《人工智能导论》概论精讲

合集下载

人工智能导论-第一章绪论

人工智能导论-第一章绪论

法律问题
涉及知识产权保护、责任归属、监 管机制等。
社会问题
人工智能的发展对就业、教育、社 会公平等方面产生的影响,以及如 何确保人工智能的可持续发展。
02 认知科学与人工智能关系
认知科学基本概念及研究方法
认知科学是研究人类心智和智能的科学,包括心理学、语言学、哲学等多个学科领 域。
认知科学的研究方法包括实验、观察、调查和建模等,旨在揭示人类心智和智能的 本质和规律。
目标检测
在图像中定位并识别出感兴趣的目标物体,通常包括绘制物体的边界框并给出物体的类别标签。 目标检测在智能监控、自动驾驶等领域有广泛应用。
目标跟踪
在视频序列中跟踪感兴趣的目标物体,获取物体的运动轨迹。目标跟踪是计算机视觉中的重要研 究方向,也是实现智能视频监控、人机交互等应用的关键技术之一。
三维重建和虚拟现实技术
当前研究热点与未来趋势
研究热点
深度学习、强化学习、生成对抗网络、迁移学习等。
未来趋势
人工智能将更加注重可解释性、鲁棒性、隐私保护、公平性等方面的研究,同 时,人工智能与物联网、区块链等技术的结合也将成为未来发展的重要趋势。
伦理、法律及社会问题探讨
伦理问题
包括数据隐私、算法偏见、人工 智能决策的可解释性和透明度等。
任务
计算机视觉的主要任务包括图像分类、目标 检测、图像分割、场景理解等。这些任务的 核心是提取图像中的特征信息,并利用这些
特征信息进行高层次的推理和决策。
图像分类、目标检测和跟踪
图像分类
将图像划分为若干个预定义的类别,如猫、狗、汽车等。图像分类是计算机视觉中最基础的任务 之一,也是其他复杂任务的基础。
三维重建
利用计算机视觉技术从二维图像中恢复出三维物体的形状和结构。三维重建技术广泛应 用于文物保护、医学影像处理、工业检测等领域。

人工智能_人工智能导论课件第1章绪论导论

人工智能_人工智能导论课件第1章绪论导论
4. 机器学习
机器学习(machine learning):研究如何使计算机具有 类似于人的学习能力,使它能通过学习自动地获取知识。
1957年,Rosenblatt研制成功了感知机。 5. 机器行为
机器行为:计算机的表达能力,即“说”、“写”、 “画”等能力。
20
第1章 绪论
1.1 人工智能的基本概念
1.4 人工智能的主要研究领域
17
1.3 人工智能研究的基本内容
1. 知识表示
知识表示:将人类知识形式化或者模型化。 知识表示方法:符号表示法、连接机制表示法。
符号表示法:用各种包含具体含义的符号,以各种不同 的方式和顺序组合起来表示知识的一类方法。例如,一 阶谓词逻辑、产生式等。
连接机制表示法:把各种物理对象以不同的方式及顺序 连接起来,并在其间互相传递及加工各种包含具体意义 的信息,以此来表示相关的概念及知识。例如,神经网 络等。
我国著名数学家、中国科学院吴文俊院士把几何代 数化,建立了一套机器证明方法,被称为“吴方法”。
22
1.4 人工智能的主要研究领域
2. 博弈 下棋、打牌、战争等一类竞争性的智能活动。 1956年,塞缪尔研制出跳棋程序。
1991年8月,IBM公司研制的Deep Thought 2计算机 系统与澳大利亚象棋冠军约翰森(D.Johansen)举行了 一场人机对抗赛,以1:1平局告终。
29
1.4 人工智能的主要研究领域
8. 专家系统
专家系统模拟人类专家求解问题的思维过程求解领域内的各种 问题,其水平可以达到甚至超过人类专家的水平。 1965 年费根鲍姆研究小组开始研制第一个专家系统 —— 分析化 合物分子结构的DENDRAL,1968年完成并投入使用。 1971 年 MIT 开发成功求解一些数学问题的 MYCSYMA 专家系统。 拉特格尔大学开发的清光眼诊断与治疗的专家系统CASNET。 1972 年斯坦福大学肖特里菲等人开始研制用于诊断和治疗感染 性疾病的专家系统MYCIN。 1976 年斯坦福研究所开始开发探矿专家系统 PROSPECTOR , 1980年首次实地分析华盛顿某山区地质资料,发现了一个钼矿。 1981年斯坦福大学研制成功专家系统AM,能模拟人类进行概括、 抽象和归纳推理,发现某些数论的概念和定理。

