河南省洛阳市2017-2018学年高一上期中考试数学试卷
河南省洛阳市2017-2018学年高三期中考试文科数学 Word版含答案

洛阳市2017-2018学年高中三年级期中考试数学试卷(文) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}|15U x N x =∈-<<,集合{}13A =,,则集合U C A 的子集的个数是( ) A .16 B .8 C .7 D .42. 已知复数12,z z 在复平面内对应的点分别为()1,1和()2,1-,则21z z =( ) A .1322i + B .1322i -+ C .1322i - D .1322i -- 3.设m R ∈,是 “2m =”是“1,,4m 为等比数列”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D .既不充分也不必要条件 4. 已知函数()[][]2,0,1,0,1x f x x x ⎧∈⎪=⎨∉⎪⎩,若()()2f f x =,则x 取值的集合为( )A .∅B . {}|01x x ≤≤ C. {}2 D .{}|2x x x =≤≤或01 5.设,a b 是不同的直线,,αβ是不同的平面,则下列四个命题中错误的是( ) A .若,,a b a b αα⊥⊥⊄,则//b α B .若//,a ααβ⊥,则αβ⊥ C. 若a β⊥,αβ⊥,则//a α D .若,,a b a b αβ⊥⊥⊥,则a β⊥6. 设等差数列{}n a 满足3835a a =,且10a >,n S 为其前n 项和,则数列{}n S 的最大项为( )A .15SB .16S C. 29S D .30S7. 等比数列{}n a 中,1102,4a a ==,函数()()()()1210f x x x a x a x a =---L ,则()0f '=( )A .62 B .92 C. 122 D .1528. 已知函数()sin 01y a bx b b =+>≠且的图象如图所示,那么函数()log b y x a =+的图象可能是( )A .B .C. D .9.某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的体积为( )A .60B .48 C. 24 D .2010.已知函数()()sin cos sin f x x x x =+,则下列说法不正确的为( ) A .函数()f x 的最小正周期为π B .()f x 在37,88ππ⎡⎤⎢⎥⎣⎦单调递减 C. ()f x 的图象关于直线8x π=-对称D .将()f x 的图象向右平移8π,再向下平移12个单位长度后会得到一个奇函数的图象11.在平面直角坐标系xoy 中,已知点()()()2,3,3,2,1,1A B C ,点(),P x y 在ABC ∆三边围成的区域(含边界)上,设(),,OP mAB nCA m n R =-∈uu u r uu u r uu r,则2m n +的最大值为 ( )A .-1B .1 C. 2 D .312. 已知定义在1,ππ⎡⎤⎢⎥⎣⎦上的函数()f x ,满足()1f x f x ⎛⎫= ⎪⎝⎭,且当[]1,x π∈时()ln f x x =,若函数()()g x f x ax =-在1,ππ⎡⎤⎢⎥⎣⎦上有唯一的零点,则实数a 的取值范围是( ) A . 1,ln e ππ⎛⎤ ⎥⎝⎦B . {}ln ,ln 0ππππ⎛⎤⎥⎝⎦U C. []0,ln ππ D .{}1,ln 0e ππ⎛⎤ ⎥⎝⎦U第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知()()2,2,1,0a b =-=r r ,若向量()1,2c =r 与a b λ+r r共线,则λ= .14.若函数()212xxk f x k -=+g 在定义域上为奇函数,则实数k = . 15.已知()11sin 22f x x ⎛⎫=+- ⎪⎝⎭,数列{}n a 满足()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ,则2017a = . 16.已知菱形ABCD 边长为2,060A =,将ABD ∆沿对角线BD 翻折形成四面体ABCD ,当四面体ABCD 的体积最大时,它的外接球的表面积为 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设函数()21cos sin 22f x x x x π⎛⎫=+-⎪⎝⎭. (1)求()f x 的单调递减区间; (2)当,34x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值. 18.