高中数学必修一基本初等函数练习题及答案

合集下载

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

为幂函数,得 m2-m-
A
1=1,解得 m=2 或 m=-1.当 m=2 时,m2-2m-3=-3,y=x-3 在
(0,+∞)上为减函数;当 m=-1 时,m2-2m-3=0,y=x0=1(x≠0)
在(0,+∞)上为常数函数(舍去),所以 m=2,故选 A. 7.D 解析:当 x≤1 时,由 21-x≤2 知,x≥0,即 0≤x≤1;
18.(本小题满分 12 分)
1 2
已知函数 f(x)=-2x . (1)求 f(x)的定义域; (2)证明:f(x)在定义域内是减函数.
19.(本小题满分 12 分)
3
xx
已知-3≤log0.5x≤-2,求函数 f(x)=log22·log24的最大值和最小
值.
20.(本小题满分 12 分)
2-x,x∈(-∞,1], 设 f(x)= x x
16.设函数 f(x)是定义在 R 上的奇函数,若当 x∈(0,+∞)时,f(x)
=lg x,则满足 f(x)>0 的 x 的取值范围是________. 三、解答题(本大题共 6 个小题,共 70 分,解答时应写出必要的文
字说明、证明过程或演算步骤) 17.(本小题满分 10 分) 计算下列各题:
1 13. 2,4] 解析:由题意知,2≤log2x≤2,即 log2 2≤log2x≤log24, ∴ 2≤x≤4.
1 14.24 解析:∵log23<4, ∴f(log23)=f(log23+1)=f(log23+3)=f(log224), ∵log224>4,∴f(log224)=12log224=214. 15. 3 3 解析:由图象过点(-2,0),(0,2),知
1 当 x>1 时,由 1-log2x≤2 知 x≥2,即 x>1.

2020届高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(二) Word版含解析

2020届高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(二) Word版含解析

2.2.2 对数函数及其性质(二)1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( ) A .5B.15C.1eD.122.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________.9.若log a 2<2,则实数a 的取值范围是______________. 三、解答题10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f(x)=log a x(a>0,a≠1),若f(x1x2…x2010)=8,则f(x21)+f(x22)+…+f(x22010)的值等于( )A.4B.8C.16D.2log8413.已知log m4<log n4,比较m与n的大小.且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.2.2.2 对数函数及其性质(二)双基演练 1.A2.D [y =log a a x =x log a a =x ,即y =x ,两函数的定义域、值域都相同.]3.C [由题意得:2≤12log x ≤4,所以(12)2≥x ≥(12)4,即116≤x ≤14.] 4.A [∵3x +1>1,∴log 2(3x +1)>0.] 5.2解析 由已知得log a (b -1)=0且log a b =1, ∴a =b =2.从而f (2)=log 2(2+2)=2.6.(3,1)解析 若x -2=1,则不论a 为何值,只要a >0且a ≠1,都有y =1.作业设计1.D [因为0<log 53<log 54<1,1<log 45, 所以b <a <c .]2.D [∵-1≤x ≤1, ∴2-1≤2x≤2,即12≤2x≤2.∴y =f (x )的定义域为[12,2]即12≤log 2x ≤2,∴2≤x ≤4.] 3.C [∵log a 8=3,解得a =2,因为函数f (x )=log a |x |(a >0且a ≠1)为偶函数,且在(0,+∞)为增函数,在(-∞,0)上为减函数,由-3<-2,所以f (-3)>f (-2).]4.B [函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上,y 1=a x 与y 2=log a (x +1)同增或同减.因而[f (x )]max +[f (x )]min =f (1)+f (0)=a +log a 2+1+0=a ,解得a =12.]5.B [f (-x )=lg 1+x 1-x =lg(1-x 1+x )-1=-lg 1-x1+x=-f (x ),则f (x )为奇函数, 故f (-a )=-f (a )=-b .]6.C [由y =3x(-1≤x <0)得反函数是y =log 3x (13≤x <1),故选C.] 7.b ≤1解析 由题意,x ≥1时,2x -b ≥1. 又2x ≥2,∴b ≤1. 8.[12,1)∪(1,2]解析 ∵|y |>1,即y >1或y <-1, ∴log a x >1或log a x <-1, 变形为log a x >log a a 或log a x <log a 1a当x =2时,令|y |=1, 则有log a 2=1或log a 2=-1, ∴a =2或a =12.要使x >2时,|y |>1.如图所示,a 的取值范围为1<a ≤2或12≤a <1.9.(0,1)∪(2,+∞)解析 log a 2<2=log a a 2.若0<a <1,由于y =log a x 是减函数,则0<a 2<2,得0<a <2,所以0<a <1;若a >1,由于y =log a x 是增函数, 则a 2>2,得a > 2.综上得0<a <1或a > 2.10.解 由a >0可知u =3-ax 为减函数,依题意则有a >1. 又u =3-ax 在[0,2]上应满足u >0, 故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.11.解 (1)∵函数f (x )的图象关于原点对称, ∴函数f (x )为奇函数, ∴f (-x )=-f (x ),即12log 1+ax -x -1=-12log 1-ax x -1=12log x -11-ax ,解得a =-1或a =1(舍).(2)f (x )+12log (x -1)=12log 1+x x -1+12log (x -1)=12log (1+x ),当x >1时,12log (1+x )<-1,∵当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立,∴m ≥-1.12.C [∵f (x 1x 2…x 2010)=log a (x 1x 2…x 2010)=8,f (x 21)+f (x 22)+…+f (x 22010)=log a (x 21x 22…x 22010)=2log a (x 1x 2…x 2010)=2×8=16.]13.解数形结合可得0<n<m<1或1<n<m或0<m<1<n.。