《人工智能导论》第1章-绪论

《人工智能导论》第1章-绪论
萧条波折期
20世纪80年代 中期至今
稳步增长期
形成及第一个兴旺期
20世纪50年代中 期至60年代中期
第二个兴旺期
20世纪70年代中 期至80年代中期
1.2.1 孕育期 (20世纪50年代中期以前)
人工智能的孕育期大致可以认为是1956年以前的时期。这个 时期的主要成就是数理逻辑、自动机理论、控制论、信息论、神 经计算、电子计算机等学科的建立和发展,为人工智能的诞生准 备了理论和物质的基础。
1.1.2 人工智能的定义
人工智能(AI)是一门正在发展中的综合性前沿学科,它由 计算机科学、控制论、信息论、神经生理学、心理学、语言学 等多种学科相互渗透而发展起来。
人工智能研究的近期目标是:使现有的计算机不仅能做一般 的数值计算及非数值信息的数据处理,而且能运用知识处理问 题,能模拟人类的部分智能行为。
过高预言的失败,给AI造成重大伤害
“20 年内,机器将能做人所能做的一切。”
——西蒙,1965
“在3~8年时间里,我们将研制出具有普通人智力的计算机。这 样的机器能读懂莎士比亚的著作,会给汽车上润滑油,会玩弄政治 权术,能讲笑话,会争吵。……它的智力将无以伦比。”
——明斯基,1977
1.2.3 萧条波折期 (20世纪60年代中期至70年代中期)
➢ 1955 年年末,纽厄尔和西蒙编写了一个 名为“逻辑专家”的程序,被许多人认为 是第一个人工智能程序。它将问题表示成 一个树形模型,然后选择最可能得到正确 结论的那一支来求解问题。
1.2.2 形成及第一个兴旺期 (20世纪50年代中期至60年代中期)
AI诞生于一次历史性的聚会——达特茅斯会议
1956年夏季,由美国学者麦卡锡、 明斯基、朗彻斯特和香农共同发起,在 美国达特茅斯大学举办了一次长达2个 多月的研讨会,讨论用机器模拟人类智 能的问题。会上,首次使用了“人工智 能”这一术语。这是人类历史上第一次 人工智能研讨会,标志着人工智能学科 的诞生,具有十分重要的历史意义。

人工智能导论 第1章 绪论(导论) [兼容模式]1-24

人工智能导论 第1章 绪论(导论) [兼容模式]1-24

Introduction of Artificial Intelligence人工智能导论教材:王万良《人工智能导论》(第4版)高等教育出版社,2017.7第1 章绪论教材:王万良《人工智能导论》(第4版)高等教育出版社,2017. 7人工智能导论第1章绪论☐1956年正式提出人工智能(artificial intelligence,AI)这个术语并把它作为一门新兴科学的名称。

☐20世纪三大科学技术成就:空间技术原子能技术人工智能☐1.1 人工智能的基本概念☐1.2 人工智能的发展简史☐1.3 人工智能研究的基本内容☐1.4 人工智能的主要研究领域✓1.1 人工智能的基本概念☐1.2 人工智能的发展简史☐1.3 人工智能研究的基本内容☐1.4 人工智能的主要研究领域▪自然界四大奥秘:物质的本质、宇宙的起源、生命的本质、智能的发生。

▪对智能还没有确切的定义,主要流派有:(1)思维理论:智能的核心是思维(2)知识阈值理论:智能取决于知识的数量及一般化程度(3)进化理论:用控制取代知识的表示▪智能是知识与智力的总和知识是一切智能行为的基础获取知识并应用知识求解问题的能力1.感知能力:通过视觉、听觉、触觉、嗅觉等感觉器官感知外部世界的能力。