已知公差不为0的等差数列{}n a 的前三项和为6,且248,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,求使1415n S <的n 的最大值.19.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()()2,,cos ,cos m c b a n A C =-=u r r,且m n ⊥u r r .(1)求角A 的大小;(2)若3a b c =+=,求ABC ∆的面积. 20. 已知函数()()32,,f x x ax bx c a b c R =+++∈.(1)若函数()f x 在1x =-和2x =处取得极值,求,a b 的值;(2)在(1)的条件下,当[]2,3x ∈-时,()2f x c >恒成立,求c 的取值范围.21. 如图,四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,090ADC ∠=,ADP ∆是边长为2的等边三角形,Q 是AD 的中点,M 是棱PC的中点,1,BC CD PB ==(1)求证:平面PAD ⊥平面ABCD ; (2)求三棱锥B PQM -的体积.22. 已知函数()f x 为偶函数,当0x ≥时,()xf x ae =,且曲线()y f x =在点()()1,1f 处的切线方程为20ebx y a -+-=. (1)求,a b 的值;;(2)若存在实数m ,对任意的[]()1,1x k k ∈>,都有()2f x m ex +≤,求整数k 的最小值.试卷答案一、选择题1-5:BCADC 6-10: ADDCD 11、12:BD 二、填空题13. 3 14. 1± 15. 1009 16. 203π三、解答题17.解:(1)()211cos 21cos sin cos 2222xf x x x x x x π+⎛⎫=+-=-⎪⎝⎭g gcos 22cos 223x x x π⎛⎫==+ ⎪⎝⎭. 由222,3k x k k Z ππππ≤+≤+∈,得222233k x k ππππ-≤≤+, ∴63k x k ππππ-≤≤+,所以()f x 的单调递减区间为(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)∵34x ππ-≤≤, ∴52336x πππ-≤+≤, 当()20,cos 21,33x x f x ππ⎛⎫+=+= ⎪⎝⎭取到最大值1,此时6x π=-;当()52,cos 23632x x f x πππ⎛⎫+=+=- ⎪⎝⎭取得最小值4x π=. 18.(1)设等差数列{}n a 的首项为1a ,公差为d ,依题意有12324286a a a a a a ++=⎧⎨=⎩, 即1212a d d a d +=⎧⎨-=⎩, 由0d ≠,解得111a d =⎧⎨=⎩,所以n a n =. (2)由(1)可得()11111n b n n n n ==-++, 所以()111111122311n S n n n ⎛⎫⎛⎫=-+-++=- ⎪ ⎪++⎝⎭⎝⎭L . 解1141115n -<+,得14n <, 所以n 的最大值为13.19.(1)由m n ⊥u r r,得0m n =u r r g ,即()2cos cos 0c b A a C -+=,由正弦定理,得()sin 2sin cos sin cos 0C B A A C -+=, 所以2sin cos sin cos sin cos B A A C C A =+, ()2sin cos sin B A A C =+g ,2sin cos sin B A B =,因为0B π<<,所以sin 0B ≠, 所以1cos 2A =.因为0A π<<,所以3A π=.(2)在ABC ∆中,由余弦定理,得()22222cos 33a b c bc b c bc π=+-=+-,又3a b c =+=,所以393bc =-,解得2bc =, 所以ABC ∆的面积11sin 2232S bc π==⨯=. 20.