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

1.2.1几个常用函数的导数122 基本初等函数的导数公式及导数的运算法则(一)[A 基础达标]①(sin x) '= cos x;1 2②若f(x)= x,则f'⑶=-27;③(e x) ― e x;1④(log4x)、x nr-其中正确的有()A. 1个B. 2个C. 3个D. 4个“ 1 ' - 2解析:选 D.因为(sin x) ' = cos x,所以①正确;f ' (x) = 一2 = (x ) ' =- 2x x2 13,则f '⑶=—27,所以②正确;因为(e x) ' = e x,所以③正确;因为(log 4x) ' = x i n 4,所以④正确.a 1 12. 若幕函数f(x) = mx的图象经过点A4, 2,则它在点A处的切线方程是()A. 2x—y= 0B. 2x+ y = 0C. 4x—4y + 1 = 0D. 4x+ 4y + 1 = 0解析:选C.因为函数f(x) = mf为幕函数,所以m= 1.又幕函数f(x) = x a的图象经过11 1 1 1 1点A4, 2,所以a = 2,所以f(x) = x2, f' (x)=——,f ' 4 = 1,所以f(x)的图象在1 1点A处的切线方程为y—2= x —4,即4X—4y + 1 = 0._ n 1 一_ _ 一3. 过曲线y= cos x上一点P —, 且与曲线在点P处的切线垂直的直线方程为()1. 给出下列结论:— —5.已知点 P 在曲线y = 2sin qcos?上,a 为曲线在点 值范围是()D. 3— + 2y —1 = 0n 1解析:选A.因为y =cos —,所以y'一 sin —,曲线在点Py ,2处的切线斜率是y ,1 — n =— sin 才=—£,所以过点P 且与曲线在点 P 处的切线垂直的直线的斜率为3 ~3, 所以所求的直线方程为 y — 1=冷x —专,即2x — 3y —夺+ 卓 0. y = x + 1(n € N *)在点(1 , 1)处的切线与—轴的交点的横坐标为 x n,则X 1 4•设曲线 X 2 ........... X n 的值为() i A.—n1 B.- n +1nC.n nD. 1解析:选 B.由题意得—n =市, 则 X 1 • X 2 ......... X n = ............ 二n — 12 34n xidh =詁1,故选 B. 3nA. ~~, nB. 71 4' 3n4n 3 n c. 7,-4D. u 3n,n — — 解析:选 D.因为 y = 2sin gcosg h sin x ,所以 y '= cos X , 设P (x o , y o ).由题意,知 切线的斜率存在,则曲线在点 P 处的切线的斜率 k =tan a = cos —o ,所以一1<tan a < 1. n 3 n ,因为0W a Vn ,所以a € 0, — U , n ,故选D. 16.已知函数f (x )=- X且 f ' (a ) — f (a ) = — 2,则 a =1解析:f (x )= -,所以—2即 2a — a — 1 = 0,P 处的切线的倾斜角,则a 的取1解得a = 1或a =- 2. 、1答案:1或一 27.曲线y = x 3在点(1 ,1)处的切线与x 轴、直线x = 2所围成的三角形的面积为 _____________ . 解析:因为y '= 3x 2.所以切线的斜率为 y '|= 1 = 3X12= 3,所以切线方程为y — 1 = 3(x 2 12 8 —1),与x 轴的交点为3,0,与直线x = 2的交点为(2 , 4).所以S =-X 2 — - X 4 =-.3 2 331&设曲线y = e x在点(0 , 1)处的切线与曲线 y = -(x >0)上点P 处的切线垂直,则点P 的 X坐标为 _________ .解析:设 f (x ) = e x ,则 f '(x ) = e x ,1所以 f ' (0) = 1.