80%以上信息通过视觉得到,10%信息通过听觉得到。

存储由感知器官感知到的外部信息以及由思维所产生的知识对记忆的信息进行处理2.记忆与思维能力(1)逻辑思维(抽象思维)依靠逻辑进行思维。

思维过程是串行的。

容易形式化。

思维过程具有严密性、可靠性。

(2)形象思维(直感思维)o依据直觉。

o思维过程是并行协同式的。

o形式化困难。

o在信息变形或缺少的情况下仍有可能得到比较满意的结果。

4. 行为能力(表达能力)(3)顿悟思维(灵感思维)不定期的突发性。

非线性的独创性及模糊性。

穿插于形象思维与逻辑思维之中。

3. 学习能力学习既可能是自觉的、有意识的,也可能是不自觉的、无意识的;既可以是有教师指导的,也可以是通过自己实践的。

人工智能导论机工版教学课件第1章

人工智能导论机工版教学课件第1章
✓ “人工智能”领域确立——“Dartmouth人工智 能夏季研究会”(1956,人工智能之父的John McCarthy组织)
图1-7 Norbert Wiener及自动调温器
1.3.3 人工智能程序积累阶段
✓ 20世纪50~60年代,积累了大量的程 序,如在60年代末出现的“STUDENT” 可以解决代数问题,“SIR”可以理 解简单的英语句子
1.5 人工智能的定义
✓ 定义3 人工智能 = 会运动 + 会看懂 + 会听懂 + 会思考
第三种主流的定义是将人工智能分为两部分,即“人工”和“智能”,用“四会”进行界定。
1.6 人工智能的五个器官
v 交互(听/说):人工智能解决方案的听 说读写能力,以及对用户做出响应的能力。
v 监控(视觉):运用这一技术来查看和 记录关键业务数据。
图1-24 《机械姬》的艾娃
超人工智能
超人工智能的定义,其实质是相对于 人的另外一种智慧物种了,而这种物种, 不但具有人类的意识、思维和智能,更 可能的是具有了自我繁衍的能力。
如,《复仇者联盟》中的奥创、《神 盾特工局》中的黑化后的艾达。
图1-25《神盾特工局》的艾达
1.8 人工智能对人类的影响
图1-23 AlphaGo
强人工智能
强人工智能属于人类级别的人工智能, 在各方面都能和人类比肩,人类能干的 脑力活它都能胜任。它能够进行思考、 计划、解决问题、抽象思维、理解复杂 理念、快速学习和从经验中学习等操作, 并且和人类一样得心应手。
“强人工智能”系统包括了学习、语言、 认知、推理、创造和计划,目标是使人 工智能在非监督学习的情况下处理前所 未见的细节,并同时与人类开展交互式 学习。
图1-4 深蓝计算机下国际象棋

人工智能导论王万良第五版重点总结

人工智能导论王万良第五版重点总结

人工智能是指用来实现人类智能的一种技术。

人工智能可以通过模拟人类的思维过程来进行推理、学习、规划和感知等任务。

王万良在他的第五版《人工智能导论》中详细介绍了人工智能的基本概念、发展历程、应用领域以及相关的技术和算法。

本文将对该书进行重点总结,旨在帮助读者更好地理解人工智能的核心内容。

一、人工智能的基本概念1. 人工智能的定义在第五版《人工智能导论》中,王万良对人工智能的定义进行了详细解释。

人工智能是一种模拟人类智力的技术,它可以让机器像人一样思考、学习和判断。

人工智能的发展涉及到机器学习、神经网络、自然语言处理等多个领域的知识。

2. 人工智能的发展历程王万良在书中也介绍了人工智能的发展历程,从最初的简单逻辑推理到深度学习和强化学习的应用,人工智能的发展经历了多个阶段。

在不同的阶段,人工智能应用的范围和技术手段有所不同,但其核心目标始终是模拟人类智能。

二、人工智能的应用领域1. 人工智能在医疗健康领域的应用王万良在《人工智能导论》中对人工智能在医疗健康领域的应用进行了重点介绍。

人工智能可以通过分析医疗数据、辅助诊断和制定治疗方案等方式来提高医疗水平和效率。

2. 人工智能在金融领域的应用王万良也介绍了人工智能在金融领域的应用。

人工智能可以通过大数据分析、风险评估、智能投顾等方面来提升金融机构的运营效率和服务质量。

三、人工智能的技术和算法1. 机器学习在《人工智能导论》中,王万良详细介绍了机器学习的基本原理和常用算法。

机器学习是人工智能的核心技术之一,它可以让机器从数据中学习,从而实现自主决策和智能行为。

2. 深度学习深度学习是机器学习的一个分支,它以多层神经网络为基础,可以处理复杂的非线性关系,被广泛应用于图像识别、语音识别等领域。

3. 自然语言处理自然语言处理是人工智能的一个重要方向,它致力于让机器能够理解和处理人类语言。

王万良在书中介绍了自然语言处理的基本原理和常用技术,如词向量表示、句法分析、语义理解等。

人工智能概论课件 第2章 知识表示(导论)