(1)由题可得 ,()232f x x ax b '=++, ∵函数()f x 在1x =-和2x =处取得极值, ∴1,2-是方程2320x ax b -+=的两根,∴2123123a b ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩, ∴326a b ⎧=-⎪⎨⎪=-⎩;(2)由(1)知()32362f x x x x c =--+,()2336f x x x '=--, 当x 变化时,()(),f x f x '随x 的变化如下表:∴当[]2,3x ∈-时,()f x 的最小值为10c -, 要使()2f x c >恒成立,只要102c c ->即可, ∴10c <-,∴c 的取值范围为(),10-∞-. 21.(1)证明:∵底面四边形ABCD 是直角梯形,Q 是AD 的中点, ∴1,//BC QD AD BC ==,∴四边形BCDQ 为平行四边形, ∴//CD BQ , ∵090ADC ∠=, ∴QB AD ⊥,又22,PA PD AD Q ===,是AD 的中点,故PQ ,又QB CD PB ==∴222PB PQ QB =+,由勾股定理可知PQ QB ⊥, 又PQ AD Q =I , ∴BQ ⊥平面PAD , 又BQ ⊂平面ABCD , ∴平面PAD ⊥平面ABCD ;(2)解:连接CQ , ∵2PA PD ==,Q 是AD 的中点, ∴PQ AD ⊥, ∵平面PAD ⊥平面ABCD ,且平面PAD I 平面ABCD AD =, ∴PQ ⊥平面ABCD ,又M 是棱PC 的中点, 故1122B PQM P BQC M BQC P DQC P BQC P BQC V V V V V V ------=-=-=,而1122BQC PQ S ==⨯=,∴111332P BQC BQC V S PQ -∆===g ,∴111224B PQM V -=⨯=. 22.(1)0x >时,()()(),1,1x f x ae f ae f ae ''===,所以曲线()y f x =在点()()1,1f 处的切线方程为()()()111y f f x '-=-, 即y aex =.又曲线()y f x =在点()()1,1f 处的切线方程为20ebx y a ++-=, 所以2a b ==.(2)因为()f x 为偶函数,且当0x ≥时,()x f x ae =, 那么()2xf x e =,由()2f x m ex +≤得22x meex +≤,两边取以e 为底的对数得ln 1x m x +≤+,所以ln 1ln 1x x m x x ---≤≤-++在[]1,k 上恒成立, 设()ln 1g x x x =-++, 则()1110x g x x x-'=-+=≤(因为[]1,x k ∈) 所以()()min ln 1g x g k k k ==-++,设()ln 1h x x x =---,易知()h x 在[]1,k 上单调递减, 所以()()max 12h x h ==-, 故2ln 1m k k -≤≤-++,若实数m 存在,必有ln 3k k -+≥-,又1k >, 所以2k =满足要求,故所求的最小正整数k 为2.。
2017-2018年河南省洛阳市高一(下)期中数学试卷和答案

其中判断正确的个数是( )
A.3
B.2
C.1
D.0
12.(5 分)在直角△ABC 中,∠BCA=90°,CA=CB=1,P 为 AB 边上的点且 =λ ,
若 • ≥ • ,则 λ 的取值范围是( )
A.[ ,1]
B.[
,1] C.[ ,
] D.[
,]
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
第 2 页(共 19 页)
,已知函数 f(x)
=max{sinx,cosx}(x∈R),关于函数 f(x)的性质给出下面四个判断:
①函数 f(x)是周期函数,最小正周期为 2π;
②函数 f(x)的值域为[﹣1,1];
③函数 f(x)在区间[﹣π+2kπ,2kπ](k∈Z)上单调递增;
④函数 f(x)的图象存在对称中心.
19.(12 分)已知 =( ,cosx), =( ,2sin(x﹣ )),f(x)= .
(1)求 f(x)的最小正周期及单调递增区间;
(2)若 x∈[
],求函数 f(x)的最值及对应的 x 的值.
20.(12 分)已知函数 f(x)=6cos2
sinωx﹣3(ω>0),在一个周期内的
函数图象如图所示,A 为图象的最高点,B,C 为函数图象与 x 轴的两个交点, 且△ABC 为等边三角形. (1)求 ω 的值; (2)求不等式 f(x) 的解集.
)上的图象大致是( )
A.
B.
C.
D.