设 g (x ) = x (x >0),解得X P = 1. 所以R1 , 1). 答案:(1 , 1)9.求与曲线y = f (x )=扳2在点P (8 , 4)处的切线垂直,且过点(4 , 8)的直线方程.曲线在点R8 , 4)处的切线的斜率为1.所以适合条件的直线的斜率为一 3.从而适合条件的直线方程为 y — 8= — 3(x — 4),即 3x + y — 20 = 0.10. 点P 是曲线y = e 上任意一点,求点 P 到直线y = x 的最小距离. 解:根据题意设平行于直线 y = x 的直线与曲线 y = e x 相切于点P (x o , y o ),该切点即为与y = x 距离最近的点,如图.则在点P (X 0, y °)处的切线斜率为1, 即 y '| x = x °= 1. 因为 y '= (e x ) ' = e x ,所以e*0= 1,得x ° = 0,代入y = e , 得 y 0= 1,即 P (0 , 1).[B 能力提升]11. 若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则g ' 1(x) =— x ^.由题意可得 g '(x P) =— 1, 解:因为y =习F,所以y '=(守£)'=1 12 2 — 2 - 1 =-x 3.所以 f ' (8) = -X 83 =;,即 3 3 3 3则称y= f(x)具有T性质.下列函数中具有T性质的是()A. y = sin xB. y = In xx 3C. y = eD. y = x解析:选A.设函数y= f (x)的图象上两点Rx i, y i), Qx2, y2),则由导数的几何意义可知,点P, Q处切线的斜率分别为k i= f'(x i) , k2 = f '(X2),若函数具有T性质,则k i - k2 =f '(x i) • f'(X2) = —i.对于A选项,f' (x) = cos x,显然k i • k2= cos x i • cos X2=—ii i i有无数组解,所以该函数具有T性质;对于B选项,f' (x) =-(x>0),显然k i • k2=- •x x i X2 =—i无解,故该函数不具有T性质;对于C选项,f' (x) = e x>0,显然k i • k2= e x i • e, =—i无解,故该函数不具有T性质;对于D选项,f' (x) = 3x2>0,显然k i • k= 3x i • 3x2 = —i无解,故该函数不具有T性质.故选A.12. 设f o(x) = sin x,f i(x) = f' o(x), f 2(x) = f ' i(x),…,f n+1(x) = f' n(x),n€N,贝y f 2 oi8 (x) = ________ .解析:由已知f i(x) = cos x,f2(x) = —sin x,f3(x) = —cos x,f4(x) = sin x,f5(x)=cos x,…依次类推可得,函数呈周期变化,且周期为3,贝U f2 oi8(x) = f2(x) = —sin x.答案:—sin x13. 若曲线f(x) = x—2在点(a, a—2)( a>0)处的切线与两坐标轴围成的三角形的面积为3, 求log 3a的值.T解:由题意,得f '( x) = —2x 3,一 2 一 2 一 3所以曲线f (x)在点(a, a )处的切线方程为y—a = —2a (x—a),一23a令x = 0,得y = 3a,令y = 0,得x =所以3a—2x 3a= 3,2 2解得a= 3 4所以log 3a=2.214. (选做题)已知两条曲线y i= sin x, y2= cos x,是否存在这两条曲线的一个公共点,使在这解:不存在.理由如下:由于y i = sin x, y2= cos x,设两条曲线的一个公共点为P(x o,一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.理由如下:由于y i = sin x, y2= cos x,设两条曲线的一个公共点为P(x o,y。

