存储器的概述
dram存储器简介演示

06
dram存储器应用案例 与分析
应用案例一:高性能计算机系统中的应用
总结词
高性能计算机系统是DRAM的重要应用领域,DRAM作 为高速缓存和主存储器,为高性能计算提供可靠的数据 支持。
详细描述
在高性能计算机系统中,DRAM被用作CPU和硬盘之间 的缓存,以提供高速的数据读写。由于DRAM的读写速 度远高于硬盘,因此它可以有效地提高整个系统的性能 。此外,DRAM还可以作为主存储器,存储操作系统、 应用程序以及其他重要数据。这些数据需要在CPU进行 运算时被快速访问,因此DRAM的高速读写性能在此得 到了充分应用。
THANK YOU
应用案例二:移动设备中的应用
总结词
DRAM在移动设备中也有广泛应用,它不仅用于提高 设备的性能,还用于增加设备的续航时间。
详细描述
在移动设备中,DRAM被用于提高设备的处理速度和 响应能力。由于移动设备的电池续航时间是一个重要 的考虑因素,因此使用低功耗的DRAM可以帮助增加 设备的续航时间。此外,由于DRAM的读写速度远高 于Flash存储器,因此使用DRAM作为缓存可以帮助设 备更快地启动应用程序和读取数据。
应用案例三:数据中心中的应用
总结词
数据中心是DRAM的重要应用领域之一,它被用于提 高数据存储和处理的效率。
详细描述
在数据中心中,DRAM被用于缓存数据库的热点数据 ,以便快速地被服务器读取和写入。这可以减少磁盘 I/O操作,提高数据存储和处理的效率。此外,数据中 心通常使用分布式内存架构,将多个服务器连接到一个 共享的DRAM池中。这种架构可以提高数据中心的并 行处理能力,并最大限度地减少数据访问延迟。
移动设备:移动设备 (如手机、平板电脑 等)中通常也使用 DRAM作为内存,用 于运行操作系统和各 种应用程序。
存储器

AP AP+1 AK
Y译码 A0 A1 X 译 码
存储体 …
AP-1
存储器控 制逻辑
R/W CE RAM的基本组成框图
…
…
I/O 缓 冲 … … … …
D0 D1 DN-1
二、静态RAM的例子
典型的静态RAM芯片如: 2114(1k×4位)
6116 (2k×8位)
A12 A11~A8 A7 ~ A4 A3~A0 0000000000000至1111111111111 0000000000000至1111111111111 0000000000000至1111111111111 8k×16B 0000000000000至1111111111111
地址范围(空间) 0000H-1FFFH 2000H-3FFFH 4000H-5FFFH 6000H-7FFFH
单元数扩充:8K × 8 32K ×8
A0-A12 00 A13
Y0 A Y1 01 Y2 10 B 11 Y3 G
A14
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2
D0-D7
OE
WE
3#
D0-D7
OE
WE
全译码的优点是每个芯片的地址范围 唯一确定,而且各片之间是连续的。 缺点是译码电路比较复杂
二、PROM(可编程的ROM)
三、EPROM(可擦除的 PROM) 四、EEPROM(电子式可清除的PROM)
5.4
存储器连接与扩充
一、存储器芯片选择
静态RAM在与微处理器接口时,一般不需要外围电路,连接比较简 单,故在智能仪器仪表、小型控制系统中,一般采用静态RAM。 动态RAM集成度高,但需要专门的刷新电路,因此与微处理器的接 口设计较为复杂,在需要较大存储器容量的计算机产品中广泛使用。 ROM中的内容掉电不易失,但不能随机写入,故一般用于存储系统 程序(监控程序)和无须在线修改的参数等。其中,掩膜ROM用于 大批量生产的微电子产品或计算机产品中,非批量使用时可用 PROM。在产品研制和小批量生产时,宜选用EPROM等芯片。 EEPROM多用于保存这样一些数据或参数:他们在系统工作过程中 被写入而又需要掉电保护。
存储器