5.(5 分)下列四个结论中,正确的是( )
A.函数 y=tan(x )是奇函数
B.函数 y=|sin(x+ )|的最小正周期是 π
C.函数 y=tanx 在(﹣∞,+∞)上是增函数
洛阳市16-17学年高一上学期期中考试 数学(word版w)

洛阳市2016——2017学年度第一学期期中考试高一数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=x +3+1x +2的定义域为 A .{x |x ≥-3,且x ≠-2} B .{x |x ≥-3,且x ≠2}C .{x |x ≥-3}D .{x |x ≥-2,且x ≠-3}2.已知集合M ={1,2,m 2-3m -1},N ={-1,3},M ∩N ={3},则m 的值为A .4,-1B .-1C .1,-4D .43.若函数f (x )=4x 2-kx -8在[5,10]上为单调函数,则实数k 的取值范围是( )A .(-∞,40]B .[160,+∞)C .(-∞,40)∪(160,+∞)D .(-∞,40]∪[160,+∞)4.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( )A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]4.已知函数f (x )=⎩⎪⎨⎪⎧x +2 x ≤-1x 2 -1<x <12x x ≥1,若f (x )=1,则x 的值为 A .1,-1 B .-1 C .1 D .125.函数f (x )=2x +12x -1的图象一定 A .关于y 轴对称 B .关于原点对称 C .关于x 轴对称 D .关于y =x 轴对称6.设a =40.6,b =80.34,c =(12)-0.9,则a ,b ,c 的大小关系为A .a >b >cB . b >a >cC . c >a >bD .c >b >a7.在同一平面直角坐标系中,函数f (x )=x a ,g (x )=log a x 的图象可能是8.要得到函数y =8·2-x 的图象只需要将函数y =(12)x 的图象 A .向左平移3个单位 B .向右平移3个单位C .向左平移8个单位D .向右平移8个单位9.函数y =x -3x -2的值域为A .[23,+∞)B .(23,+∞)C .[-112,+∞)D .(-112,+∞) 10.若函数y =2+ln 1+x 1-x,x ∈[-12,12]的最大值与最小值分别为M , m ,则M +m = A .2 B .-4 C .0 D .411.已知定义在R 上的函数f (x )满足f (1)=0,当x ≠1时,f (x )=|ln|x -1||,设函数g (x )=f (x )-m (m 为常数)的零点个数为n ,则n 的所有可能值构成的集合为A .{0,4}B .{3,4}C .{0,3,4}D .{0,1,3,4}12. 已知函数F (x )=g (x )+h (x ) =e x ,且g (x ), h (x )分别是R 上的偶函数和奇函数,若对任意的x >0,不等式g (2x )≥ah (x )恒成立,则实数a 的取值范围是A .(-∞,22]B .(-∞,22)C .(-∞,2]D .(-∞,2)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2017-2018学年河南省洛阳市高一(上)期中模拟-数学试卷-答案(1)

28、已知函数 f x 2x21 x R ,且对于任意 x 恒有 f x f x0 ,则 x0
【答案】 0
29、已知
f
x
2x1 2
log2 x 1
x 1 ,若 ( f a) 3 ,则 (f 6 a)= x 1
【答案】 7 4
5
30、设函数
f
x
2x
1
x 1,满足 f f 0 a2 ,则 a 的值是
(2)若 A B A ,求实数 m 的取值范围.
7
【答案】(1) b 4 , 1 a 3 (2)1 a 5
精品班.高一.数学
36、已知集合 A x(| x 4) x 2 0, B {y | y x2 2x 2, x R} , C {x | 4 x a}.
(Ⅰ)求 A B ; (Ⅱ)若 R A C ,求实数 a 的取值范围.
【答案】B
14、在下列区间中 f x ex 4x 3的零点所在的区间为()
A . ( 1 , 0) B . (0, 1)
4
4
【答案】D
C .(1 , 1) 42
D .(1 , 3) 24
15、已知函数 y x2 6x 8 在区间1, a 为减函数,则 a 的取值范围是()
A .a a 3 B .a 1 a 3 C .a a 3 D .a 0 a 3
③最小值为 1;
④图象恒在 x 轴的上方.
其中正确结论的序号是
【答案】 ②③④
6
三、解答题(共 14 小题)
33、计算:(1)
2
1 4
1
2
9.6 0
3
3 8
2
3
1.52
(2)
《解析》河南省洛阳市2016-2017学年高一上学期期中数学试卷Word版含解析

2016-2017学年河南省洛阳市高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}2.已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.43.已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪D.(﹣∞,40]∪[160,+∞)4.已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.5.函数f(x)=的图象一定()A.关于y轴对称 B.关于原点对称C.关于x轴对称 D.关于y=x轴对称6.设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度 B.向左平移3个单位长度C.向右平移8个单位长度 D.向左平移8个单位长度9.函数y=x﹣的值域为()A.B.C.D.10.若函数y=2+ln,x∈[﹣,]的最大值与最小值分别为M,m,则M+m=()A.2 B.﹣4 C.0 D.411.