锆石成因研究及地质应用

合集下载

锆石学研究在地质科学中的应用

锆石学研究在地质科学中的应用

收稿 日期 : 0 — 6 2 2 7 0—3 0 基金项目:安徽省教育厅 自然科学研究项 目( J07 3 7 C K20B4Z ) 作者简介: 马艳平( 9 3 )女 , 17 一 , 河北遵化人, 硕士, 毕业于 中国矿业大学 , 讲师 , 从事地质 专业相 关的科研 与教学工作。
维普资讯
着手, 进行 锆石形 态 定量研 究。锆 石 U P — b法是 目前 应用 最广泛 的 同位 素地质 年 代学方 法 。锆石 的化 学
成 分 、 f 0 同位 素 组成 广泛 应 用 于 岩 石成 因 、 H 和 壳
含量,而它的晶型是 由晶体 内部结构和结晶时的物
理 化学条 件所 决定 的1 锆 石 的基 本形态 特征 可 以揭 9 1 。
第4 期
马艳平 , : 等 锆石 学研 究在地质 科学中的应用
盐类 , 其颜 色 为玫 瑰色 、 色 、 色 , 近 于无 色 . 紫 黄 或 金
刚光 泽 。锆 石是岩浆 岩 、 变质 岩 、 积岩 和 月岩 中最 沉
重要的副矿物 . 由于它具有稳定性和广在性等优势 , 受到 了地质 科学 的青 睐 ,被广 泛 用 于 u P — b同位素
定年及岩 石成 因和岩 石 圈演 化研 究[ 1 ] 。
石 的化 学成分和 同位 素 的研 究 是追 溯地球 早期 历史 的有效工 具 本 文尝试 论述 锆石 学研 究在地 质科 学 中的应 用等相 关 问题 及其 进展 。
纳 的基础 上 , 立一 种有 效 的锆石 形态 的鉴定方 法 . 建 确 定锆石 群 的形态演 化 规律 。 目前 , 具有 代表 性的方
锆 石学研 究在地质科学 中的应 用
马艳平 ,凌毅平 徐 国伟 ,

锆石在地质研究中的应用

锆石在地质研究中的应用

2021.08科学技术创新锆石在地质研究中的应用夏浪(成都理工大学,四川成都610000)锆石一直被视为具有高度稳定性的矿物,具有能持久保持矿物形成时的物理化学特征,富含U 、Th 等放射性元素、离子扩散速率低、封闭温度高等特点,因此被广泛于岩石学、地球化学研究中。

近年来微区定年技术发展,锆石更加成为了U -Pb 定年的理想对象。

本文从锆石岩相学、地球化学、包裹体等方面阐述锆石在地质领域研究中的应用方向。

1锆石矿物学和岩相学特征锆石的化学式为Zr Si O 4,含有H f ,Th ,U 等混入物,在岩浆岩矿物中含量较低,一般是以副矿物的形式存在。

在岩浆结晶分异演化过程中,根据鲍文反应序列分为连续和不连续系列。

岩浆中先后结晶出橄榄石、辉石、角闪石等暗色矿物,斜长石伴随暗色矿物且牌号递减依次结晶出来,从基性向酸性斜长石演化。

Zr 在基性岩浆中不饱和,锆石难结晶出来,而在酸性岩浆中饱和可以晶出。

CL 阴极发光的原理实质上是由于矿物中可能会混入杂质离子或者是晶体生长过程中产生的缺陷、双晶、生长条纹等,这些因素都可能导致矿物颗粒内部由于成分不均一而在阴极发光图像上呈现不同,锆石环带很好的记录了岩浆演化的过程。

