay =+的最小值为7,则a =( ) A .-5 B. 3 C .-5或3 D. 5或-3 4. [2012.全国卷.T5] 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 5.[2010.全国卷.T11]已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 6. [2016.全国卷3.T13]设x ,y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则z =2x +3y –5的最小值为 7.[2016.全国卷2.T14]若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则z =x -2y 的最小值为 8.[2015.全国卷2.T14]若x ,y 满足约束条件50210210x y x y x y +-≤??--≥??-+≤? ,则2z x y =+的最大值为

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

高考数学线性规划题型总结

2010年高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-112 2y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1, 10,220x x y x y ≥??-+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件00 24x y y x s y x ≥??≥?? +≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0 003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

2020高考:高中数学线性规划各类习题精选

线性规划 基础知识: 一、知识梳理 1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 例题: 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

高考数学线性规划专项练习题

(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤?? -+≥??+≥? ,则2z x y =+的最小值是( ) A .15- B .9- C .1 D .9 (2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤?? -+≤??--≥? ,则2z x y =-的最大值为( ) A .10 B .8 C .3 D .2 (2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥?? +≤??≥-? ,若2z x y =+的最小值为1,则a =( ) A . 14 B . 12 C .1 D .2 二、填空题 (2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥?? -≤??-≤? ,则z x y =+的最大值为_______. (2014·14)设x ,y 满足约束条件?????? ?≥≥≤+-≥-003 1y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969 x y x y ≤+≤??≤-≤?,则 2z x y =+的最小值为 .

(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤?? -+≥??+≥? 画出可行域(图中阴影部分), 作直线:20l x y +=,平移 直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-. 解法二:直接求法 对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =. (2014·9)B 解析:作出x ,y 满足约束条件70 310350x y x y x y +-≤??-+≤??--≥? 所表示的平 面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值. 当y =2x -z 经过C 点时,z 取最大值.由310 70x y x y -+=?? +-=?得C (5,2),此时z 取最大值为2×5-2=8. (2013·9)B 解析:由题意作出1 3(3)x x y y a x ≥?? +≤??≥-? 所表示的区域如图阴影部 分所 示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐 标为(1, -2a ),所以2-2a =1,解得1 2 a =. 故选B. 二、填空题 l 0 l 1 3x-y-5=0 y x o 1 2 x-3y+1=0 l 2 x+y-7=0 5 2 C A B A (1, -2a ) l A y = -3 2x +3y -3=0 2x -3y +3=0 x O y C B

高考数学中的线性规划问题的总结分析

线性规划问题的专题研究 新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。 一、08年高考中的线性规划问题的总结分析 1.基本问题 (1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥??+≥??++≤? ,那么2x y -的最大值为( ) A .2 B .1 C .2- D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最 大值,如图所示显然是平行线过A 点时取 最大值,将A 点坐标代入有 max 1Z =,故选择B (2)(08年福建文) 已知实数x 、y 满足1,1,y y x ≤???≥-?? 则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示 当平行线过点()2,1B 时,2x y + 区的最大值为4

(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须 满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是 (A)80 (B) 85 (C) 90 (D)95 解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为 51122,239,211, ,x y x y x x N y N -≥-??+≥??≤??∈∈?,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点 故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。 (4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是 (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为

历年高考数学真题精选22 线性规划

历年高考数学真题精选(按考点分类) 专题22 线性规划(学生版) 一.选择题(共14小题) 1.(2019?浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+?? --??+? 则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 2.(2019?北京)若x ,y 满足||1x y -,且1y -,则3x y +的最大值为( ) A .7- B .1 C .5 D .7 3.(2018?北京)设集合{(,)|1A x y x y =-,4ax y +>,2}x ay -,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ? C .当且仅当0a <时,(2,1)A ? D .当且仅当3 2 a 时,(2,1)A ? 4.(2016?浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域20 0340x x y x y -?? +??-+? 中的点在直线20x y +-=上的投影构成的线段记为AB ,则||(AB = ) A .B .4 C .D .6 5.(2016?浙江)若平面区域30230230x y x y x y +-?? --??-+? ,夹在两条斜率为1的平行直线之间,则这两条 平行直线间的距离的最小值是( ) A B C . 2 D 6.(2016?山东)若变量x ,y 满足22390x y x y x +?? -??? ,则22x y +的最大值是( ) A .4 B .9 C .10 D .12

7.(2016?北京)已知(2,5)A ,(4,1)B .若点(,)P x y 在线段AB 上,则2x y -的最大值为( ) A .1- B .3 C .7 D .8 8.(2015?福建)变量x ,y 满足约束条件0 2200x y x y mx y +?? -+??-? ,若2z x y =-的最大值为2,则实 数m 等于( ) A .2- B .1- C .1 D .2 9.(2014?安徽)x ,y 满足约束条件20220220x y x y x y +-?? --??-+? ,若z y ax =-取得最大值的最优解不唯 一,则实数a 的值为( ) A . 1 2 或1- B .2或 12 C .2或1- D .2或1 10.(2014?福建)已知圆22:()()1C x a y b -+-=,设平面区域70300x y x y y +-?? Ω=-+??? ,若圆心C ∈Ω, 且圆C 与x 轴相切,则22a b +的最大值为( ) A .49 B .37 C .29 D .5 11.(2013?北京)设关于x ,y 的不等式组210,0,0x y x m y m -+>?? +? 表示的平面区域内存在点0(P x , 0)y ,满足0022x y -=,求得m 的取值范围是( ) A .4(, )3 -∞ B .1(, )3-∞ C .2 (,)3-∞- D .5 (,)3 -∞- 12.(2012?新课标)已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC ?内部,则z x y =-+的取值范围是( ) A .(1,2) B .(0,2) C .1-,2) D .(0,1+ 13.(2011?福建)已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域2 12x y x y +?? ??? ,上的