已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x﹣1||,设函数g(x)=f(x)﹣m(m为常数)的零点个数为n,则n的所有可能值构成的集合为()A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}12.已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知集合A={1,2},集合B满足A∪B=A,则集合B有个.14.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差元.15.已知函数f(x)=,则f(log23)=.16.已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.计算下列各式的值:(1)0.0625+[(﹣3)4]﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.18.已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.19.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f(1)=1.(1)求函数f(x)的解析式;(2)判断并证明f(x)在(﹣1,1)上的单调性.20.某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.21.已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a>0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.22.已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.2016-2017学年河南省洛阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.【解答】解:由,解得x≥﹣3且x≠﹣2.∴函数f(x)=+的定义域为{x|x≥﹣3且x≠﹣2}.故选:A.2.已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.4【考点】交集及其运算.【分析】利用交集定义和集合中元素的性质求解.【解答】解:∵集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},∴,解得m=﹣1或m=4.故选:A.3.已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪D.(﹣∞,40]∪[160,+∞)【考点】二次函数的性质.【分析】已知函数f(x)=4x2﹣kx﹣8,求出其对称轴,要求f(x)在[5,20]上具有单调性,列出不等式,从而求出k的范围;【解答】解:∵函数f(x)=4x2﹣kx﹣8的对称轴为:x=,∵函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,根据二次函数的性质可知对称轴x=≤5,或x=≥20,解得:k≤40,或k≥160;∴k∈(﹣∞,40]∪[160,+∞),故选:D.4.已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.【考点】函数的值.【分析】当x≤﹣1时,f(x)=x+2=1;当﹣1<x<1时,f(x)=x2=1;当x≥1时,2x=1.由此能求出x的值.【解答】解:∵函数f(x)=,f(x)=1,∴当x≤﹣1时,f(x)=x+2=1,解得x=﹣1;当﹣1<x<1时,f(x)=x2=1,解得x=±1,不成立;当x≥1时,2x=1,解得x=,不成立.∴x的值为﹣1.故选:B.5.函数f(x)=的图象一定()A.关于y轴对称 B.关于原点对称C.关于x轴对称 D.关于y=x轴对称【考点】函数奇偶性的判断.【分析】求得函数f(x)的定义域,计算f(﹣x)与f(x)的关系,得到奇偶性,进而可得图象特点.【解答】解:函数f(x)=的定义域为{x|x≠0},关于原点对称,f(﹣x)===﹣f(x),则f(x)为奇函数,它的图象关于原点对称.故选:B.6.设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【考点】指数函数的图象与性质.【分析】化简a,b,c,根据指数函数的性质判断其大小即可.【解答】解:∵a=40.6=21.2,b=80.34=21.02,c=()﹣0.9=20.9,且f(x)=2x在R递增,∴a>b>c,故选:A.7.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.8.要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度 B.向左平移3个单位长度C.向右平移8个单位长度 D.向左平移8个单位长度【考点】函数的图象与图象变化.【分析】根据指数的运算性质,把函数y=8•2﹣x化为y=23﹣x,函数y=()x的解析式化为y=2﹣x的形式,根据平移前后函数解析式的关系,利用平移方法判断结果即可.【解答】解:∵函数y=()x=(2﹣1)x=2﹣x,函数y=8•2﹣x=23﹣x将以y=2﹣x向右平移3个单位长度后,得到函数y=2﹣(x﹣3)=23﹣x的图象,故将函数y=()x的图象向右平移3个单位可以得到函数y=23﹣x的图象,故选:A.9.函数y=x﹣的值域为()A.B.C.D.【考点】函数的值域.【分析】利用换元法转化为二次函数求值域.【解答】解:由题意:函数y=x﹣.设=t,(t≥0),则x=.那么函数y=x﹣转化为:f(t)=.开口向上,对称轴t=;∵t≥0,∴当t=时,函数f (t )取得最小值为f ()min =,即函数y=x ﹣的最小值为.所以值域为[,+∞). 故选C ,10.若函数y=2+ln,x ∈[﹣,]的最大值与最小值分别为M ,m ,则M +m=( ) A .2 B .﹣4 C .0D .4 【考点】函数的最值及其几何意义.【分析】令g (x )=ln,则g (x )为奇函数,可得g (x )max +g (x )min =0,从而可求M +m 的值.