实验二 扩散硅压阻式传感器模块 d1

合集下载

扩散硅实验报告doc

扩散硅实验报告doc

扩散硅实验报告篇一:实验报告测试技术实验报告第二组实验三十五压阻式压力传感器的特性实验一、实验目的1、了解扩散硅压阻式传感器测量压力的方法。

2、掌握扩散硅压阻式传感器及其转换电路的工作原理。

二、实验多用单元压阻式压力传感器、压阻式压力传感器转换电路板、橡皮气囊、储气箱、三通连接导管、压力表、位移台架、直流稳压电源、数字万用表三、实验原理及电路扩散硅压阻式压力传感器,在单晶硅的基片扩散出P型或N型电阻条,接成电桥。

在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生变化,引起电阻的变化,将这一变化引入测量电路,通过输出电压可以测量出其所受的压力大小。

四、实验步骤1、固定好位移台架,将压力传感器放在台架的圆孔中。

2、将压力传感器上的插头连接至转换电路板上的插座。

转换电路板的输出连接至数字电压表。

3、连接电路图。

4、打开橡皮囊上的单向阀,接通电源,调节转换电路板上的RP2使输出电压为零。

5、拧紧单向阀,轻按加压皮囊,注意不要用力过大,使压力表显示30Kp,调节RP1使输出电压为3V。

6、重复步骤4和步骤5,使压力为0时输出电压为0,压力为30Kp时,输出电压为3V。

7、旋紧单向阀,开始加压,每上升2Kp读取输出电压,记入入下表中。

五、实验报告1、根据表格的实验数据,画出压力传感器的特性曲线,并计算精度与非线性误差。

实验数据记录于下表中。

如下图所示,测量电路测得的输出电压与仪表显示的空气压强在数值上的关系如下,两者近似呈线性关系。

2、如果测量真空度,需要对本实验装置进行怎样的改进?答:测量真空度,需要把橡皮气囊改为可以抽气的实验装置,并把测量压强的仪表改为可测量真空度值的仪表。

实验十九涡流传感器的位移特性试验一、实验目的1、了解涡流式传感器的基本结构。

2、掌握涡流式传感器的工作原理及性能。

二、实验所用单元涡流式传感器和铁片、涡流式传感器转换电路板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路通过高频电流的线圈产生磁场,当有导体接近时,因导电体涡流效应产生涡流损耗,引起线圈的电感发生变化。

扩散硅压力传感器(MPX)实验

扩散硅压力传感器(MPX)实验

福建江夏学院
《传感器技术》实验报告
姓名班级学号实验日期
课程名称传感器技术指导教师成绩
实验名称:扩散硅压力传感器(MPX)实验
一、实验目地:
1. 掌握扩散硅压阻式传感器的工作原理
2. 了解扩散硅压阻式传感器的电路连接
二、实验原理:
MPX压阻式传感器芯片是用集成工艺技术在硅片上制造出四个呈X型的等值电阻组成的电路,它用激光修正,温度补偿,所以线性好,灵敏度高,重复性好,其工作原理及实验接线如图(22)
(图22)
本实验中所用的压阻式传感器为差压式,无外加压力时电路平衡输出出,受压时则输出与压力大小成正比的电压信号。

三、实验环境:
MPX压力传感器,公共电路模块(三)、气压源、胶管、电压表
四、实验步骤:
1、连接主机与实验模块的电源线及探头连接线,胶管连接气源输出与压力传感器输入口(传感器另一接口感受大气压力)。

