二次函数符号解读

合集下载

二次函数知识点梳理及经典练习(超详细)

二次函数知识点梳理及经典练习(超详细)

⼆次函数知识点梳理及经典练习(超详细)⼆次函数知识点梳理及经典练习【知识点梳理】⼀、基本概念:1.⼆次函数的概念:⼀般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0⼆次函数。

这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0a≠,⽽b c,可以为零.⼆次函数的定义域是全体实数.2. ⼆次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.⑵a b c,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.⼆、⼆次函数基本形式1. ⼆次函数基本形式:2=的性质:y axa 的绝对值越⼤,抛物线的开⼝越⼩y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4.()2y a x h k =-+的性质:三、⼆次函数图象的平移 1. 平移步骤:⽅法1:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位⽅法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)2. 平移规律: “h 值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即22424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,.五、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,、()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、⼆次函数2y ax bx c =++的性质1. 当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽减⼩;当2bx a>-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a -.2. 当0a <时,抛物线开⼝向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽增⼤;当2bx a>-时,y 随x 的增⼤⽽减⼩;当2bx a=-时,y 有最⼤值244ac b a -.七、⼆次函数解析式的表⽰⽅法 1.⼆次函数解析式表⽰⽅法:(1)⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化. 2.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般有如下⼏种情况:(1)已知抛物线上三点的坐标,⼀般选⽤⼀般式;(2)已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;(3)已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;(4)已知抛物线上纵坐标相同的两点,常选⽤顶点式.⼋、⼆次函数的图象与各项系数之间的关系 1. ⼆次项系数a : 0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结:a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝⼤⼩. 2. ⼀次项系数b : 在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.▲ab 符号判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则03. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负.总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.九、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达 1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称:(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此永远不变.求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼗、⼆次函数与⼀元⼆次⽅程:1.⼆次函数与⼀元⼆次⽅程的关系(⼆次函数与x 轴交点情况):⼀元⼆次⽅程20ax bx c ++=是⼆次函数2y ax bx c =++当函数值0y =时的特殊情况. 图像与x 轴的交点个数:(1)当240b ac ?=->时,图像与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是⼀元⼆次⽅程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.(2)当0?=时,图像与x 轴只有⼀个交点;(3)当0?<时,图像与x 轴没有交点.①当0a >时,图像落在x 轴的上⽅,⽆论x 为任何实数,都有0y >;②当0a <时,图像落在x 轴的下⽅,⽆论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图像与y 轴⼀定相交,交点坐标为(0,)c ;3. ⼆次函数常⽤解题⽅法总结:⑴求⼆次函数的图像与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图像的位置判断⼆次函数2y ax bxc =++中a ,b ,c 的符号,或由⼆次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图像关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标.⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式2(0)ax bx c a ++≠本⾝就是所含字母x 的⼆次函数;下⾯以0a >时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:【基础题型概览】⼀、⼆次函数的基本概念 1、y=mx m2+3m+2是⼆次函数,则m 的值为()A 、0,-3B 、0,3C 、0D 、-32、关于⼆次函数y=ax 2+b ,命题正确的是() A 、若a>0,则y 随x 增⼤⽽增⼤ B 、x>0时y 随x 增⼤⽽增⼤。

二次函数(基础思想)讲义

二次函数(基础思想)讲义

二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。

2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。

⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。

基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。

5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。

7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。

数学-二次函数知识点总结

数学-二次函数知识点总结

二次函数知识点一、常用二次函数1.()2y a x h k =-+2.2y ax bx c =++1)画图注意事项开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.注:a 的正负决定开口方向,a 的大小决定开口的大小.b 决定了抛物线对称轴的位置.c 决定了抛物线与y 轴交点的位置.2)函数性质a 的符号开口方向顶点坐标对称轴性质a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .a 的符号开口方向顶点坐标对称轴性质a >向上2424b ac b aa ⎛⎫-- ⎪⎝⎭,2bx a=-当2bx a<-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.a <向下2424b ac b aa ⎛⎫-- ⎪⎝⎭,2bx a=-当2bx a<-时,y 随x 的增大而增大;当2bx a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.二、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.三、二次函数的平移规律图示“左加右减,上加下减”四、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2.关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5.关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.五、二次函数与一元二次方程1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.2.图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.其中:当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.3.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c。

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

二次函数中常见关系式符号的判断

二次函数中常见关系式符号的判断
为对称轴 一 o= 2,
二U
所以 一 b= 4 a .
如果二次函数 Y= a N + +c ( a≠0 ) 的对称轴 =

则4 a+b = 0 .
所以④对.
在点( 1 , 0 ) 的 左边 , 则一 <1 , 当 o>0时 , 得2 a+
当Y =2时 , 对应的的值有两个 , 所以⑤错.
正确是 ( ) .
即①正确.
为 一1 <一 一 < 0,
二“
A . ① ④ C . ②⑤
, :
B . ③④ D . ③⑤
J I 1 Ⅱ一 2 a< 一b .
即 2 a—b<0 .
所 以② 正确. 一Fra bibliotek,? 0 i 2