在对锆石的CL 阴极发光影像图中,不同岩石成因的锆石在CL 阴极发光图像下形态会有显著的区别。

岩浆锆石广泛存在于酸性岩浆岩中,而在偏基性的岩石中存在的较少,岩浆锆石具有特征的同心韵律环带,具有自形到半自形的长柱状特征。

在沉积岩中也会以少量碎屑锆石的形式存在,碎屑锆石磨圆较好。

在高级变质岩中,特别是在原岩富含锆石的高级变质岩中,锆石的结构往往较为复杂,构成由晶核和变质增生组成的复杂结构。

变质锆石指的是变质作用过程中形成的锆石,成因不同的锆石(深熔作用形成、变质流体结晶、变质重结晶等)甚至是不同变质相下形成的锆石在阴极发光图像上都具有不同的环带特征以及锆石形态,如图1。

2锆石包裹体包裹体是矿物生长过程中或形成之后被捕获包裹于矿物晶体缺陷中的,保存在主矿物至今的物质。

锆石成因与文化

锆石成因与文化

锆石成因与文化摘要:锆石作为十二月生辰石之一,象征着成功。

因其稳定性较好,而成为同位素地质年代学最重要的定年矿物。

本文从锆石的基本特征,成因,文化等方面加以阐述,着重体现出锆石的文化特征。

关键字:锆石,特征,成因,文化引言锆石又称锆英石,日本称之为“风信子石”,是十二月生辰石之一。

也是宝石的一种。

其英文名为Zircon,是地球上形成的最古老矿物之一。

1 锆石的基本特征锆石的化学成分:硅酸锆;化学组成为Zr[SiO₄],晶体属四方晶系的岛状结构硅酸盐矿物。

晶体呈短柱状,通常为四方柱、四方双锥或复四方双锥的聚形。

锆石颜色多样,有无色、紫红、金黄色、淡黄色、石榴红、橄榄绿,香槟,粉红,紫蓝,苹果绿等,一般有无色、蓝色和红色品种。

色散高,有金刚光泽。

无解理。

摩氏硬度7.5-8,比重大,达4.4-4.8。

锆石中通常含有各种微量元素,常见的有U-Th-Pb 体系、Hf、REE 等,这些微量元素离子半径大、价态高,不易存在于大多数硅酸盐造岩矿物中,却可以广泛容纳在锆石的晶体结构中,是限定源岩性质和形成过程非常重要的示踪元素(Hoskin 等,2003)。

因此可以利用这些元素来反推锆石的成因。

2 锆石成因锆石可在多种环境中形成,而不同成因的锆石在形态、内部结构、微量元素种类和含量等方面具有差异,因此可通过这种差异来推导锆石的形成环境。

目前,对锆石成因的分类通常分为岩浆锆石、变质锆石和热液锆石三种。

岩浆锆石是指直接从岩浆中结晶形成的锆石。

变质锆石是指在变质作用过程中形成的锆石。

热液锆石是指经过热液流体蚀变或者热液改造了的锆石,或从热液流体中直接结晶的锆石(李长民,2009)。

3 锆石文化锆石是常见的宝石矿物,因其外观酷似钻石而更换了其角色,对于很多人而言其名字仍意味着“仿品”。

这不免令人遗憾,因为锆石本是一种美丽的彩色宝石,它将民间传奇和独特魅力诠释得恰到好处。

锆石一般又分为高型锆石和低型锆石。

由于低型锆石有些含有放射性元素,所以如果是首饰用的锆石,低型锆石是不能接受的,低型锆石是由于放射性而晶体变为非晶体的锆石,很可能是带有放射性的,一般首饰珠宝用锆石只会选用高型锆石。

地球地质应用研究

地球地质应用研究

浅谈地球地质应用研究摘要:介绍并对比了用于锆石等副矿物测试的离子探针、激光探针、电子探针、质子探针等几种微区原位测试技术各自的特点。

锆石u-pb 定年实现了对同一锆石颗粒内部不同成因的锆石域进行原位年龄的分析,给出了有关寄主岩石的源岩、地质演化历史等重要信息,为地质过程的精细年龄框架的建立提供了有效的途径。