基本初等函数-人教A版高中数学必修1课时训练(含答案)

基本初等函数-人教A版高中数学必修1课时训练(含答案)

解析 令 x-1=0,得 x=1, 此时 y=2+1=3,∴图象恒过定点(1,3). 答案 C 8.函数 f(x)= 1-2x的定义域是( A.(-∞,0] B.[0,+∞) ).
C.(-∞,0) D.(-∞,+∞) 解析 要使函数有意义,则 1-2x≥0,即 2x≤1,∴x≤0.
答案 A 5 3 9.已知函数 f(x)是指数函数,且 f-2= 25 ,则 f(3)=________.
1 2x+1x<-1, = + x≥-1. 2x 1 1 其图象分成两部分,一部分是将 y1=2x+1(x<-1)的图象作出,而它的图象可以 1 看作将 y=2x 的图象沿 x 轴的负方向平移一个单位而得到, 另一部分是将 y=2x
解析 原式= 答案 0
综合提高
7.下列说法中,正确说法的个数为(
限时25分钟
).
n ① an=a;②若 a∈R,则(a2-a+1)0=1; 3 ③ x4+y3= 3 6 +y;④ -5= -52. D.3
A.0 B.1 C.2
解析 ①中,若 n 为偶数,则不一定成立,故①是错误的;②中,因为 a2-a+1 1 3 =a-22+4≠0,所以(a2-a+1)0=1 是正确的;③是错误的;④左边为负数, 而右边为正数,是错误的,故选 B. 答案 B
+1
(x≥-1)的图象作出, 而它的图象可以看作将 y=2x 的图象沿 x 轴的负方向平移
一个单位而得到,如图所示.
法二 先作出 y=2x(x≥0)的图象,再关于 y 轴对称即得 y=2|x|的图象,再将 y= 2|x|的图象左移一个单位即可得到 y=2|x+1|的图象,如法一中图所示.
2.1.2 指数函数的性质的应用 双基达标

高中数学 必修1 第二章 基本初等函数(Ⅰ) 2.1.1(一)

高中数学 必修1 第二章 基本初等函数(Ⅰ)  2.1.1(一)

本课结束
n
(2)( a)n= a (n∈N*,且 n>1); 的奇数);
n
a a≥0 (4) an=|a|= (n 为大于 1 的偶数). -a a<0
n
题型探究
类型一 根式的意义
例 1 求使等式 a-3a2-9=(3-a) a+3成立的实数 a 的取值范围.
n 为偶数时,a≥0, n
而 a 为任意实数 an均有意义,且 an=|a|.
跟踪训练2 求下列各式的值:
(1) -2 ;
7
7

4
7
-27=-2.
(2) 3a-34(a≤1); 解
3
4
3a-34=|3a-3|=3|a-1|=3-3a.
4
(3) a + 1-a4.
3

3
∴( x-1) + x2-4x+43
4
4
6
=x-1+ x-26
=x-1-(x-2) =1.
6
解析
答案
当堂训练
1.已知x5=6,则x等于
A. 6 C.- 6
5