TM
41
存储器读时序图(补充)
指定地址
2011 BIT
石秀民 北京理工大学
有效数据 /WE为高电平
TM
42
存储器写时序图(补充)
指定地址A0-A12(A19)
2011 BIT
石秀民 北京理工大学
有效数据
TM
43
2011 BIT
8086/8088时序例-存储器写
T1:输出地址;T2:总线转向;T3:存储器访问;T4:结束
2011 BIT
(2) 编程
两种编程方式:标准编程、快速编程
标准编程的过程
a) 将EPROM插入专门的编程器 b) VCC加上+5V, VPP加上EPROM 所要求的高电 压(+12.5V, +15V, +21V, +25V等) c) 加上待编程单元的地址,数据线上加上待写入 的数据,CE保持低电平,OE保持高电平
TM
27
2011 BIT
EPROM 27C040 的编程时序图
TM
28
2011 BIT
27C040 快速编程流程图
TM
29
2011 BIT
四, EEPROM(E2PROM)
EPROM在擦除时需从系统上取下,而E2PROM可在线进行电 擦除
典型EEPROM芯片介绍
根据制造工艺及芯片容量,EEPROM具有多种型号。
CS#片选: 低有效,允许对存储器读写 R/W# 读 / 写 : 读 / 写 控 制 信 号 , 高 电 平 为 读 , 低 电 平 为写。 OE# 输 出 使 能 : 在 读 存 储 器 周 期 中 , OE# 为 低 电 平 允 许输出数据
微机原理第五章 存储器

(00000H~007FFH)
A11
CPU
A19
…
A0~A10
6116 CS
2)部分译码法 系统总线中的地址总线除片内地址外,部分高位地址(不是
全部高位地址)接到片外译码电路中参加译码,形成片选信号。 因此对应于存储芯片中的单元可有多个地址 。
(二)内存与CPU连接时的速度匹配
对CPU来说,读/写存储器的操作都有固定的时序(对8086 来说需要4个时钟周期),由此也就决定了对内存的存取速 度要求。
(三)内存容量的配置、地址分配 1. 内存容量配置
• CPU寻址能力(地址总线的条数) 软件的大小(对于通用计算机,这项不作为主要因素)
2. 区域的分配 RAM ROM 3. 数据组织 (按字节组织) 16位数据,低位字节在前,高位字节在后,存储器奇偶分体 (四)存储器芯片选择 根据微机系统对主存储器的容量和速度以及所存放程序的不同等 方面的要求来确定存储器芯片。它包括芯片型号和容量的选择。
24V
S
SiO2 G
D
字线
Vcc 位 线 输 出
P+ + + P+ N衬底
浮栅MOS
位
D
线
浮栅管
S
特点: 1)只读, 失电后信息不丢失 2)紫外线光照后,可擦除信息, 3)信息擦除可重新灌入新的信息(程序) 典型芯片(27XX) 2716(2K×8位),2764(8K ×8位)……
D0 D8
CE
址
线
存储体
启动
控制逻辑 控制线
读 写
数 据 CPU
电寄
路存
器数
DRAM存储器概述和应用

DRAM存储器概述和应用随着计算机和电子设备的发展,存储器在信息处理中起着至关重要的作用。
而动态随机存取存储器(DRAM)作为一种常见的存储器类型,具有较高的容量和较低的成本,广泛应用于各个领域。
本文将对DRAM存储器的基本原理、特点以及应用进行介绍,以便更好地了解DRAM存储器在现代科技中的地位和作用。
一、DRAM存储器的基本原理DRAM存储器是一种按位存取的半导体存储器,其基本原理是利用电容器来存储和读取数据。
每个存储单元由一个电容器和一个访问线组成,而访问线用于读取和写入数据。
DRAM存储器需要定期刷新以保持数据的稳定性,这是由于电容器的特性决定的。
尽管需要刷新,DRAM仍然具有较高的存储密度和较低的制造成本,因此被广泛应用于计算机系统和其他电子设备中。
二、DRAM存储器的特点1. 高存储密度:DRAM存储单元的结构简单,存储密度较高,可以在较小的芯片面积上存储大量的数据。
2. 快速访问速度:相对于其他存储器类型,DRAM存储器的访问速度较快,适用于对存储器响应速度要求较高的任务。
3. 低功耗:DRAM存储器的功耗较低,适用于移动设备等对电池寿命要求较高的场景。
4. 需要刷新:由于电容器的特性,DRAM存储器需要定期刷新以保持数据的稳定性。
5. 不易集成:DRAM存储器的制造过程复杂,相比于闪存等其他存储器类型,较难被集成在大规模集成电路中。
三、DRAM存储器的应用1. 个人电脑:DRAM存储器是个人电脑中最常见的存储器类型,用于存储操作系统、应用程序和数据等。
2. 数据中心:在云计算和大数据时代,数据中心经常需要使用大容量的存储器进行数据存储和处理,DRAM存储器在其中发挥着重要作用。
3. 移动设备:随着智能手机和平板电脑的普及,对存储器容量和访问速度的需求不断增加,DRAM存储器得到了广泛的应用。
4. 汽车电子:现代汽车中的电子设备越来越多,包括车载娱乐系统、导航系统等,这些设备需要使用存储器进行数据存储和处理,DRAM存储器在其中扮演着重要角色。
计算机的存储器

