电极过程概述

合集下载

第四章 电极过程概述

第四章 电极过程概述

c平 c a平 a IR
a平
阳极极化
E c a IR E V超 IR
原电池的极化图 i
二、电解池的极化
+i -
I电极 a a平 a
Ⅱ电极 c c平 c
I

V a c IR
a平 a c平 c IR
电流为零时,也有一个稳定电位。此时,电 荷交换是平衡的,但物质交换不平衡。
当电极上有电流通过时,电极电位也会偏稳 定电位,出现极化现象。
其差值称为极化值,有时也不加区分地叫做 过电位。

3、电极反应的动力
电化学位差值是实现电化学反应的必要条 件, 也是反应进行的动力。
律决定。
二、研究电极过程步骤
弄清楚电极反应的历程。 找出电极过程的速度控制步骤。 测定控制步骤的动力学参数。 测定非控制步骤的热力学平衡常数或其他有
关的热力学数据。
作业:p217题3、p218题
B 1000块
接力: 速度为20块 vv 1000
甲地
搬砖
C 20块
vw 980 vv w
乙地
2、电极过程中速度最慢的步骤为控制步骤。 3、电极过程的串联步骤中,除了控制步骤之外,
其它步骤均可认为处于近似平衡的状态。
4、混合控制。当电极过程中有两个或多个步骤 速度都很慢时,它们就同时成为控制步骤,称 为混合控制。
| e |
极化电位与静止电位的差值称为极化值。
e
电极电位偏离平衡电位向负移称为阴极极化。极 化值(过电位)小于零,电极上发生还原反应即 阴极反应。
电极电位偏离平衡电位向正移称为阳极极化。极 化值(过电位)大于零,电极上发生氧化反应。

02-电极过程简介

02-电极过程简介

物质的传递速度可以用流量来表示, 物质的传递速度可以用流量来表示,即单位时间 流量来表示 内通过单位截面积的物质的量。 内通过单位截面积的物质的量。
若只考虑一维方向, 方向, 的传质流量为: 若只考虑一维方向,即x方向, 粒子 的传质流量为: 方向 粒子i的传质流量为
J i ( x) = J id ( x) + J ic ( x) + jim ( x) ∂Ci Zi F ∂E = − Di + Ci v( x) − Ci D ∂x RT ∂x
O +e- →R
如果电子交换速率较快(可逆过程) 如果电子交换速率较快(可逆过程),而传质速 度慢,则电流受传质速度控制。 度慢,则电流受传质速度控制。 如果溶液中加入大量的支持电解质(如KCl), 如果溶液中加入大量的支持电解质( ), 可以消除迁移电流, 可以消除迁移电流,在紧靠近电极表面的溶液内 对流作用也可忽略不计。 部,对流作用也可忽略不计。 因此,仅由扩散控制,称为扩散过程, 因此,仅由扩散控制,称为扩散过程,相应的电 扩散过程 流为扩散电流。实际上,许多电化学也如此。 流为扩散电流。实际上,许多电化学也如此。
暂态阶段:流过电极的电流(总电流) 暂态阶段:流过电极的电流(总电流)包括的范 围比稳态时大。 围比稳态时大。
法拉弟电流
由电极表面的氧化或者还原反应所产生的。 由电极表面的氧化或者还原反应所产生的。
非法拉弟电流
如双电层的充电电流,不符合法拉弟定律。 如双电层的充电电流,不符合法拉弟定律。
双电层充电电流(非法拉弟电流)可表示为: 双电层充电电流(非法拉弟电流)可表示为:
∂C i ( x, t ) J i ( x ) = − Di ∂x
Fick第一定律。 第一定律。 第一定律

电化学理论与方法 第五章 电极过程概述

电化学理论与方法 第五章 电极过程概述

整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR

(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。

理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。

电化学原理-第四章-电极过程概述

电化学原理-第四章-电极过程概述
IR V
I
a平+a
21
原电池与电解池的比较
原电池 阴极(+)→负移 阳极(-)→正移
E>V
电解池 阳极→正移 阴极→负移
E<V
22
四.电极过程的基本历程
液相传质步骤 前置的表面转化步骤 电子转移步骤 随后的表面转化步骤 反应后的液相传质步骤
23
电4极.3过电程极的过基程本的历基程本历程
ideal unpolarized
electrode
甘汞电极(SCE)
10
介绍两种特殊的极端情况
理想极化电极
理想不极化电极
11
二.极化曲线
极化曲线(polarization curve) :过电位(电 极电位)随电流密度 变化的关系曲线。
极化度 (polarizability):极 化曲线上某一点的斜 率
⑴过电位
在一定的电流密度下,电极电位与平衡电位的差值称为该电流 密度下的过电位,用符号η表示,习惯取正值。
阴极极化时,
c 平c
阳极极化时,
a a 平
18
⑵极化值 实际遇到的电极体系,在没有电流通过时,并不都
是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。
jc(mA/cm2) 0
0.14
/V
0.29 0.54
0.24 0.58
0.56 0.61
0.84 0.62
1.2 0.63
2 0.64
4 0.65
c
16
17