2、开启主机电源,调节电桥WD调平衡电位器,使实验模块输出为零,开启气源开
关,逐步加大气压,观察随气压上升模块电压输出的变化情况。

3、待到气压相对稳定后,调节模块增益使输出电压值与气压值成一比例关系,并记录P(p)值与Vmv值。

在坐标上作出V-P曲线,验证传感器的线性度与灵敏度。

注意事项:
如果无法通过WD调零,可以在B和地之间并联一个电阻,用以调整电桥。

气源平时应关闭,以免影响其它电路工作,胶管尽量避免油污,以免造成老化破损。

传感器实验指南

传感器实验指南

目录实验一压阻式压力传感器的特性测试实验 (2)实验二电容传感器的位移特性实验 (5)实验三直流激励线性霍尔传感器的位移特性实验 (9)实验四电涡流传感器材料分拣的应用实验 (12)实验五光纤传感器位移测量实验 (14)实验一压阻式压力传感器的特性测试实验一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和标定方法。

二、实验内容掌握压力传感器的压力计设计。

三、实验仪器传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。

四、实验原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。

在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。

图13-1为压阻式压力传感器压力测量实验原理图。

+-放大单元主台体上电压表+4V 压阻式压力传感器Vo+VS+Vo-Vs-图1-1 压阻式压力传感器压力测量实验原理五、实验注意事项1、严禁将信号源输出对地短接。

2、实验过程中不要带电拔插导线。

3、严禁电源对地短路。

六、实验步骤1、将引压胶管连接到压力传感器上,其他接线按图1-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

图1-2 压阻式压力传感器的特性测试实验接线图2、打开气源开关,调节流量计的流量并观察压力表,压力上升到4Kpa左右时,根据计算所选择的第二级电路的反馈电阻值,接好相应的短接帽;再调节调零电位器RW2,使得图1-3中Vx与计算所得的值相符;再调节增益电位器RW1,使电压表显示为0.4V左右。

(进行此步之前,请先仔细阅读:七、实验报告要求)3、再仔细地反复调节流量使压力上升到18KPa左右时,根据计算,电压表将显示1.8V 左右。

实验二 扩散硅压阻式传感器模块 d1

实验二 扩散硅压阻式传感器模块 d1

实验二扩散硅压阻式压力传感器实验模块2.1实验目的:实验2.1.1:了解扩散硅压阻式压力传感器测量压力的原理和方法。

工作原理:是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器。

单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。

压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。

转换原理:在具有压阻效应的半导体材料上用扩散或离子注入法,,形成4个阻值相等的电阻条。

并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。

平时敏感芯片没有外加压力作用,内部电桥处于平衡状态,当传感器受压后芯片电阻发生变化,电桥将失去平衡,给电桥加一个恒定电压源,电桥将输出与压力对应的电压信号,这样传感器的电阻变化通过电桥转换成压力信号输出。

压阻效应:当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。

这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。

硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。

实验2.1.2:了解利用压阻式压力传感器进行差压测量的方法。

2.2实验设备和元件:2.2.1 实验设备:实验台所属各分离单元和导线若干。

2.2.2 其他设备:2号扩散压阻式压力传感器实验模块,14号交直流,全桥,测量,差动放大实验模块,数显单元20V,直流稳压源+5V,+_12V电源。

2.3实验内容:2.3.1扩散压阻式压力传感器一般介绍:单晶硅材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。

压阻式压力传感器的特性测试实验

压阻式压力传感器的特性测试实验

压阻式压力传感器的特性测试实验一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和标定方法。

二、实验内容掌握压力传感器的压力计设计。

三、实验仪器传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。

四、实验原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。

在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。

图13-1为压阻式压力传感器压力测量实验原理图。

+-放大单元主台体上电压表+4V 压阻式压力传感器Vo+VS+Vo-Vs-图13-1 压阻式压力传感器压力测量实验原理五、实验注意事项1、严禁将信号源输出对地短接。

2、实验过程中不要带电拔插导线。

3、严禁电源对地短路。

六、实验步骤1、将引压胶管连接到压力传感器上,其他接线按图13-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