锆石微量元素、同位素特征是译解岩石来源和成因的指示器。

锆石hf 同位素已成功地用于地球早期历史、岩浆来源、壳幔相互作用、区域大陆地壳增长的研究等;锆石氧同位素组成能有效地约束壳幔相互作用和示踪岩浆来源等。

关键词:锆石;年代学;地球化学特征;地质应用随着能够显示矿物内部复杂化学分区的成像技术和高分辨率的微区原位测试技术的发展和广泛应用,研究颗粒锆石等副矿物微区的化学成分、年龄、同位素组成及其地质应用等已成为国际地质学界研究的热点[1 ] 。

锆石u2pb 法是目前应用最广泛的同位素地质年代学方法,锆石的化学成分、hf 和o 同位素组成广泛应用于岩石成因、壳幔相互作用、区域地壳演化的研究等,对地球上古老锆石的化学成分和同位素的研究是追朔地球早期历史的有效工具。

笔者着重综述锆石的化学成分、同位素组成特征及其在地质学中的应用。

1 微区原位测试技术锆石等副矿物在地质学中的广泛应用与近年来原位分析测试技术的快速发展密不可分。

代写论文目前已广泛应用的微区原位测试技术主要有离子探针、激光探针和电子探针等。

1. 1 离子探针离子探针( sensitive high resolution ion micro-probe ,简称shrimp)可用于矿物稀土元素、同位素的微区原位测试。

在目前所有的微区原位测试技术中,shrimp 的灵敏度、空间分辨率最高(对u 、th 含量较高的锆石测年,束斑直径可达到8μm),且对样品破坏小(束斑直径10~50μm ,剥蚀深度<5μm) [ 2-3 ] ,是最先进、精确度最高的微区原位测年方法。

LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用

LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用
!@" /KM g !@W /K Y!@" /K E 8!@W Y8!@" /K \ G, 4MY4E YG, 8]Y8d
为质量歧视校正系数4M为实际测量比值4E为真实 比值8为同位素质量数 采用!@B %XY!@@ %X\?>@$"^ 对 %X同 位素比值进行指数归一化质量歧视校正采用!@$ /K Y!@" /K \ !>$^"@C对 /K 同位素比值进行指数归一化质量歧视校正 由于锆 石 中!@W -+ Y!@@ %X比 值 通 常 小 于 ?>??" 因 此 锆 石 中 !@W %X的同质异位素的干扰主要来自!@W /K 在锆石激光剥蚀 过程中直接测定 /K 信号计算出 /K 值然后用剥蚀过程中 /K 的平均值来进行干扰校正 .3H+a00,; %3F0E0"??^ U+ (% -.> "??W0
的虚拟放大器技术分析器同时采集完一组数据后软件自动依次更换其后的放大器电路采集b组数据后各放大器电路与原分析器恢复一致该技术可有效地消除因各法拉第杯接收器的增益不同所造成的同位素比值误差提高同位素比值测定的精该测定值与文献报道的值在误差范围内完全一致p7dgg
!???S?^WB Y"??@ Y?"$!? S"^B^S?C 30%- A(%,).)8&0- 9&#&0-#岩石学报
激光剥蚀系统能够产生 "!$,M的紫外激光经过激光匀 化将能量聚焦在样品表面激光剥蚀光斑的直径可在 !? ` !^?M之间调节 激光的输出能量可以调节最大实际输出 功率可达 $^*YIM"
图 !#六个月内 *8RC@^ 溶液测试情况 O39>!#4)J+GEJ7X%X3J7E7Q3I0,0GLJ3JX7F*8RC@^ ;+F3,9J3e M7,ENJ

