高中数学数列知识点精华总结

合集下载

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是数学中重要的概念,广泛应用于各个领域。

高三学习阶段,数列的理解和应用变得尤为重要。

本文将对高三数学数列的知识点进行归纳总结,帮助同学们更好地掌握数列的相关内容。

一、数列的定义和性质数列是按照一定规律排列的一系列数的集合。

一般表示为{a₁, a₂, a₃, ... , aₙ},其中a₁, a₂, a₃, ... 分别表示数列的第1项、第2项、第3项、... 第n项。

1. 等差数列等差数列是一种常见的数列,其特点是每一项与前一项之间的差值是一个常数,称为公差,一般表示为d。

常用性质:(1) 第n项公式:aₙ = a₁ + (n-1)d(2) 前n项和公式:Sₙ = (a₁ + aₙ) * n / 22. 等比数列等比数列是一种常见的数列,其特点是每一项与前一项之间的比值是一个常数,称为公比,一般表示为r。

常用性质:(1) 第n项公式:aₙ = a₁ * r^(n-1)(2) 前n项和公式(当r ≠ 1时):Sₙ = a₁ * (1 - rⁿ) / (1 - r)3. 通项公式通项公式可以根据数列的规律,直接给出第n项的表达式。

通过通项公式,可以快速计算数列的任意一项。

二、数列的应用1. 等差数列的应用等差数列在实际问题中的应用非常广泛,常用于描述一些增减规律明显的情况。

(1) 速度、距离和时间的关系:当速度恒定时,可以利用等差数列来描述物体在某段时间内的位置变化。

(2) 等差数列求和:可以利用等差数列的前n项和公式,求解一段时间内某物体的总距离或总位移。

2. 等比数列的应用等比数列在实际问题中也有广泛的应用,常用于描述一些指数型的增长或衰减规律。

(1) 复利问题:利用等比数列可以解决一些复利问题,比如定期存款、投资基金等。

(2) 指数增长和衰减:利用等比数列可以描述一些指数增长或衰减的情况,比如病菌的增殖、放射性物质的衰变等。

三、常见数列的特殊性质1. 斐波那契数列斐波那契数列是一种特殊的数列,每一项是前两项之和。

高中数列知识点归纳总结

高中数列知识点归纳总结

高中数列知识点归纳总结在高中数学学习中,数列是一个重要的知识点。

数列是按照一定规律排列的一组数,常常出现在各种数学问题中。

本文将对高中数列知识点进行归纳总结。

一、数列的概念和表示方法数列是按照一定规律排列的一组数,可以用一般的表示方法或者递推公式表示。

一般形式为{a1, a2, a3, ...}或者{an},其中a1, a2, a3, ...为数列的项。

二、等差数列等差数列是指数列中相邻两项之差都相等的数列。

公差是指相邻两项的差值。

常用表示形式为{a, a+d, a+2d, ...}或者{an},其中a为首项,d为公差。

等差数列有以下重要性质:1. 第n项公式:an = a + (n-1)d2. 前n项和公式:Sn = (2a + (n-1)d)n/23. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。

三、等比数列等比数列是指数列中相邻两项之比都相等的数列。

公比是指相邻两项的比值。

常用表示形式为{a, ar, ar^2, ...}或者{an},其中a为首项,r为公比。

等比数列有以下重要性质:1. 第n项公式:an = ar^(n-1)2. 前n项和公式(当r≠1):Sn = a(1-r^n)/(1-r)3. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。

四、斐波那契数列斐波那契数列是指数列中每一项都是前两项之和的数列。

常用表示形式为{0, 1, 1, 2, 3, 5, ...}或者{Fn},其中F0 = 0, F1 = 1,Fn = F(n-1) + F(n-2)(n≥2)。

斐波那契数列是一种特殊的等差数列,具有很多有趣的性质,例如黄金分割比。

五、数列的递推关系和通项公式数列的递推关系是指数列中的每一项与前一项之间的关系。

通项公式是指数列中第n项与n的关系。

对于等差数列和等比数列,一般可以根据递推关系或者通项公式进行求解。

六、数列的求和问题求和问题是数列的一个常见应用,求和公式是指前n项和与n的关系。

高中数学数列知识点归纳

高中数学数列知识点归纳

高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。

例如,1,2,3,4,5……就是一个自然数列。

数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。

数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。

我们用{aₙ} 来表示一个数列。

二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。

例如,数列 1,2,3,4,5 就是一个有穷数列。

(2)无穷数列:项数无限的数列。

比如自然数列 1,2,3,4,……就是一个无穷数列。

2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。

例如,数列 1,2,4,8,16,……就是一个递增数列。

(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。

比如数列 10,8,6,4,2 就是一个递减数列。

(3)常数列:各项都相等的数列。

例如,数列 3,3,3,3,……就是一个常数列。

(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。

比如数列 1,-1,1,-1,1,……就是一个摆动数列。

三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。

例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。

通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。

四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。

例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结1. 数列的概念数列是由一组按照一定规律排列的数所组成的序列。