B. 6 D.± 6
5
5
1
2
3
4
5
答案
2.m是实数,则下列式子中可能没有意义的是
A. m2
4
B. m D. -m
5
3

C. m
6
原式=-(x-1)-(x+3)=-2x-2;
当1≤x<3时,原式=(x-1)-(x+3)=-4.
-2x-2,-3<x<1, ∴原式= -4,1≤x<3.
解答
引申探究
例3中,若将“-3<x<3”变为“x≤-3”,则结果又是什么?

高中数学基本初等函数练习题

高中数学基本初等函数练习题

(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。

高一数学必修一函数各章节测试题4套

高一数学必修一函数各章节测试题4套

函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

第二章 基本初等函数 单元测试卷(B )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43 +y ;④3-5=6(-5)2.其中正确的个数是( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是( ) A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x=3y,则xy =( )A.lg2lg3B.lg3lg2 C .lg 23 D .lg 325.函数f (x )=x ln|x |的图象大致是( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为奇函数,g (x )为偶函数 C .f (x )与g (x )均为奇函数 D .f (x )为偶函数,g (x )为奇函数7.函数y =(m 2+2m -2)x 1m -1 是幂函数,则m =( ) A .1 B .-3 C .-3或1D .28.下列各函数中,值域为(0,+∞)的是( ) A .y =2-x2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x -1;④y =x 12 ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)=( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138] C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知a 12 =49(a >0),则log 23a =________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 15.若函数y =log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22 x ,y =x 12 ,y =(22)x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax,a 为常数,且函数的图象过点(-1,2). (1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.第二章 基本初等函数 单元综合测试二 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.[答案] B [解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2, ∴log 215<20.1<20.2,选A. 3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e <0,从而排除B ,故选A.6.[答案] D[解析]因为f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数,故选D.7.[答案] B[解析]因为函数y=(m2+2m-2)x 1m-1是幂函数,所以m2+2m-2=1且m≠1,解得m=-3.8.[答案] A[解析]A,y=2-x2=(22)x的值域为(0,+∞).B,因为1-2x≥0,所以2x≤1,x≤0,y=1-2x的定义域是(-∞,0],所以0<2x≤1,所以0≤1-2x<1,所以y=1-2x的值域是[0,1).C,y=x2+x+1=(x+12)2+34的值域是[34,+∞),D,因为1x+1∈(-∞,0)∪(0,+∞),所以y=31x+1的值域是(0,1)∪(1,+∞).9.[答案] D[解析]根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析]f(-2)=1+log2(2-(-2))=3,f(log212)=2log212-1=2log26=6,∴f(-2)+f(log212)=9,故选C.11.[答案] B[解析]由题意知函数f(x)是R上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B. 12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.[答案] 4[解析] ∵a 12 =49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4, ∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2. 则f (14)<0,∴f (f (14))=3-2=19. 15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a6,依题意,有⎩⎨⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22 x 的图象上,所以2=log 22 x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12 的图象上, 所以2=x B 12 ,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14, 所以点D 的坐标为(12,14).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35 =2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a=2,解得a =1. (2)由(1)知f (x )=(12)x,又g (x )=f (x ),则4-x-2=(12)x ,即(14)x -(12)x-2=0,即[(12)x ]2-(12)x-2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1. 19.[解析] (1)当a =2时,f (x )=log 2(1+x ), 在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2, ∴原不等式化为a 8-x 2>a -2x . 当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x2<-2x,解得x<-2或x>4.故当a>1时,x的集合是{x|-2<x<4};当0<a<1时,x的集合是{x|x<-2或x>4}.21.[解析](1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.[解析](1)令log a x=t(t∈R),则x=a t,∴f(t)=aa2-1(a t-a-t).∴f(x)=aa2-1(a x-a-x)(x∈R).∵f(-x)=aa2-1(a-x-a x)=-aa2-1(a x-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=a x为增函数,y=-a-x为增函数,且a2a2-1>0,∴f(x)为增函数.当0<a<1时,y=a x为减函数,y=-a-x为减函数,且a2a2-1<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即aa2-1(a2-a-2)≤4.∴aa2-1(a4-1a2)≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-3≤a≤2+ 3.又a≠1,∴a的取值范围为[2-3,1)∪(1,2+3].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一第二章基本初等函数试题
一、选择题:
1
、若()f x =(3)f =()
A 、2
B 、4 C
、、10 2、对于函数()y f x =,以下说法正确的有()
①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是()
①()f x =
()g x =()f x x =
与2
()g x =;③0
()f x x
=与0
1()g x x =
;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④
4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为() A 、7-B 、1 C 、17D 、25 5
、函数y =的值域为() A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是()
A 、(1)
B 、(1)、(3)、
(4)C 、(1)、
(2)、(3)D 、(3)、(4)
7、若:f A B →能构成映射,下列说法正确的有()
(1)
(2)
(3)
(4)
(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、4个B 、3个C 、2个D 、1个
8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是() A 、()()0f x f x -+=B 、()()2()f x f x f x --=-C 、()()0f x f x -g ≤D 、
()
1()
f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是() A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5
10、设函数()(21)f x a x b =-+是R 上的减函数,则有() A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a
b ,总有()()
0f a f b a b
->-成立,则必有()
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数
12、下列所给4个图象中,与所给3件事吻合最好的顺序为()
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)
(1)(3)D 、(4)(1)(2)
二、填空题:
13、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f =。