7 、

因 为 图 象 经 过 (一1 , 2 ) ,
当 = 一 2时 , Y <0 ,
所以 a (一 2 ) +b X(一 2 )+ c < 0
贝 U 4 Ⅱ一 2 6+ c < 0 .
如图所示 , 则下列结论①6 一 4 a c< 0 , ②a b > O , ③n—b+ C : 0 , g ) 4 a+b: 0, ⑤ 当 Y: 2时 , 只能有 一个值. 其 中
A . 1 个 B . 2个
如 果 二 次 函数 y= 似 + +c ( a ≠0 ) 的 对 称 轴 =

) .
经过( 1 , 0 ) , 2 a+b = 0 .
举 例 如 下
分析
由 象得 ;
例 1 已知二 次函数 Y= a x +k +c ( a ≠0 ) 的 图象
所 以选 .
b> 0 , 当 a< 0时 , 2 0+b < 0 .

二次函数知识点

二次函数知识点

二次函数I 二次函数的定义二次函数的定义:二次函数一般地,我们把形如y =ax ²+bx +c (其中a ,b ,c 是常数,a ≠0)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项.x 为自变量,y 为因变量.等号右边自变量的最高次数是2.归纳:①函数表达式右边的各项是加法关系,各项系数前面的“-”是性质符号。

②二次函数的几种常见形式:;;;. ③所缺项的系数看做为0.常考题型:①判断一个函数是否是二次函数②已知一个函数是二次函数求参数的取值范围 注意1.二次项系数不为0 2.最高次数为2 II.二次函数的图像与性质 一.二次函数图像 作图步骤1. 列表:先取原点(0,0),然后在原点两侧对称取点;2. 描点先把y 轴右侧的点描出来,然后根据对称性描出左侧的点;3.连线:按照从左到右的顺序,用平滑的曲线连接 二、二次函数性质 1.函数y ax =2的性质 特征二次函数y ax =2的图象是一条抛物线a 的符号 0a >0a <开口方向 向上 向下 顶点坐标 (0,0) (0,0)对称轴 y 轴 y 轴增减性 当0x >时,y 随x 的增大而增大;当0x <时,y 随x 的增大而减小. 当0x >时,y 随x 的增大而减小; 当0x <时,y 随x 的增大而增大. 最值 当0x =时,有最小值0.当0x =时,有最大值0.拓展抛物线y ax =2的开口大小由|a |的大小决定,|a |越大,开口越小;|a |越小,开口越大.2.二次函数()2y a x h =-的图象与性质总结如下:a 的符号 0a > 0a <图象2ax y =bx ax y +=2c ax y +=2c bx ax y ++=2开口方向 向上 向下对称轴 x h =x h =顶点坐标 (h ,0)(h ,0)增减性 当x h <时,y 随x 的增大而减小;当x h >时,y 随x 的增大而增大. 当x h <时,y 随x 的增大而增大;当x h >时,y 随x 的增大而减小. 最值当x h =时,y 有最小值,0y =最小值. 当x h =时,y 有最大值,0y =最大值.3.二次函数()2y a x h k =-+的图象与性质总结如下:a 的符号 0a > 0a <图象开口方向 向上向下对称轴 x h =x h =顶点坐标 (h ,k )(h ,k )增减性 当x h <时,y 随x 的增大而减小;当x h >时,y 随x 的增大而增大当x h <时,y 随x 的增大而增大;当x h >时,y 随x 的增大而减小最值当x h =时,y 有最小值,y k =最小值 当x h =时,y 有最大值,y k =最大值4.二次函数2y ax bx c =++的性质:a 的符号 0a > 0a <图象开口方向 向上向下对称轴2b x a=-2b x a=-顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭24,24b ac b aa ⎛⎫-- ⎪⎝⎭增减性当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大 当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小5.抛物线在坐标系内的位置与系数、、的符号之间有着密切的联系,知道图象的位置可以确定a 、b 、c 的符号;反过来,由a 、b 、c 的符号可以确定抛物线的大致位置.它们的关系如下:6.二次函数2y ax =,2y ax k =+,()2ya x h =-,()2y a x h k =-+的图象之间的关系如图所示:抛物线()2y a x h k =-+可由抛物线2y ax =向上(或向下)、向左(或向右)平移而得到,平移的规律可总结为:“左加右减自变量,上加下减常数项”. 7.函数y=ax ²+bx+c 的性质 ①二次函数y=ax ²+bx+c 的配方把二次函数y=ax ²+bx+c 的化为顶点式:2y ax bx c =++2b c a x x a a =++()2222(222b b b c a x x a a a a ⎡⎤=+⋅+-+⎢⎥⎣⎦()) 2224()24b ac b a x a a ⎡⎤-=++⎢⎥⎣⎦224().24b ac b a x a a -=++②.函数y=ax ²+bx+c 的性质 (1)轴对称二次函数图像是轴对称图形.对称轴为直线x =−b2a .对称轴与二次函数图像唯一的交点为二次函数图像的顶点P .特别地,当b =0时,二次函数图像的对称轴是y 轴(即直线x =0). a ,b 同号,对称轴在y 轴左侧.a ,b 异号,对称轴在y 轴右侧. 对称轴为定值时,表示出a 与b 之间的关系式。