数列可以分为等差数列和等比数列两种。

a. 等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。

如果数列的公差为d,则数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,n为项数。

b. 等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。

如果数列的公比为r,则数列的通项公式为:$a_n = a_1 \cdot r^{n-1}$,其中$a_n$为第n项,$a_1$为首项,n为项数。

2. 数列的性质a. 通项公式通项公式是数列中任意一项与项数之间的关系式。

根据数列的类型,可以通过公式求解任意项。

b. 公差和公比对于等差数列,公差是指相邻两项之间的差值。

公差可以用于确定数列的特征和性质。

对于等比数列,公比是指相邻两项之间的比值。

公比可以用于确定数列的特征和性质。

c. 首项和末项首项是数列中的第一项,通常用$a_1$表示。

末项是数列中的最后一项,通常用$a_n$表示。

d. 项数项数是数列中项的个数,通常用n表示。

e. 等差数列的和等差数列的前n项和可以通过公式求解:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$,其中$S_n$表示前n项和。

f. 等比数列的和等比数列的前n项和可以通过公式求解:$S_n = \frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前n项和。

3. 数列的应用数列在数学中有着广泛的应用,其中一些常见的应用包括:a. 金融计算数列可以应用于金融中的利息计算、贷款计算等,帮助人们进行财务规划和计算。

b. 物理学数列可以应用于物理学中的运动学问题,如运动物体所经过的位置、速度等的计算。

c. 统计学数列可以应用于统计学中的数据分析和预测,帮助人们了解和预测事物的发展趋势。

总结数列是数学中非常重要的概念,常见的数列包括等差数列和等比数列。

高中数学数列知识点总结5篇

高中数学数列知识点总结5篇

高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。

数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。

数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。

掌握数列的基本概念对于后续的学习至关重要。

二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。

在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。

等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。

等比数列的特点是任意两项之比都相等。

在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。

等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。

四、数列的极限数列的极限是描述数列变化趋势的重要概念。

当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。

掌握数列极限的概念和计算方法是分析数列性质的重要工具。

五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。

例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。

掌握数列的应用对于解决实际问题具有重要意义。

除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。

这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。

七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。

这些证明方法在证明数列的性质和解决问题时非常有用。

掌握这些证明方法有助于提升数学思维和逻辑推理能力。

综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。

高中数列知识点归纳总结大全

高中数列知识点归纳总结大全

高中数列知识点归纳总结大全数列是数学中一个基础而重要的概念,广泛应用于各个领域。

在高中数学学习中,数列的概念与应用也是不可或缺的内容。

本篇文章将对高中数列的知识点进行归纳总结,旨在帮助读者系统理解和掌握数列的相关概念和性质。

一、数列的基本概念和性质1. 数列的定义:数列是按照一定顺序排列的数,用字母a、b、c…表示。

2. 公式与通项公式:数列的通项公式是指数列中的第n个数与n的关系式,通常用an表示。

3. 数列的项和:数列的项和是指数列中前n项的和,常用Sn表示。

4. 等差数列:等差数列是指一个数列中的相邻两项之差等于同一个常数d。

5. 等差数列的通项公式与项和公式:对于等差数列an,它的通项公式为an = a1 + (n - 1)d,项和公式为Sn = (a1 + an)n/2。

6. 等比数列:等比数列是指一个数列中的相邻两项之比等于同一个常数q。

7. 等比数列的通项公式与项和公式:对于等比数列an,它的通项公式为an = a1 * q^(n - 1),项和公式为Sn = a1 * (q^n - 1)/(q - 1)。