锆石

锆石

图10 混合岩化过程中的深融深变质增生锆石 (a)无分带增生锆石, (b)面型分带增生锆石 左边为CL图像,右边为二次电子照片,
图11 锆石表面的溶蚀结构 (a)变质增生锆石的边部的溶蚀结构, (b)核部原岩锆石的周围出现溶蚀结构, (c)锆石边部出现较宽的蚀变边
锆石变质重结晶作用是指结构上不稳定的锆石, 在一定温压条件下(一般温度>400 ℃ ), 锆石晶格进 行重新愈合和调整,使锆石在结构上更加稳定。所 以锆石发生变质重结晶作用时并没有新的锆石生成, 只是对原有锆石进行了不同程度的改造。 锆石的 重结晶作用一般优先发生在锆石边部以及锆石内部 矿物包裹体周围等结构不稳定的区域。微量元素含 量较高的锆石的稳定性低于微量元素含量较低的锆 石,因此,在同一样品的锆石中微量元素较高的颗 粒和、或区域更易于发生重结晶作用。受蜕晶化作 用影响的锆石区域由于其结构上的不稳定性,最容 易发生变质重结晶作用。己有实验结果表明,在有 流体存在的情况下,在温度≥ 400℃时,严重蜕晶 化锆石可以很快发生重结晶作用。
锆石U—Pb测年
锆石是最理想的测年对象 最常见副矿物,广泛存在于不同地质体中 抗风化能力强 无或很低的普通铅,而U含量适当 U-Pb同位素体系保存良好 可判断体系是否封闭 应用CL等方法,可对锆石进行成因研究 SHRIMP等原位分析方法应用 年龄测定从<1百万年到44亿年 一个样品中的锆石群几乎都是复成因的,由于不同 成因、不同世代的锆石可能具有相同的形态、大小和 磁性,因而单晶锆石U-Pb测年法应运而生,但该方法 要求极低的实验室铅本底。
图3 不同类型变质锆石内部结构特点 (a)完全变质新生锆石, (b)变质增生边, (c)原有锆石改造形成的变质锆石
2180±17Ma
1272±16M (可能为变质年龄)

锆石的o同位素

锆石的o同位素

锆石的o同位素
锆石是地球科学领域中非常重要的矿物之一,因其晶体结构的特殊性质,可用于地质年代学和岩石成因等方面的研究。

锆石中的o同位素(氧同位素)也被广泛应用于这些领域。

o同位素是指锆石中氧原子的质量数为16的同位素,其中有些氧原子的原子核中可能会有8个中子,这种同位素也被称为氧-18。

地球上的大气、水、岩石等中的氧同位素比例是有一定规律的,因此,矿物中的氧同位素含量可以反映矿物形成时的环境和过程。

通过分析锆石中的o同位素含量,可以精确地确定锆石形成的年代和成因。

由于锆石具有高温稳定性和长时间稳定性,因此在地质年代学和岩石成因研究中被广泛应用。

例如,在地球上的某一时期,岩石中的锆石普遍具有相似的o同位素含量,因此,可以通过分析不同样品中的锆石o同位素含量,确定它们形成的年代和地质环境。

除了锆石之外,其他矿物中的氧同位素含量也可以用于地质年代学和岩石成因研究。

例如,石英、长石等矿物中的o同位素也被广泛应用于这些领域。

但由于锆石具有独特的晶体结构和o同位素含量特征,因此在地质年代学和岩石成因研究中被广泛应用。

- 1 -。

锆石地球化学特征及地质应用

锆石地球化学特征及地质应用

锆石地球化学特征及地质应用摘要:介绍并对比了用于锆石等副矿物测试的离子探针、激光探针、电子探针、质子探针等几种微区原位测试技术各自的特点。

锆石U-Pb定年实现了对同一锆石颗粒内部不同成因的锆石域进行原位年龄的分析,给出了有关寄主岩石的源岩、地质演化历史等重要信息,为地质过程的精细年龄框架的建立提供了有效的途径。

锆石微量元素、同位素特征是译解岩石来源和成因的指示器。

锆石Hf同位素已成功地用于地球早期历史、岩浆来源、壳幔相互作用、区域大陆地壳增长的研究等;锆石氧同位素组成能有效地约束壳幔相互作用和示踪岩浆来源等。

关键词:锆石;年代学;地球化学特征;地质应用随着能够显示矿物内部复杂化学分区的成像技术和高分辨率的微区原位测试技术的发展和广泛应用,研究颗粒锆石等副矿物微区的化学成分、年龄、同位素组成及其地质应用等已成为国际地质学界研究的热点[1]。