为了满足云计算和大数据的需求,存储器技术将不断进行创新和发 展,如采用新型存储器技术提高存储密度、降低功耗等。
存储与计算的融合
云计算和大数据技术的发展将推动存储与计算的融合,实现更高效 的数据处理和存储。
固态硬盘取代传统硬盘的趋势
性能优势
固态硬盘(SSD)具有更高的读写速度、更低的延迟和更高的耐 用性等优势,能够显著提升计算机性能。
寄存器(Register)
01
定义
寄存器是计算机中用于临时存储数据的内部存储器,是CPU的重要组成
部分之一。
02
特点
寄存器的存取速度非常快,几乎与CPU的速度相当,它可以用于保存变
量、保存运算结果等。寄存器的大小通常受到CPU的设计限制。 Nhomakorabea03
应用
在计算机中,寄存器被广泛应用于数据的运算和操作,例如算术运算、
02
随机访问存储器(RAM)
定义
随机访问存储器,也称为读写存 储器,是计算机中常用的存储器 类型之一。它允许数据在任何位
置都可随机读取或写入。
特点
RAM的主要特点是存取速度快, 读写操作十分方便,而且可以随 时读写数据,不受断电的影响。 但一旦断电,保存在RAM中的数
据就会丢失。
应用
在计算机中,RAM被广泛用于临 时存储程序、数据、中间结果等
计算机的存储器
2023-11-10
目 录
• 存储器概述 • 内存储器 • 外存储器 • 内存储器与外存储器的比较 • 存储器的未来趋势
存储器概述
01
定义与分类
定义
存储器是计算机系统中的一种设备,用于存储数据和程序。
分类
存储器可以分为内存储器和外存储器两类。内存储器包括随机存取存储器( RAM)和只读存储器(ROM),外存储器包括硬盘、光盘、U盘等。
存储器概述

EEPROM芯片2864A
N13根地址线A12~A0 8 根 数 据 线 I/O7 ~
I/O0 片选CE*
读写OE*、WE*
A12 2 A7 3 A6 4 A5 5 A4 6 A3 7 A2 8 A1 9 A0 10 I/O0 11 I/O1 12 I/O2 13 GND 14
动态RAM DRAM 4116 DRAM 2164
1 静态RAM
SRAM的基本存储单元是触发器电路 每个基本存储单元存储二进制数一位 许多个基本存储单元形成行列存储矩阵
SRAM芯片6264 NC 1 A12 2
A7 3
存储容量为8K×8
A6 4 A5 5
28个引脚:
A4 6
13根地址线A12~A0 8根数据线D7~D0
Infineon(英飞菱)的内存条结构剖析
1、PCB板 下图是Infineon原装256MB DDR266,采用单面8颗粒TSOP封装。
2、金手指 这一根根黄色的接触点是内存与主板内存槽接触的部分,数据就是靠它们来传输的,通
常称为金手指。
3、内存芯片(颗粒)内存的芯片就是内存的灵魂所在,内存的性能、速度、容量都是由内 存芯片决定的。
只读存储器ROM
掩膜ROM:信息制作在芯片中,不可更改 PROM:允许一次编程,此后不可更改 EPROM:用紫外光擦除,擦除后可编程;
并允许用户多次擦除和编程 EEPROM(E2PROM):采用加电方法在
线进行擦除和编程,也可多次擦写 Flash Memory(闪存):能够快速擦写的
EEPROM,但只能按块(Block)擦除
28 Vcc 27 A14 26 A13 25 A8
24 A9 23 A11 22 OE 21 A10 20 CE 19 D7 18 D6 17 D5 16 D4 15 D3
7· 1 存储器的概述