14、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为。

(1)
(2)
(3)
(4)

15、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是。

16、设2 2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪
=-<<⎨⎪⎩
≤≥,若()3f x =,则x =。

17.设有两个命题:①关于x 的方程9(4)340x x a ++⋅+=有解;②函数22()log a a f x x -=是减函数。

当①与②至少有一个真命题时,实数a 的取值范围是__
18.方程0422=+-ax x 的两根均大于1,则实数a 的取值范围是_____。

三、解答题:
19、已知(,)x y 在映射f 的作用下的像是(,)x y xy +,求(2,3)-在f 作用下的像和(2,3)-在f 作用下的原像。

20、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。

21、对于二次函数2483y x x =-+-,
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由24y x =-的图像经过怎样平移得来; (3)求函数的最大值或最小值; (4)分析函数的单调性。

22、设函数)(x f y =是定义在R +上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭

⎝⎛f ,
(1)求)1(f 的值,(2)如果2)2()(<-+x f x f ,求x 的取值范围。

答案
一、选择题:
ABCDABCDABCD
二、填空题:
13、2414、222(3)221216y x x x =-++=--- 15、2
03
a <<
16
17、(]11,8,0,122⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭U U 18、52,2⎡⎫
⎪⎢⎣⎭
三、解答题:
19、(2,3)-在f 作用下的像是(1,6)-;(2,3)-在f 作用下的原像是(3,1)(1,3)--或 20、略
21、(1)开口向下;对称轴为1x =;顶点坐标为(1,1);
(2)其图像由24y x =-的图像向右平移一个单位,再向上平移一个单位得到; (3)函数的最大值为1;
(4)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。

22、解:(1)令1==y x ,则)1()1()1(f f f +=,∴0)1(=f
(2)∵131=⎪⎭⎫ ⎝⎛f ∴23131)3131(91=⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛=⨯=⎪⎭⎫ ⎝⎛f f f f
∴()()[]⎪⎭

⎝⎛<-=-+91)2(2f x x f x f x f ,又由)(x f y =是定义在R +上的减函数,得:
()⎪⎪⎩
⎪⎪⎨⎧
>->>-0
209
12x x x x 解之得:⎪⎪⎭⎫ ⎝⎛+-∈3221,3221x 。

相关文档
最新文档