电电电电电电电电电电VinVinVout GND电电电电电电±15V 电电D5C4++E2C5D4D6R29S1C1R12R13R17R16C2R1IC1R14R3R5R4R6D1IC4R7R20R19R9C3RW1-15V GND+15V VCC GND Vout-Vout+R8R10D2R21电电电电电D3E1D5R28IC2IC3R2R18RW2电电电电电电电电电电电电电电电电电电电电电电电R30R31R21R211234567810K 20K 51K100KP1+5V电电电电电电电电电电VinVinVout GND电电电电电电±15V 电电D5C4++E2C5D4D6R29S1C1R12R13R17R16C2R1IC1R14R3R5R4R6D1IC4R7R20R19R9C3RW1-15V GND+15V VCC GND Vout-Vout+R8R10D2R21电电电电电D3E1D5R28IC2IC3R2R18RW2电电电电电电电电电电电电电电电电电电电电电电电R30R31R21R211234567810K 20K 51K100KP1+5V图13-2 压阻式压力传感器的特性测试实验接线图2、打开气源开关,调节流量计的流量并观察压力表,压力上升到4Kpa 左右时,根据计算所选择的第二级电路的反馈电阻值,接好相应的短接帽;再调节调零电位器RW2,使得图13-3中Vx 与计算所得的值相符;再调节增益电位器RW1,使电压表显示为0.4V 左右。

实验一扩散硅压阻式压力传感器的压力测量实验

实验一扩散硅压阻式压力传感器的压力测量实验

实验一扩散硅压阻式压力传感器的压力测量实验实验目的:1. 熟悉扩散硅压阻式压力传感器的工作原理和特性。

2. 了解扩散硅压阻式压力传感器的使用方法和注意事项。

3. 利用扩散硅压阻式压力传感器进行压力测量实验。

实验器材:1. 扩散硅压阻式压力传感器2. 数字万用表3. 压力泵4. 接线板、导线等实验原理:扩散硅压阻式压力传感器是利用扩散硅作为敏感元件的压力传感器。

当扩散硅受到外界压力作用时,会产生微小的形变,从而改变扩散硅的电阻值。

通过电路对电阻值的变化进行放大和处理,最终转换成电压信号作为输出,实现压力的测量。

实验步骤:1. 将扩散硅压阻式压力传感器连接到接线板上,注意仔细阅读连接图并正确连接。

2. 将数字万用表连上扩散硅压阻式压力传感器的输出端口,选择电压测量档位,并将数显切换为直流电压。

3. 将压力泵连接到扩散硅压阻式压力传感器的压力输入端口,打开压力泵。

4. 按照设定步骤开始进行实验,观察和记录压力泵的压力输出值以及扩散硅压阻式压力传感器的电压输出值。

5. 在测量结束后,关闭压力泵,并将扩散硅压阻式压力传感器从电路中拆开。

实验结果分析:通过扩散硅压阻式压力传感器测量实验,我们能够得出被测压力值和输出电压值之间的关系。

由于具有较好的灵敏度和稳定性,扩散硅压阻式压力传感器被广泛应用于压力测量领域,如航空、采矿、化工、医疗等领域。

注意事项:1. 在进行实验前,必须确认设备和电路是否连接正确,避免短路或其他故障发生。

2. 在使用压力泵时,应注意安全防范措施,避免压力泵爆炸等危险事件发生。

3. 在电路连接和处理信号时,应注意干扰和噪声的影响,保证测量精度的准确性。

4. 在实验过程中,如有异常情况发生应及时停止实验,并排除故障,确保实验结果可靠有效。

压阻式压力传感器的压力测量实验

压阻式压力传感器的压力测量实验

压阻式压力传感器的压力测量实验一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。

二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。

在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。

三、需用器件与单元:压力源(已在主控箱)、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源?4V、?15V。