T5
B
T1 行地址选择 T7 列地址选择
T2
T8 输出Dout 输出
读选择 写选择 写入Din 写入
页图7-6和图 (2)写入过程 (3)芯片结构和引脚 (P109页图 和图 ) ) ) 页图 和图7-7) 特点: 特点: 管构成的双稳态触发电路来存储信息“ 和 (1)用MOS管构成的双稳态触发电路来存储信息“0”和“1”。 ) 管构成的双稳态触发电路来存储信息 。 (2)集成度低,功耗大,价格贵,速度快。 )集成度低,功耗大,价格贵,速度快。
§ 7· 2 半导体存储器
一、概述 1、半导体存储器芯片的组成 、
译 码 驱 动 电 路 片选线
地址线
存 储
读 写 电 路
数据线线
读/写 控制线 写
译码驱动电路: 译码驱动电路:把AB送来的地址信号翻译成对应存储单元的选择信 送来的地址信号翻译成对应存储单元的选择信 读写电路:完成对存储单元的读写操作。 存储体:由大量的存储单元构成的阵列组成,用于存储信息。 读写电路:完成对存储单元的读写操作。 存储体:由大量的存储单元构成的阵列组成,用于存储信息。 号,再经过驱动电路和读写电路完成对选中存储单 元的读写操作。 元的读写操作。
2、动态RAM的刷新 动态RAM的刷新 RAM 动态RAM是用靠电容存储电荷(有电荷为“1”、无电荷为“0”) 动态RAM是用靠电容存储电荷(有电荷为“ 、无电荷为“ ) RAM是用靠电容存储电荷 来寄存信息的。电容上的电荷只能维持1~2ms 1~2ms, 来寄存信息的。电容上的电荷只能维持1~2ms,所以存储的信息 会自动消失,必须在2ms内对其所有存储单元恢复一次原状态。 2ms内对其所有存储单元恢复一次原状态 会自动消失,必须在2ms内对其所有存储单元恢复一次原状态。 其刷新过程就是先将原存信息读出, 其刷新过程就是先将原存信息读出,再利用刷新放大器形成原 信息并重新写入原单元。 信息并重新写入原单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储器是大规模集成电路的一个重要门类,也是计算机中最重要的部件之一。
冯·诺依曼的计算机程序存储原理就是把程序和数据存放在存储器中,使计算机可以脱离人的干预自动工作。
存储器的存取周期和存储容量直接影响计算机的性能。
随着大规模集成电路工艺和存储技术的飞速发展,存储器芯片的性能和集成度越来越高,而单位成本却越来越低,他的发展规律完全遵循了“集成度以每18个月增加一倍,而单位成本降低一半”的摩尔定律。
存储器的内部结构由四部分组成:存储单元阵列、地址译码(含行译码和列译码)、数据入(写)/出(读)以及读写控制逻辑。
存储器的种类有很多,按照使用功能可分为两大类:断电后保存的数据会丢失的易失性存储器和断电后保存的数据不会丢失的非易失性存储器。
可随机读写信息的易失性存储器称为RAM,RAM又有静态(SRAM)和动态(DRAM)之分。
非易失性存储器包涵各种不同原理、技术和结构的存储器。
早期称为只读存储器(ROM)的传统非易失性存储器根据写入方法和可写入的次数不同,又可以分为掩模式制度存储器(MROM)、一次性编程的OTP ROM(多采用双极性熔丝式)和可用紫外线擦除可多次编程的UV-EPROM。
近期存储器市场推出了多种非ROM型可现场改写的非易失性存储器,主要有可电擦除可编程的EEPROM/在EPROM和EEPROM芯片技术基础上,发展起来的快擦写存储器Flash Memory等。