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

二次函数及其图象

顶点位置
函数的图像以y轴为对称轴。
与x轴的交点
当c=0时,函数与x轴无交点;当c>0时,函数与x轴有两 个交点;当c<0时,函数与x轴有一个交点。
CHAPTER 03
二次函数图象特征
开口方向
开口向上
当二次项系数a大于0时,函数图 像开口向上,顶点为最低点。
开口向下
当二次项系数a小于0时,函数图 像开口向下,顶点为最高点。
科技领域
图像处理
01
在计算机视觉和图像处理中,二次函数常被用于图像的缩放、
旋转和变形等操作中。
声音处理
02
在音频处理中,二次函数被用于声音的频谱分析和合成,以及
音频信号的滤波等。
航天技术
03
在航天学中,二次函数被用于描述火箭和卫星的运动轨迹,以
及太空探测器的路径规划等。
CHAPTER 06
二次函数与数学文化
CHAPTER 04
二次函数与一元二次方程
二次函数与一元二次方程的关系
01
二次函数是一元二次方程的图形 表示,一元二次方程是二次函数 的解析形式。
02
二次函数描述了一个抛物线的形 状,而一元二次方程则描述了该 抛物线与x轴的交点位置。
一元二次方程解法
公式法
使用求根公式计算一元二次方程 的解。
因式分解法
期货与期权定价
二次函数常被用于金融衍生品如 期货、期权等的定价模型中,通 过调整参数来估算未来资产价格
的不确定性。
物理领域
弹性力学
在研究材料的弹性和塑性问题时,经常使用二次函数来描述应变 和应力之间的关系。
波动方程
在物理学中,二次函数经常被用来描述波动现象,如弦的振动、电 磁波等。

二次函数图像与性质完整归纳

二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。

2. 的性质:2y ax c =+上加下减。

3. 的性质:()2y a x h =-左加右减。

4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。

二次函数知识点

二次函数(知识点)1. 二次函数的概念:一般地,如果y=ax 2+bx+c(a ,b ,c 是常数,a ≠0),其中二次项中x 的次数必须是2并且二次项的系数不能为0,那么这样的函数y 叫做x 的二次函数.2.二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)的图象及画法二次函数y=ax 2+bx+c(a ≠0)的图象是对称轴平行于y 轴(或是y 轴本身)的抛物线.几个不同的二次函数.如果二次项系数a 相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 一 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x 轴的交点、与y 轴的交点. 二 用平移法画图象由于a 相同的抛物线y=ax 2+bx+c 的开口及形状完全相同,故可将抛物线y=ax 2的图象平移得到a 值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k 的形式,确定其顶点(h ,k),然后做出二次函数y=ax 2的图象.将抛物线y=ax 2平移,使其顶点平移到(h ,k).3.(1)函数y=ax 2(a ≠0)的图象与性质:a 的符号图象开口方向 顶点坐标 对称轴增减性最大(小)值a>0向上(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小当x=0时,y 最小=0a<0向下(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时,y 最大=0顶点是坐标原点(0,0),对称轴是y 轴或直线x=0的抛物线的解析式形式为220)0(ax x a y =+-=)(0≠a(2)函数y=ax 2+c(a ≠0)的图象及其性质:a 的符号图象开口方向 顶点坐标对称轴 增减性 最大(小)值 a>0向上(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小 当x=0时, y 最小=ca<0向下(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时, y 最大=c顶点在y 轴上其坐标为(0,c ),对称轴是y 轴或直线x=0的抛物线的解析式形式为y=a (x-0)2+c=ax 2+c (3)抛物线y=ax 2与y=ax 2±c 之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同. (4)抛物线之间的平移规律:抛物线y=ax 2向上平移c 个单位可以得到抛物线 y=ax 2+c ;抛物线y=ax 2向下平移c 个单位可以得到抛物线 y=ax 2-c ;4.(1)二次函数 y=ax 2+bx+c 的图像的性质二次函数y=ax 2+bx+c(a ≠0)的图象是一条抛物线.它的顶点坐标是(a b ac a b 44,22--),对称轴是直线x=ab 2-函数 二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0) 图象a>0a<0性质 (1)当a>0时,抛物线开口向上,并向上无限延伸,顶点(a b ac a b 44,22--)有最低点,存在最小值,对称轴为x=a b 2-,当x=a b 2-,y 最小值=ab ac 442-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档