电化学原理第四章电极过程概述PPT课件

电化学原理第四章电极过程概述PPT课件
ci0,t cis 常数
Fick Ⅱ方程的特解:
cix,t cisci0cis er2 f xDt
30
非稳态扩散规律 a. ci ci0 cis
x x0 Dt
b. Dt , 4 Dt
c. i nFDci0 cis
Dt
31
3.恒电流阴极极化
初始条件:
cx,0 c0
边界条件 1:
2. ic0cs
3. i与l成反比
4. 当 cis 0时,出现极限扩散电流 i d
7
真实条件下的稳态扩散过程(对流扩散) 对流扩散理论的前提条件:
对流是平行于电极表面的层流; 忽略电迁移作用。
注:稳态扩散的必要条件:一定强度的 对流的存在。
8
电极表面附近的液流现象及传质作用
边界层:按流体力
2i nF
t
D
b.过渡时间—电极表面粒子浓度从主体浓 度降到零的时间。
i
n2F2Di
4i2
ci0
2
34
写在最后
成功的基础在于好的学习习惯
17
1.反应产物生成独立相
R scR s R s 1
∴ =0+R nFTln0cO s
由于:
cOs
1
i id
cO0
∴ =0+R nF Tln0cO 01iid 平+RnFTln1iid
18
反应产物生成独立相时的极化曲线
19
2.反应产物可溶
0R nF lT n O R O RD D O RR nF lT n idii
学定义 u u0的液层。
B
y u0
B
y u0
粘度系数
密度
动力粘滞系数