二、数列的应用1. 等差数列的应用:等差数列可以描述各种线性变化的情况,例如描述自然数序列、等差数列求和、等差数列的推广等。

2. 等比数列的应用:等比数列常用于表示指数增长或指数衰减的情况,例如人口增长、物种繁殖、金融利率等方面。

3. 斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,从第三项开始,每一项均为前两项之和。

斐波那契数列在自然界中普遍存在,如植物的叶子排列、蜂窝的排列等。

4. 数列与函数关系:数列与函数有着密切的联系,可以将数列看作离散的函数,通过数列的性质与函数的性质相互转化。

三、常见数列的特殊性质1. 等差数列的前n项和的性质:对于等差数列an,其前n项和为Sn = (n/2)(a1 + an)。

2. 等差数列的中项:对于等差数列an,当n为奇数时,中项为am= a((n+1)/2),当n为偶数时,不存在中项。

高中数学数列知识点精华总结

高中数学数列知识点精华总结

数列专题◆ 考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3) ◆ 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎨⎧ a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.**数k 的取值*围.考点二:等差数列和等比数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1). S n =n a 1+a n 2=na 1+n n -12d (1)q ≠1,S n =a 11-qn1-q =a 1-a n q1-q(2)q =1,S n =na 11.在等差(比)数列中,a 1,d(q),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d ≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值; 当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n},{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d. 5) 5.易错提醒(1)应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k(k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,则求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!)利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1. 利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ;(2)1(2n -1)(2n +1)=12⎝ ⎛12n -1-12n +1; (3)1n (n +1)=1n -1n +1;(4)1n +n +1=n +1-n; (5)1n +n +k =1k(n +k-n). 5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于*项,则放大,是大于*个项,则缩小。

高中数列知识点大全

高中数列知识点大全

高中数列知识点大全ps:整理不易,点赞支持已完结的地方:一、等差数列二、斐波那契数列三、数列的通项公式四、数列的放缩尚未完结的地方:一、等比数列的部分例题二、拓展:提丢斯数列(全国卷考到了)三、周期数列的部分例题四、求和可能要个目录一、等差数列1、等差数列的基本概念和基本公式如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列。

(1)递推关系:a_{n+1}-a_{n}=d(常数),或 a_{n}-a_{n-1}=d(n\inN^\ast且n\geq2)。

(2)通项公式:a_{n}=a_1+(n-1)d 。

推广形式: a_{n}=a_m+(n-m)d (当 d\ne0 时, a_n 是关于 n 的一次函数)(3)求和公式:S_{n}=\dfrac{n\left( a_{1}+a_{n}\right) }{2}=na_{1}+\d frac{n\left( n-1\right) }{2}d (当 d\ne0 时, S_n 是关于 n 的二次函数,且常数项为零)例题:2011 湖北文 92、等差数列的主要性质等差数列的性质主要包括以下12个方面。

(1)若 n+m=p+q ,则 a_n+a_m=a_p+a_q 。

(反之不一定成立,如常数数列)(2)等差中项:若三个数 a,b,c 成等差数列,则称 b 为 a 和 c 的等差中项,即 2b=a+c ,可将这三个数记为:b-d , b ,b+d 。

例题一:例题二(3) a_k,a_{k+m},a_{k+2m},…构成以 md 为公差的等差数列。

(4)在等差数列中依次取出若干个n项,其和也构成等差数列,即S _ { n } , S _{ 2 n } - S _ { n } , S _ { 3 n } - S _ { 2n } , \dots \ldots 也为等差数列,公差为n^2d ;图示理解:\underbrace { a _ { 1 } , a _{ 2 } , \cdots , a _ { m } } _ { s _{ m } },\underbrace { a _ { m + 1 } , a _ { m+ 2 } , \cdots , a _ { 2 m } } _ { s _ { 2 m }- s _ { m } },\underbrace { a _ { 2m + 1 } , a _ { 2m + 2 } , \cdots , a _ { 3 m } } _ { s _ { 3 m } - s _ { 2m } },(5)两个等差数列\left\{ a _ { n } \right\}与\left\{ b _ { n } \right\}的和差的数列 \left\{ a _ { n } \pm b _ { n } \right\} ,\left\{ pa _ { n } \pm qb _{ n } \right\} 仍为等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 列 专 题◆ 考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3) ◆ 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q(p 、q 为常数)⇔{a n }为等差数列(4)前n 项和公式法:S n =An 2+Bn(A 、B 为常数)⇔{a n }为等差数列(5){a n }为等比数列,a n >0⇔{log a a n }为等差数列 (1)定义法(2)中项公式法:a 2n +1=a n ·a n +2(n≥1)(a n ≠0)⇔{a n }为等比数列(3)通项公式法:a n =c·q n(c 、q 均是不为0的常数,n∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{a an}为等比数列(a>0且a≠1)性质(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m +a n =a p +a q特别:若m +n =2p ,则a m +a n =2a p .(2)a n =a m +(n -m)d(3) 数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列, 即2(S 2m -S m )=S m +(S 3m -S 2m )(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). 前n 项和S n =n a 1+a n 2=na 1+n n -12d (1)q≠1,S n =a 11-qn1-q =a 1-a n q1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值; 当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d. 5) 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n-k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉).4.裂项相消法(注重积累!!!)利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (3) 1n (n +1)=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。

相关文档
最新文档