四、实验步骤:1、根据图2-1连接管路和电路,主控箱内的气源部分,压缩泵、贮气箱、流量计主控箱内部已接好。

将压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用手按住气源插座边缘往内压,则硬管可轻松拉出)。

其余两根软导管分别与标准表和压力传感器接通。

这里选用的差压传感器两只气咀中,一只为高压咀,另一只为低压咀。

本实验模板连接见图2-2,压力传感器有4端:3端接+4V电源,1端接地线,2端为U+,4端为U-。

1、2、3、4端顺序排列见图2-2。

端接线颜色通过观察传感器00引脚号码判别。

图2-1 压阻式压力传感器测量系统2、实验模板上R用于调节零位,R可调放大倍数,按图2-2接线,模板w2w2的放大器输出V引到主控箱数显表的V插座。

将显示选择开关拨到20V档,02i反复调节R(R旋到满度的1/3)使数显表显示为零。

w2w13、先松开流量计下端进气口调气阀的旋钮,开通流量计。

图2-2 压力传感器压力实验接线图4、合上主控箱上的气源开关K,启动压缩泵,此时可看到流量计中的滚珠3浮起悬于玻璃管中。

5、逐步关小流量计旋钮,使标准压力表指示某一刻度。

6、仔细地逐步由小到大调节流量计旋钮,使在4,14KP之间每上升1KP分别读取压力表读数,记下相应的数显表值列于表(2-1)表(2-1)压力传感器输出电压与输入压力值P(KP) V(p-p) 07、计算本系统的灵敏度和非线性误差。

扩散硅压力传感器 压阻效应原理

扩散硅压力传感器 压阻效应原理

扩散硅压力传感器压阻效应原理引言:扩散硅压力传感器是一种常用的压力测量设备,通过利用硅片的压阻效应来实现对压力的测量。

本文将详细介绍扩散硅压力传感器的原理和工作过程,以期帮助读者更好地理解和应用这一技术。

一、压阻效应的基本原理扩散硅压力传感器基于压阻效应,即当硅片受到外力作用时,其电阻值会发生变化。

这是因为硅片的电阻与其几何形状和材料导电特性有关,当外力作用于硅片表面时,硅片发生变形,从而改变了其几何形状和材料导电特性,进而导致电阻值的变化。

利用这一原理,我们可以通过测量硅片电阻值的变化来间接测量外力的大小。

二、扩散硅压力传感器的结构和工作原理扩散硅压力传感器通常由硅片、电极和支撑结构等组成。

硅片是传感器的核心部件,也是扩散硅压力传感器的灵敏元件。

电极用于接触硅片并测量其电阻值的变化。

支撑结构则用于固定硅片和电极,保证传感器的稳定性和可靠性。

当外界压力作用于扩散硅压力传感器时,压力会传递给硅片,并使其发生微小的变形。

这一变形会导致硅片的电阻值发生变化。

电阻值的变化可以通过电极测量得到,并转化为电信号输出。

由于硅片的变形与外界压力成正比,所以通过测量电阻值的变化,我们可以间接地获得外界压力的大小。

三、扩散硅压力传感器的优势和应用领域扩散硅压力传感器具有以下几个优势:1. 高灵敏度:扩散硅压力传感器对压力变化非常敏感,能够测量微小的压力变化。

2. 宽测量范围:扩散硅压力传感器的测量范围广,可以覆盖从几帕到几千帕的压力范围。

3. 高精度:扩散硅压力传感器的精度较高,能够满足对压力测量的精确要求。

4. 快速响应:扩散硅压力传感器的响应速度快,可以实时监测压力变化。

扩散硅压力传感器广泛应用于各个领域,包括工业自动化控制、汽车电子、医疗器械、环境监测等。

例如,在汽车电子领域,扩散硅压力传感器可以用于测量发动机燃油压力、轮胎气压等参数,以提高汽车的安全性和燃油利用率。

在医疗器械领域,扩散硅压力传感器可以用于测量血压、呼吸机气道压力等,以辅助医生进行诊断和治疗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二扩散硅压阻式压力传感器实验模块2.1实验目的:实验2.1.1:了解扩散硅压阻式压力传感器测量压力的原理和方法。