锆石U2Pb法是目前应用最广泛的同位素地质年代学方法,锆石的化学成分、Hf 和O同位素组成广泛应用于岩石成因、壳幔相互作用、区域地壳演化的研究等,对地球上古老锆石的化学成分和同位素的研究是追朔地球早期历史的有效工具。

笔者着重综述锆石的化学成分、同位素组成特征及其在地质学中的应用。

1微区原位测试技术锆石等副矿物在地质学中的广泛应用与近年来原位分析测试技术的快速发展密不可分。

写作论文目前已广泛应用的微区原位测试技术主要有离子探针、激光探针和电子探针等。

离子探针离子探针可用于矿物稀土元素、同位素的微区原位测试。

在目前所有的微区原位测试技术中,SHRIMP的灵敏度、空间分辨率最高,且对样品破坏小[2-3],是最先进、精确度最高的微区原位测年方法。

其不足之处是仪器成本高,测试费用昂贵,测试时间较长。

2000年,CamecaNanoSIMS50二次离子质谱开始用于对颗粒大小为1~2μm的副矿物进行U-Th-Pb年代学研究。

写作毕业论文NanoSIMS对粒度极细小的副矿物进行定年要以降低精度为代价,且用于U-Th-Pb定年还没有进行试验,还未完全估算出其准确度和分析精度,有可能在西澳大利亚大学获得初步的成功[2,4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年龄与地质观察出现矛盾
主要原因 1)测年方法不同,或同一方法是在不同实验 室或不同时间完成的,有的数据质量不高; 2)年龄在误差范围内实际上是一致的; 3)地质关系不清楚,不是在同一露头取样; 4)某些年龄数据的地质解释存在问题,例如 辉绿岩脉中所测锆石为捕获成因; 5)地质观察不正确。
出现“异常”的可能原因
锆石同位素年代学研究注意问题 1)必须以野外地质为基础,充分了解测年样品的地 质特征、形成背景和岩石成因,为年龄解释提供可靠的地 质依据。采集尽可能新鲜的岩石样品 2)采集样品必须有经纬度坐标记录,相关野外地质 记录,特别是采集样品野外露头的照片记录
3)进行年龄测定的样品,都应有岩石岩相学研究, 保留岩石样品标本和锆石副样,以便必要时复查 4)进行年龄测定的样品,应完成相应的常量、微量 和稀土元素分析,必要时进行Nd等同位素分析 5)锆石测年之前,应进行锆石透射光、反射光、背 散射、阴极发光研究,为测年和年龄解释提供依据。根据 锆石内部结构,结合地质体产状,80-90%的锆石成因可 以得到确认 6)应特别注意锆石分选过程中的污染问题
呼和浩特地区古元古代变质沉积岩 锆石阴极发光图像(万渝生等,未发表)
大别超高压变质带榴辉岩中石英脉的 热液锆石阴极发光图像(Wu YB et al., 2009)
Th/U<0.1 有绿泥石、铝直闪石、镁铁闪石包体 1.85 Ga
鞍山弓长岭富铁矿边部富石榴石蚀变岩 (李厚民等,2014)
变质锆石
锆石成因研究及地质应用
万渝生
为什么锆石U-Pb定年可信?
1、U-Pb体系 2、锆石
Zircons are forever!
锆石是最理想的测年对象
最常见副矿物,广泛存在于不同地质体中 抗风化能力强 无或很低的普通铅,而U含量适当 U-Pb同位素体系保存良好 可判断体系是否封闭 应用CL等方法,可对锆石进行成因研究 SHRIMP等原位分析方法应用
扫描组数 未知样分析数
在目的和经费、时间上达到平衡和协调
定年注意事项
仪器稳定性,对于十分重要的样品,仪 器不稳定,宁可不作 结合地质背景和目的,定年前对锆石图 像作充分的研究,初步确定定年锆石 在锆石阴极发光图上清楚准确标出分析 位置和年龄 根据情况,进行调整 地质学家最好自己参加分析
锆石U含量与206Pb/238U年龄关系(Williams and Hergt)