人工智能概论课件 第2章 知识表示(导论)
▪ 谓词名 P:刻画个体的性质、状态或个体间的关系。
(1)个体是常量:一个或者一组指定的个体。
▪ “老张是一个教师”:一元谓词 Teacher (Zhang) ▪ “5>3” :二元谓词 Greater (5, 3) ▪ “Smith作为一个工程师为IBM工作”:
三元谓词 Works (Smith, IBM, engineer)
命题逻辑表示法:无法把它所描述的事物的结构及逻辑特 征反映出来,也不能把不同事物间的共同特征表述出来。
P:老李是小李的父亲
P:李白是诗人 Q:杜甫也是诗人
13
2.2.2 谓词
谓词的一般形式: P (x1, x2,…, xn)
▪ 个体 x1, x2,…, xn :某个独立存在的事物或者某个抽象 的概念;
(3)∧: “合取”(conjunction)——与。
“我喜欢音乐和绘画”: Like (I, music) ∧ Like (I, painting)
16
2.2.3 谓词公式
1. 连接词(连词) (4)→:“蕴含”(implication)或 “条
件”(“如co果nd刘iti华on跑)。得最快,那么他取得冠军。” :
▪ ( x)( y) F(x, y) 表示对于个体域中的任何两个个体x
和y,x与y都是朋友。
20
2.2.3 谓词公式
全称量词和存在量词出现的次序将影响命题的意思。 例如:
▪ ( x)( y)(Employee(x) → Manager(y, x)) :
“每个雇员都有一个经理。”
▪ ( y)( x)(Employee(x) → Manager(y, x)):
30
第2章 知识表示
2.1 知识与知识表示的概念 2.2 一阶谓词逻辑表示法

人工智能_人工智能导论课件第4章不确定性推理方法导论

人工智能_人工智能导论课件第4章不确定性推理方法导论
r5 : CF ( E3 ) 0.9 max{ 0, CF ( E7
AND E8 )} 0.9 max{ 0, min{ CF ( E7 ),CF ( E8 )}} 0.9 max{ 0, min{ 0.6,0.9}} 0.9 max{ 0,0.6} 0.54
r1 :
M ( ) 0
M ( A) 1 ∑
A⊆ D
则 M: 2 D 上的基本概率分配函数,M(A): A的基 本概率数。
20
4.2 可信度方法
例4.1 设有如下一组知识:
r1 :
r2 :
r3 : r4 :
r5 :
IF
IF
IF IF
IF
E1
E2
E3 E4
E7
THEN
THEN
THEN AND
AND
H
H
H OR
(0.8)
(0.6)
(0.5) E6 ) THEN
E3
(E5
E8
E1
(0.9)
(0.7)
THEN
已知: CF (E2 ) 0.8, CF (E4 ) 0.5,CF (E5 ) 0.6, CF (E6 ) 0.7,
0.7 max{ 0, min{ CF ( E4 ), max{ CF ( E5 ),CF ( E6 )}}}
0.7 max{ 0, min{ 0.5, max{ 0.6,0.7}}} 0.7 max{ 0,0.5}
0.35
22
4.2 可信度方法
解:
第一步:对每一条规则求出CF(H)。
4. 不确定性的传递算法
C-F模型中的不确定性推理:从不确定的初始证据出发, 通过运用相关的不确定性知识,最终推出结论并求出结 论的可信度值。结论 H 的可信度由下式计算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能的定义
• 定义8 人工智能是一种能够执行需要人的智能的创造性 机器的技术(Kurzwell,1990)。 • 定义9 人工智能研究如何使计算机做事让人过得更好 (Rick和Knight,1991)。 • 定义10 人工智能是一门通过计算过程力图理解和模仿智 能行为的学科(Schalkoff,1990)。 • 定义11 人工智能是计算机科学中与智能行为的自动化有 关的一个分支(Luger和Stubblefield,1993)。 其中,定义4和定义5涉及拟人思维;定义6和定义7与 理性思维有关;定义8和定义9涉及拟人行为;定义10和定 义11与拟人理性行为有关。
• 2006年的罗纳奖获得者 / …
为什么要研究人工智能