高考数学线性规划题型总结

高考数学线性规划题型 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

线性规划常见题型及解法 一、已知线性约束条件,探求线性目 标关系最值问题 例1、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数 z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 习题1、若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥?? -+≤??--≤? 则22x y +的最小值是 . 22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。由图易知A (1, 2)是满足条件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标 关系几何意义的前提下,作出可行域,寻求最优解。 习题2、已知x 、y 满足以下约束条件 220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13, 4 5 D 、13,25 图2 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y - 2= 0 x – 2y + 4 = 0 3x – y – 3 = 0 O y x A

2019届高考数学专题09线性规划

培优点九 线性规划 1.简单的线性规划问题应注意取点是否取得到 例1:已知实数x ,y 满足24240x y x y y -≥?? +≤??≤? ,则32z x y =-的最小值是( ) A .4 B .5 C .6 D .7 【答案】C 【解析】不等式组对应的可行域如图所示: 由当动直线322 z y x = -过()2,0时,z 取最小值为6,故选C . 2.目标函数为二次式 例2:若变量x ,y 满足1 20x x y x y ≤??≥??++≥?,则22 z x y =+的最大值为( ) A 10 B .7 C .9 D .10 【答案】D 【解析】目标函数22 z x y =+可视为点到原点距离的平方, 所以只需求出可行域里距离原点最远的点即可,作出可行域, 观察可得最远的点为()1,3B -,所以2 max 10z OB ==. 3.目标函数为分式 例3:设变量x ,y 满足约束条件22022010 x y x y x y --≤??-+≥??+-≥?,则1 1y s x +=+的取值范围是( ) A .31,2?????? B .1,12?????? C .[]1,2 D .1,22?????? 【答案】D 【解析】所求1 1 y s x += +可视为点(),x y 与定点()1,1--连线的斜率. 从而在可行域中寻找斜率的取值范围即可, 可得在()1,0处的斜率最小,即() ()min 011112 k --==--,

在()0,1处的斜率最大,为()() max 11201k --= =--, 结合图像可得11y s x +=+的范围为1,22?? ???? .故选D . 4.面积问题 例4:若不等式组03434x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线4y kx =+分成面积相等的两部分,则 k 的值为( ) A . 73 B . 37 C .173 - D .317 - 【答案】C 【解析】在坐标系中作出可行域, 如图所示为一个三角形,动直线4y kx =+为绕定点()0,4的一条动直线, 设直线交AC 于M ,若将三角形分为面积相等的两部分,则ABM BCM S S =△△, 观察可得两个三角形高相等,所以AM MC =,即M 为AC 中点, 联立直线方程可求得40,3A ?? ???,()1,1C ,则17,26M ?? ???,代入直线方程可解得173 k =-. 一、单选题 1.若实数x ,y 满足0010x y x y ≥?? ≥??+-≤? ,则z x y =-的最大值为( ) A .2 B .1 C .0 D .1- 【答案】B 【解析】由图可知,可行域为封闭的三角区域, 由z x y =-在y 轴上的截距越小,目标函数值越大, 所以最优解为()1,0,所以z 的最大值为1,故选B . 对点增分集训

高考数学线性规划题型总结

线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系 最值问题 例1、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 习题1、若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥?? -+≤??--≤? 则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行 域内一点到原点的距离的平方。由图易知A (1,2)是满足条件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关系几 何意义的前提下,作出可行域,寻求最优解。 习题2、已知x 、y 满足以下约束条件 220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13, 4 5 D 、13,255 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的 图2 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y - 2= 0 x – 2y + 4 = 0 3x – y – 3 = O y x A

高中数学_线性规划知识复习

高中必修5线性规划 最快的方法 简单的线性规划问题 一、知识梳理 1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析 线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线. 2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域. 4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点. 5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解. 积储知识: 一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=0 2. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<0 3. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0 2.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域. 不.包括边界; ②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成 的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用

2020年高考数学理科第二伦专题:不等式与线性规划(命题猜想)

【考向解读】 不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高. 【命题热点突破一】不等式的解法 1.一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. 2.简单分式不等式的解法 (1)f x g x >0(<0)?f (x )g (x )>0(<0); (2)f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解. 例1、(2020年全国I 卷理数)已知集合,则 A. B. C. D. 【答案】B 【解析】解不等式得 ,所以 , 所以可以求得 ,故选B. 【举一反三】(2020·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b 答案 B 解析 ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1 b =log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab <1,∴ab <a +b <0. 【变式探究】若 ,则( )

北京高考数学线性规划题型总结

2014年北京高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件0024x y y x s y x ≥??≥??+≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

相关文档
最新文档