大青山地区古元古代变质辉长岩的锆石 阴极发光图像(Wan et al.,2013)
大青山地区古元古代变质辉长岩的锆石 年龄图(Wan et al.,2013)
大青山地区新太古代变质辉长岩的锆石 阴极发光图像(Ma et al.,2012)
大青山地区新太古代变质辉长岩的锆石 年龄图(Ma et al.,2012)
变质锆石可划分为变质新生锆石(变质增生 边或以单独颗粒形式存在)和重结晶锆石(可进 一步划分为固态重结晶和流体参与下的重结晶, 也可进一步划分为部分重结晶和完全重结晶)两 大类。一些情况下,它们之间难以明确区分。
其它(造岩)矿物分解产生的Zr、Si等组份 的成核和结晶、锆石从变质流体(和深熔岩浆) 中晶出、原有锆石的溶解-再沉淀、交代置换和 元素扩散等是变质新生锆石形成和原有锆石改造 的重要机制。
变质新生锆石的各种同位素体系都重置, 变质重结晶锆石不同同位素体系可分别重置。
贺兰山地区贺兰山岩群变质沉积岩的 锆石阴极发光图像(董春艳等,2007)
大青山地区变质碎屑沉积岩的锆石阴极发光图像(董春艳等)
锆大 石青 山 图地 像区 (深 董熔 春榴 艳云 等片 ,麻 未岩 发 表 )
CL
西峡地区秦岭群黑云斜长片麻岩中锆石阴极发光图像 (万渝生等,2011)
LA-ICPMS定年
特别有利于碎屑锆石定年
对于锆石颗粒大、成因简单、包体少、普通 铅低、年龄适中的锆石,定年效果好 反之,特别是对成因复杂的锆石,定年 效果不好
LA-ICPMS定年时需想到下一步可能的 研究(最古老锆石寻找),之前作高清阴极 发光照相
CL-images of zircons with complex internal tectures from high-grade charnockitic gneisses of southern India (Kreoner et al., 2014)
胶东中生代玲珑超单元二长花岗岩中锆石阴极发光图像
岩浆锆石内部结构演化示意图
XL2-8
甘肃祁连兴隆山群拉班玄武岩的锆石年龄 (徐学义等,2008)
甘肃祁连兴隆山群拉班玄武岩(XL2-8)的锆石阴极发光图像 (徐学义等,2008)
290 Ma
289 Ma
塔里木盆地二叠纪玄武岩的锆石阴极发光图像和年龄 (Yu Xin et al., 2011)
包括定年在内的锆石研究,目的 是地质应用。锆石成因及锆石在不同 作用过程中的特征及变化规律(物理 的,化学的、同位素的)是关键 根据目的,开展综合研究,充分 挖掘锆石所藴藏的重要信息
SiO2=52% K2O=10%
华北克拉通中元古代盖层大红峪组碱性玄武岩 的锆石阴极发光图像(李怀坤)
鲁西济宁岩群变质酸性火山岩的锆石阴极发光图像 (万渝生等,2012)
鲁西地区新太古代晚期岩浆事件 (Wan et al., 2010)
鲁西地区新太古代早期岩浆事件 (万渝生未发表)
滹沱群底砾岩中石英岩砾石的碎屑锆石阴极发光图像 (万渝生等,2010)
万东 渝焦 生群 等浅 ,变 质 碎 屑 )沉 积 岩 中 碎 屑 锆 石 特 征
( 2010
长城系
所有数据
变质岩石中出现多组年龄的原因
可能原因 1)原岩为碎屑沉积岩,但只存在一组年龄锆 石也可能为碎屑沉积岩; 2)原岩为岩浆岩,除岩浆锆石外,还存在残 余和捕获锆石,也有可能所有的都为残余或捕获锆 石; 3)原岩凝灰岩中可出现火山锆石和碎屑锆石; 4)变质锆石和其它锆石; 5)样品不是一种单一岩石; 6)更为复杂情况。 注意不同年龄是存在于不同锆石颗粒或在同一 锆石颗粒中,不同年龄的锆石特征是否相同。 注意选样过程中出现的偏差。
1.2(2.67Ga)
1.1(2.48Ga)
大青山地区麻粒岩中的锆石(万渝生等,未发表)