工作原理:是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器。

单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。

压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。

转换原理:在具有压阻效应的半导体材料上用扩散或离子注入法,,形成4个阻值相等的电阻条。

并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。

平时敏感芯片没有外加压力作用,内部电桥处于平衡状态,当传感器受压后芯片电阻发生变化,电桥将失去平衡,给电桥加一个恒定电压源,电桥将输出与压力对应的电压信号,这样传感器的电阻变化通过电桥转换成压力信号输出。

压阻效应:当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。

这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。

硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。

实验2.1.2:了解利用压阻式压力传感器进行差压测量的方法。

2.2实验设备和元件:2.2.1 实验设备:实验台所属各分离单元和导线若干。

2.2.2 其他设备:2号扩散压阻式压力传感器实验模块,14号交直流,全桥,测量,差动放大实验模块,数显单元20V,直流稳压源+5V,+_12V电源。

2.3实验内容:2.3.1扩散压阻式压力传感器一般介绍:单晶硅材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。

用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。

利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯凳电桥,利用硅材料的弹性力学特性,在同一切硅材料上进行各向异性微加工,就制成了一个集力敏与力电转换检测于一体的扩散硅传感器。

给传感器匹配一放大电路及相关部件,使之输出一个标准信号,就组成了一台完整的变送器。

变送器定义:一般意义上的压力变送器主要由测压元件传感器(也称作压力传感器)、测量电路和过程连接件三部分组成。

它能将测压元件传感器感受到的气体、液体等物理压力参数转变成标准的电信号(如4~20mADC等),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。

原理:被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量。

变送器型号:扩散硅压阻式变送器有多种多样的,比如:ATE308系列扩散硅压力变送器,KK228压力变送器,ST208、308系列扩散硅压力变送器等等。

以下是详细介绍:(1)ATE308系列扩散硅压力变送器:采用具有国际先进技术进口陶瓷传感器,再配以高精密电子元件,经严格要求的工艺过程装配而成。

ATE系列308系列压力变送器与目前使用的常规压力变送器相比,有两个显著不同的技术差别:一是测量元件采用新兴的高精密陶瓷材料;二是测量元件内无中介液体,是完全固体的。

HAKK-338系列压力变送器主要特点抗过载和抗冲击能力强,过压可达量程的数倍,甚至用硬物直接敲打测量元件也不致使其损坏,且对测量精度毫无影响;稳定性高,每年优于0.1%满量程,这个技术指标已达到智能型压力仪表水平;温度漂移小,由于取消了压力测量元件中的中介液,因而传感器不仅获得了很高的测量精度,且受温度梯度影响极小。

(2)ST208、308系列扩散硅压力变送器ZR208、308系列扩散硅压力变送器具有工作可靠、性能稳定、安装使用方便、体积小、重量轻、性能价格比高等点,能在各种正负压力测量中得到广泛应用。

扩散硅压力变送器采用进口扩散硅或陶瓷芯体作为压力检测元件,传感器信号经高性能电子放大器转换成0-10mA 或4-20mA统一输出信号。

压力变送器可替代传统的远传压力表,霍尔元件、差动变送器,并具有DDZ-Ⅱ及DDZ-Ⅲ型变送器性能。

扩散硅压力变送器能与各种型号的动圈式指示仪、数字压力表、电子电位差计配套使用,也能与各种自动调节系统或计算机系统配套使用。

主要技术指标:使用方法:传感器、变送器的选择,选项型提要:1、变送器要测量什么样的压力:用户根据自己所测压力的性质即先确定系统中要确认测量压力的最大值,一般而言,需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。

这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器,持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,然而,由于这样做会精度下降。

于是,可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。

所以在选择变送器时,要充分考虑压力范围,精度与其稳定性。

2、什么样的压力介质:我们要考虑的是压力变送器所测量的介质,黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送吕中与这些介质直接接触的材料。