电极反应过程

电极反应过程

电极反应过程
电极反应过程是指在电化学反应中发生在电极上的化学反应过程。

电极反应过程可以分为阳极反应和阴极反应两个部分。

1. 阳极反应
阳极反应是指在电池中正极(即阳极)处发生的化学反应。

在阳极上,由于元素的氧化,形成的是正离子。

以铜电极作为阳极为例,其中的化学反应为:
Cu → Cu2+ + 2e-
在上述反应中,铜被氧化成铜离子,同时在反应中释放出2个电子。

这些电子通过电路流动到阴极,达到电荷平衡。

3. 电位差
在电池中,阴极反应和阳极反应的电子传递以及正负离子的移动导致电位差的产生。

电位差的大小取决于反应物及其浓度、温度、电极材料等因素。

电位差反映了电池的电势差,其值越大表示电池的电能越大,可以产生更大的电流。

换句话说,电位差越高的电池在工作时具有更强的电动力。

总之,电极反应过程是电化学反应中不可或缺的环节,它不仅帮助我们理解物质质量转化的本质,并且在现代电子技术、能源技术以及工业生产中都得到了广泛应用。

电极过程的基本历程和特点

电极过程的基本历程和特点

电极过程的基本历程和特点电极过程是指在电化学反应中,电子从电极中流出或流入溶液的过程。

电极过程是电化学反应的关键步骤,它决定了整个电化学反应的进行方式和速率。

本文将从基本历程和特点两个方面进行解释。

一、基本历程:电极过程包括氧化过程和还原过程两个方面。

在氧化过程中,电极上的物质失去电子,形成正离子;在还原过程中,电极上的物质获得电子,形成负离子或中性物质。

氧化过程的基本历程如下:1. 电子从电极中流出:电极上的物质失去电子,形成正离子,并将电子传递给电解质溶液中的其他物质。

2. 离子在溶液中扩散:正离子在电解质溶液中自由扩散,并与其他物质发生反应。

3. 反应生成产物:正离子与电解质溶液中的其他物质发生反应,生成新的物质。

还原过程的基本历程如下:1. 电子进入电极:电解质溶液中的物质失去电子,形成负离子或中性物质,并将电子传递给电极。

2. 离子在溶液中扩散:负离子或中性物质在电解质溶液中自由扩散,并与其他物质发生反应。

3. 反应生成产物:负离子或中性物质与电解质溶液中的其他物质发生反应,生成新的物质。

二、特点:1. 电极过程是电化学反应的关键步骤:电极过程决定了电化学反应的进行方式和速率。

通过控制电极上的物质的氧化和还原过程,可以控制电化学反应的方向和速率。

2. 电极过程与电极材料的性质相关:电极过程的进行受到电极材料的性质影响。

不同的电极材料对电极过程的催化作用不同,可以加速或减缓电极过程的进行。

3. 电极过程与电解质溶液的浓度相关:电极过程的进行受到电解质溶液中物质浓度的影响。

电解质溶液中物质浓度越高,电极过程的进行越容易。

4. 电极过程与温度的变化相关:电极过程的进行受到温度的影响。

温度升高可以加快电极过程的进行速率,而温度降低则会减慢电极过程的进行速率。

5. 电极过程与电流的大小相关:电极过程的进行速率与电流的大小呈正相关关系。

电流越大,电极过程进行得越快,反之亦然。

电极过程是电化学反应中的关键步骤,它决定了反应的进行方式和速率。

第五章 电极过程概述

第五章  电极过程概述

随后的表面转化步骤:反应粒子在电极表面 或电极表面附液层中进行电化学反应后的转 化过程,如脱附、产物的复合、分解等化学 变化。
新相生成步骤:反应产物生成新相,如气体 生成、固相沉积层等。
任何一个电极反应都至少包括第一、第三和 第五个过程。
19
Yuxi Chen
如银氰络离子在阴极还原的过程
20
Yuxi Chen
当电极反应以一定的速度进行时(取决于 控制步骤的速度),非控制步骤的平衡态几 乎未破坏,这种状态叫做准平衡态。 对准平衡态的过程可以用热力学方法而无 需用动力学方法处理,使问题得到简化。
25
Yuxi Chen
控制步骤的净反应速度(j* 控制步骤反应 速度)
电子转移的反应速度( 反应)
还原反应; 氧化
17
Yuxi Chen
液相传质步骤:反应粒子向电极表面附近液 层迁移; 前置的表面转化步骤:反应粒子在电极表面 或电极表面附液层中进行电化学反应前的某 种转化过程,没有电子的参与。 电子转移步骤或电化学反应步骤:反应粒子 在电极/溶液界面上得到或者失去电子,产 生氧化或者还原反应产物。
18
Yuxi Chen
10
Yuxi Chen
极化曲线:过电位 随电流密度变化的关 系曲线。 极化度:极化曲线上 某一点的斜率,称为 该电流密度下的极化 值。具有电阻的量纲, 因此有时候称为反应 电阻。
11
Yuxi Chen
电极反应速度:用电流密度来表示
异相化学反应速度表示
用电流密度表示
12
Yuxi Chen
§5.2 原电池和电解池的极化图
不论是可逆电极还是不可逆电极,电极在没 有电流通过时的电位统称为静止电位
7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、极化曲线
• 极化度(反应电阻):极化曲线上某一点 的斜率为该电流密度下的极化度。表示电 极反应进行的难易程度。
五、极化曲线
• 电极反应:有电子参与的氧化还原反应。 One R
• 电极反应速度用电流密度表示:
电极反应速度按异相化学反应表示: v
1 S
dc dt (3.2)
电极表面积
电极上有1摩尔物质还原或氧化,就需要通过nF电量。
三、浓差极化和电化学极化
浓差极化:由于液相传质步骤的迟缓,使得电极表面 反应离子的浓度低于溶液本体浓度,造成电极电位 偏离平衡电位(稳定电位)的现象。 例: Z2n2eZn电极附近液层传质过程迟缓
电化学极化:由于电极表面得、失电子的电化学反应 的迟缓,而引起的电极电位偏离平衡电位(稳定电 位)的现象。 例: N2 i2eNi 得电子过程迟缓
第三章 电极过程概述
第三章 电极过程概述
•电化学反应过程:阳极反应、阴极反应、液相传 质 •电极过程:把发生在电极/溶液界面上的电极反应、 化学转化和电极附近液层中的传质作用等一系列变 化的总和统称为电极过程。 •电极过程动力学:有关电极过程的历程、速度、 影响因素的研究称为电极过程动力学。
第三章 电极过程概述
6、过电位:在一定电位下,电极电位与平衡电位的
差值。