冀东黄柏峪角闪片麻岩锆石阴极发光和年龄图(Liu et al., 2014)
冀东黄柏峪石榴黑云片麻岩锆石阴极发光和年龄图(Liu et al., 2014)
冀东黄柏峪地区变质沉积岩锆石年龄直方图(Liu et al., 2014)
大青山地区变质花岗质岩石的锆石阴极发光图像
鞍山地区3.1-3.8 Ga杂岩的构造岩浆热事件对比 (万渝生等,未发表)
鞍山地区太古宙岩石的锆石年龄直方图 (万渝生等,未发表)
鲁西地区地质图(Cao,1996; Wan et al., 2010)
鲁西地区新太古代岩浆岩锆石年龄直方图 (万渝生等,未发表)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石阴极发光图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石二次电子图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石年龄图(董春艳等,2012)
鲁西新太古代变质辉石岩的锆石阴极发光和年龄图 (万渝生等,未发表)
大青山地区变质超基性岩石的锆石阴极发光和年龄图 (Wan et al., 2013)
Comparison of SHRIMP II (a) and laser ablation ICP-MS data (b) shown in concordia diagrams for zircons from massive charnockite sample NGB-1B, Nagercoil Block, southern India (Kreoner et al., 2014)
蓟县系 清白口系
华北克拉通十三陵地区中新元古代积岩碎屑锆石 年龄直方图 (Wan et al., 2011)
所有锆石定年结果
所有锆石定年结果
Grey color: discordance = 10-15%; all other data < 10% discordant.
华北克拉通古元古代变质碎屑沉积岩的锆石年龄(Wan et al., 2006)
残余锆石2.48-2.57 Ga
幔部锆石 2.45Ga
边部锆石 2.40Ga
大青山石榴黑云母花岗岩锆石CL和年龄谐和图 (董春艳等,2008;Wan et al., 2009)
西藏南部淡色花岗岩的锆石阴极发光图像(于俊杰等,2011)
河南下汤地区古元古代黑云磁铁斜长片麻岩 锆石阴极发光图像(黄道袤等,2014)
“同位素年代学=提供年龄数据”。
许多地质学家的想法,一种错误的认识!
同位素年代学需要同位素和地质两方面 的知识结构。
年龄表
数据内容 数据排列顺序 有效位数 样品多时,最好一个样品有一个表头 表注 >1.2Ga (or >1.4 Ga)锆石,尽可能用 7/6年龄,而不是上交点年龄
科学性和有利于读者阅读
锆石成因
锆石成因分类基础:岩石类型和作用过程 1)岩浆作用(岩浆岩):超基性岩、基性岩(辉 长岩、辉绿岩、玄武岩)、中性岩(闪长岩、安山岩)、 中酸性岩(花岗闪长岩、花岗岩、英安岩、流纹岩)及 其它特殊类型岩石(如斜长岩等)。 2)沉积作用(碎屑沉积岩):粗碎屑沉积岩、细 碎屑沉积岩、石英岩。浅变质碎屑沉积岩中碎屑锆石通 常既未受影响,也无新生锆石形成。 3)变质作用(变质岩):正变质岩(各种遭受变 质的岩浆岩)、副变质岩(各种遭受变质的沉积岩)。 4)深熔作用(混合岩):遭受深熔作用的正变质 岩、遭受深熔作用的副变质岩。 5)热液作用(称之为流体作用更恰当):岩浆演 化后期热液作用、热液交代作用、热液成岩作用。
样品问题,例如选样时的污染,甚至不 同样品置换
相关文档
最新文档