程序被动地按照人们为它事先安排好的工作步骤进行工作。由于缺 乏智能性、缺乏自学习与自适应能力,难以处理越来越复杂的问题。
• AI是人类智能的扩大和延伸,其作用将是不可估量的。 • AI的研究对探索人类自身智能的奥秘提供有益的帮助。 • 对“数据世界”的需求进而发展到对“知识世界”的需求而产生的。 • 寻求试探性的搜索,启发式的,不精确的,模糊的甚至允许出现错误 的推理方法,以便符合人类的思维过程。 • …
• 1990年,罗纳奖设立,专门奖励在图灵测试中表现出色的计算机 /Prizef/loebner-prize.html • 2000年和2001年罗纳奖的获得者女机器人ALICE /
• 2003年罗纳奖获得者机器人Jabb http://www.abenteuermedien.de/jabberwock/index.php
人工智能的定义
• 定义1 智能机器 能够在各类环境中自主地或交互地执行各种拟人任务 (anthropomorphic tasks)的机器。 • 人工智能(Artificial Intelligence--AI): AI是关于知识的科学-怎样表示知识以及怎样获得知 识并使用知识的科学。(Nilsson) AI就是研究如何使计算机做过去只有人才能做的智能 工作。(Winston)

人工智能的定义
其他几种关于人工智能的定义。 • 定义2 人工智能(学科) 人工智能(学科)是计算机科学中涉及研究、设计和应用 智能机器的一个分支。它的近期主要目标在于研究用机器 来模仿和执行人脑的某些智力功能,并开发相关理论和技 术。 • 定义3 人工智能(能力) 人工智能(能力)是智能机器所执行的通常与人类智能有 关的智能行为,如判断、推理、证明、识别、感知、理解、 通信、设计、思考、规划、学习和问题求解等思维活动。
人工智能的研究目标
近期目标:
人工智能的定义
AI研究如何用计算机来表示和执行人类的智能活动, 以模拟人脑所从事的推理、学习、思考和规划等思维活动, 并解决需要人类的智力才能处理的复杂问题等。
AI还涉及到脑科学、神经生理学、心理学、语言学、 逻辑学、认知科学等许多学科领域。是一门综合性的交叉 科学和边缘学科。
我们怎样才能判断一台机器是否具存了思维能力呢
课程考核
• 总评成绩: 平时成绩占30%+期末考试成绩占70% • 平时成绩: 课堂表现成绩+作业成绩
人工智能的定义
什么是智能? 智能是脑特别是人脑的属性或者说产物.智能的基础 是知识(没有知识的智能不可想象);智能的关键是思 维(知识是思维产生的);智能取决于感知和行为. 结论 内涵:智能=知识+思维 外延:智能就是发现规律、运用规律和分析问题、 解决问题的能力
课程的基本内容
概述 表示 搜索 推理 学习
课程的主要参考书目
人工智能 (第1版) 马少平 清华大学出版社 2004 人工智能:一种现代方法 (第2版) Russell & Norvig 清华大学出版社 2006 人工智能 (第3版) Patrick Henry Winston 清华大学 出版社 2005
人工智能的定义
• 定义4 人工智能是一种使计算机能够思维,使机器具有 智力的激动人心的新尝试(Haugeland,1985)。
• 定义5 人工智能是那些与人的思维、决策、问题求解和 学习等有关活动的自动化(Bellman,1978)。 • 定义6 人工智能是用计算模型研究智力行为(Charniak 和McDermott,1985)。 • 定义7 人工智能是研究那些使理解、推理和行为成为可 能的计算(Winston,1992)。
图灵测试:像人一样行动
• 图灵提出一假想:一个人在不接触对方的情况下和对方进 行一系列的问答,如果在相当长时间内,他无法根据这些 回答判断对方出是人还是计算机,那么,就可以认为这个 计算机具有同人相当的智力,即这台计算机是能思维的。 • 图灵预测:2000年之前计算机有30%的概率蒙骗一个普通人 达5分钟。
你做过图灵测试吗
什么是CAPTCHA
CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart)全自动区分计算机和人类的图灵测试的简 称。 CAPTCHA的目的是区分计算机和人类的一种程序算法,这种程序必须能 生成并评价人类能很容易通过但计算机却通不过的测试。这种技术可以有 效的避免网络中自动填表机器人等软件对了网络信息的正常传播严重干扰。
人工智能导论
概论
课程的相关目标内容及要求 人工智能的定义 人工智能的研究目标 人工智能分类 人工智能应用领域 人工智能的研究途径 人工智能的基本技术 人工智能发展概况
课程的基本目标
人工智能导论是计算机科学与技术专业的专 业选修课程之一。 本课程介绍人工智能的基本原理,使学生对人 工智能的目标发展及其应用领域有充分的认识, 并理解的知识表示、推理、搜索与机器学习的基 本理论与基本方法,为深入进行人工智能理论与 方法的学习与研究和智能技术的应用设计打下良 好的基础。
相关文档
最新文档