过电位取正值:
c 平 c
a a 平
7、极化值:有电流通过时的电极电位(极化电位) 和无电流通过时的电极电位(静止电位)的差值。
五、极化曲线
极化曲线:过电位或电极电 位随电流密度变化的关系 曲线。
讨论: I = 0 时,E = 静止电位。 曲线1、2的极化性能不同。 相同电流密度反应2比反 应1阴极电位负,表明反 应较难于进行。
三、理想极化电极和理想不极化电极
• 理想极化电极:电极上不发生电极反应,流入电 极的电荷全部都在电极表面积累,使电极电位发 生改变。如:滴汞电极。
• 理想不极化电极:电极反应速度很大,流入电极 的电荷全部都能通过电极反应消耗,不在电极表 面积累,电极电位不发生变化。如:饱和甘汞电 极。
四、电极极化的有关名词
§3.1 电极的极化现象 §3.2 原电池和电解池的极化图 §3.3 电极过程的基本历程和速度控制步骤 §3.4 电极过程的特征
§3.1 电极的极化现象
一、电极的极化 二、电极极化的原因 三、理想极化电极和理想不极化电极 四、电极极化的有关名词 五、极化曲线 六、极化曲线的测量
一、电极的极化
• 电极的极化:有电流通过时,电极电位偏 离平衡电位的现象。
二、电极极化的原因
1、平衡状态:电极反应的物质交换和电荷交换平衡,外电流 为零。
2、极化作用:外电流流过电极时,电子的流动使电极表面电 荷发生积累,电极电位偏离平衡状态。
3、去极化作用:电极表面发生电极反应,吸收电子运动传递 过来的电荷,使电极电位恢复平衡的状态。
4、电极极化的原因: 极化作用>去极化作用 电荷在界面积累 电极电位偏离平衡电位
极化 回路
测量 回路
§3.2 原电池和电解池的极化图
极化图:把表征电极过程特性的阴极极化曲线 和阳极极化曲线画在同一各坐标系中。
极化的一般规律:阴极极化使电极电位变负。 阳极极化使电极电位变正。
阴极反应 还原反应 阳极反应 氧化反应
一、原电池的极化图

电池电动势: Ec平a平

电池端电压:
与电动势
方向相反
Vc a IR

V(c平c)(a平a)IR

E(a c)IR
极化后:
V E
二、电解池的极化图
电池电动势: 电池端电压:
Ea平c平
与电动势 方向相同
正 极
Va c IR

V(a平a)(c平c)IR


E(a c)IR
极化后: V E
§3.3电极过程的基本历程和速度控制步骤
一、电极过程的基本历程 二、电极过程的速度控制步骤 三、浓差极化和电化学极化 四、准平衡态
一、电极过程的基本历程
1、液相传质 2、前置转化:吸附、络合离子配位数改变等 3、电化学反应:得失电子、氧化还原 4、随后转化:脱附、复合、分解、歧化等 5、液相传质
一、电极过程的基本历程(例1)
生成新相
液相传质 液相传质
电子转移 前置转化
一、电极过程的 基本历程(例2)
双电子反应
并联进行
二、电极过程的速度控制步骤
假设电极过程控制步骤的绝对反应速度为j*
四、准平衡态
• 如果电极过程的非控制步骤的反应速度比控制步骤 的速度大得多,当电极过程以控制步骤的速度进行 时,可以近似地认为电极过程的非控制步骤处于平 衡状态,即处于准平衡态。
• 准平衡态的引入是为了简化问题的研究。 (例:用能斯特公式计算电极电位)
四、准平衡态
• 对于电极反应: One R
1、电极的极化:有电流通过电极时,电极电位偏离 平衡电位(或稳定电位)的现象。
2、阴极极化:电极电位偏离平衡电位向负移。 3、阳极极化:电极电位偏离平衡电位向正移。 4、极化电位:有电流通过时的电极电位。 5、静止电位:无电流通过时的电极电位,包括平衡
电位(可逆电极)和稳定电位(不可逆电极)。
四、电极极化的有关名词
• 单元步骤的反应速度:veG0/(RT) 潜在的反应速度 • 速度控制步骤:当几个步骤串联时,实际反应速度
等于最慢的那个步骤,把控制整个电极过程速度的 单元步骤(既最慢的那个步骤)称之。 • 当电极反应进行的条件发生变化时,电极过程的速 度控制步骤会发生变化。 • 电极过程的速度控制步骤可能不止一个。
j (f )
六、极化曲线的测量
3、稳态法:测定电极过程达到稳定状态后的 电流密度与电极电位的关系。
4、暂态法:测定电极过程未达到稳定状态的 电流密度与电极电位的关系,包含时间因素 的影响。
六、极化曲线的测量
极化 回路
测量

回路
位 计
恒电流法 基本测 量线路 图。
六、极化曲线的测量
恒电位法基本测量线路 图。
电极反应速度用电流密度表示:
j
nFvnF1 S
dc dt (3.3)
当电极反应达到稳定状态时,外电流全部消耗于电极反 应,即代表了电极反应速度。
六、极化曲线的测量
1、恒电流法:给定电流密度,测量电极电位,得到 电极电位与电流密度的关系曲线。
(f j)
2、恒电位法:给定电极电位,测量电流密度,得到 电流密度与电极电位的关系曲线。
相关文档
最新文档