以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。

一般的压力变送器的接触介质部分的材质采用的是316不锈钢,如果你的介质对316不锈钢没有腐蚀性,那么基本上所有的压力变送器都适合你对介质压力的测量.如果你的介质对316不锈钢有腐蚀性,那么我们就要采用化学密封,这样不但起到可以测量介质的压力,也可以有效的阻止介质与压力变送器的接液部分的接触,从而起到保护压力变送器,延长了压力变送器的寿命.3、变送器需要多大的精度:决定精度的有,非线性,迟滞性,机电商务网非重复性,温度、零点偏置刻度,温度的影响。

但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。

每一种电子式的测量计都会有精度误差的,但是由于各个国家所标的精度等级是不一样的,比如,中国和美国等国家标的精度是传感器在线性度最好的部分,也就是我们通常所说的测量范围的10%到90%之间的精度;而欧洲标的精度则是线性度最不好的部分,也就是我们通常所说的测量反的0到10%以及90%到100%之间的精度.如欧洲标的精度为1%,则在中国标的精度就为0.5%.4、变送器的温度范围:通常一个变送器会标定两个温度范围,即正常操作的温度范围和温度可补偿的范围。

正常操作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补范围时,可能会达不到其应用的性能指标。

温度补偿范围是一个比操作温度范围小的典型范围。

在这个范围内工作,变送器肯定会达到其应有的性能指标。

温度变从两方面影响着其输出,一是零点漂移;二是影响满量程输出。

如:满量程的+/-X%/℃,读数的+/-X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。

变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。

温度影响是了解如何使用变送器时最复杂的一部分。

5、需要得到怎样的输出信号: mV 、V、 mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号。

是否需要放大器,放大器的位置等。

对于许多变送器和控制器间距离较短的OEM 设备,采用mA输出的变送器最为经济而有效的解决方法,如果需要将输出信号放大,最好采用具有内置放大的变送器。

对于远距离传输出或存在较强的电子干扰信号,最好采用mA级输出或频率输出。

如果在RFI或EMI指标很高的环境中,除了要注意到要选择mA或频率输出外,还要考虑到特殊的保护或过滤器。

(目前由于各种采集的需要,现在市场上压力变送器的输出信号有很多种,主要有 4...20mA,0...20mA,0...10V,0...5V等等,但是比较常用的是4...20mA和0...10V两种,在我上面举的这些输出信号中,只有4...20mA为两线制,我们所说的输出为几线制不包含接地或屏蔽线,其他的均为三线制)6、选择怎样的励磁电压:输出信号的类型决定选择怎么样的励磁电压。

许多放大变送器有内置的电压调节装置,因此其电源电压范围较大。

有些变送器是定量配置,需要一个稳定的工作电压,因此,能够得到的一个工作电压决定是否采用带有调节器的传感器,选择传送器时要综合考虑工作电压与系统造价。

7、是否需要具备互换性的变送器:确定所需的变送器是否能够适应多个使用系统。

一般来讲,这一点很重要。

尤其是对于OEM产品。

一旦将产品送到客户手中,那么客户用来校准的花销是相当大的。

如果产品具有良好的互换性,那么即使是改变所用的变送器,也不会影响整个系统的效果。

应注意如下几种使用情况:1、被压力系统瞬时出现较大过载压力。

2、用活塞压力计标定时,活塞故障卡死未发现,导致压力冲开时高过载冲击敏感膜。

3、由于恒流电源对扩散硅传感器的自补偿功能,原则上推荐采用恒流源供电,我公司也可以提供恒流传感一体化产品,如测量温度系数要求不高,条件不允许,也可使用恒压源。

4、扩散硅传感器零位输出不能直接采用单臂联电阻法进行消除,可采用软件归零法、差动输入修整法、T型电阻网络修正等。

性价比:发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。

早期的硅压力传感器是半导体应变计式的。

后来在 N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。

此芯片仍需粘贴在弹性元件上才能敏感压力的变化。

采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。

这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。

70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。

它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。

这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达 1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可达0.1~0.01%;④灵敏高,比金属应变计高出很多倍,有些应用场合可不加放大器;⑤无活动部件,可靠性高,能工作于振动、冲击、腐蚀、强干扰等恶劣环境。

相关文档
最新文档