【解答】解:令g (x )=ln,x ∈[﹣,],则g (﹣x )=ln =﹣ln =﹣g (x ), 即g (x )为奇函数,∴g (x )max +g (x )min =0,∵2+ln ,x ∈[﹣,]的最大值与最小值分别为M ,m ,∴M +m=4.故选:D11.已知定义在R 上的函数f (x )满足f (1)=0,当x ≠1时,f (x )=|ln |x ﹣1||,设函数g (x )=f (x )﹣m (m 为常数)的零点个数为n ,则n 的所有可能值构成的集合为( ) A .{0,4} B .{3,4} C .{0,3,4} D .{0,1,3,4}【考点】函数的图象;对数函数的图象与性质.【分析】画出函数f (x )的图象,数形结合,分析不同情况下n 的值,综合可得答案.【解答】解:∵f (1)=0,当x ≠1时,f (x )=|ln |x ﹣1||,∴函数f (x )的图象如下图所示:当m<0时,函数g(x)=f(x)﹣m有0个零点;当m=0时,函数g(x)=f(x)﹣m有3个零点;当m>0时,函数g(x)=f(x)﹣m有4个零点;故n的所有可能值构成的集合为{0,3,4},故选:C12.已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)【考点】函数恒成立问题;函数奇偶性的性质.【分析】根据函数奇偶性的性质利用方程组法即可求f(x)和g(x)的解析式;根据不等式恒成立进行转化,利用一元二次不等式的性质即可得到结论.【解答】解:∵函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,∴g(﹣x)=g(x),h(﹣x)=﹣h(x)∴e x =g(x)+h(x),e﹣x=g(x)﹣h(x),∴g(x)=,h(x)=.∵∀x∈(0,+∞),使得不等式g(2x)≥ah(x)恒成立,即≥a•恒成立,∴a≤=(e x﹣e﹣x)+,设t=e x﹣e﹣x,则函数t=e x﹣e﹣x在(0,+∞)上单调递增,∴0<t,此时不等式t+≥2,当且仅当t=,即t=时,取等号,∴a≤2,故选:A.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知集合A={1,2},集合B满足A∪B=A,则集合B有4个.【考点】并集及其运算.【分析】由已知得B⊆A,从而B=∅,B={1},B={2},B={1,2}.【解答】解:∵集合A={1,2},集合B满足A∪B=A,∴B⊆A,∴B=∅,B={1},B={2},B={1,2}.∴满足条件的集合B有4个.故答案为:414.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差10元.【考点】函数模型的选择与应用.【分析】欲求两种方式电话费相差的数字,结合函数的图象可得,只须求出当x=150时,图中BD的长度即可,利用平面几何中的相似三角形的性质即可.【解答】解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.15.已知函数f(x)=,则f(log23)=12.【考点】函数的值.【分析】由函数性质得f(log23)=f(log23+2)=×22,由此能求出结果.【解答】解:∵函数f(x)=,∴f(log23)=f(log23+2)=×22=3×4=12.故答案为:12.16.已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是(1,).【考点】函数恒成立问题;复合函数的单调性;对数函数的图象与性质.【分析】由已知可得函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,进而可得t=x2﹣2ax,x∈[3,4]为增函数,且恒为正,解得答案.【解答】解:∵对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,∴函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,当a∈(0,1)时,y=log a t为减函数,t=x2﹣2ax,x∈[3,4]为增函数,此时函数f(x)=log a(x2﹣2ax)(a>0且a≠1)不可能为增函数,当a∈(1,+∞)时,y=log a t为增函数,若函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,则t=x2﹣2ax,x∈[3,4]为增函数,且恒为正,即,解得:a∈(1,),故答案为:(1,)三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.计算下列各式的值:(1)0.0625+[(﹣3)4]﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.【考点】对数的运算性质.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=+﹣0+=+3﹣1+=4,(2)原式=lg2(lg2+lg5)+(1﹣lg2)+1=218.已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)当a=1时,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},根据集合包含关系的定义,可得结论;(2)根据集合包含关系的定义,对a进行分类讨论,最后综合,可得满足条件的实数a的取值范围.【解答】解:(1)当a=1时,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},B={x|﹣<x≤2}.∴B⊆A成立;(2)当a=0时,A=R,A⊆B不成立;当a <0时,A={x |0<ax +1≤5}={x |≤x <},若A ⊆B ,则,解得:a <﹣8;当a >0时,A={x |0<ax +1≤5}={x |<x ≤},若A ⊆B ,则,解得:a ≥2;综上可得:a <﹣8,或a ≥219.已知函数f (x )=是定义在(﹣1,1)上的奇函数,且f (1)=1.(1)求函数f (x )的解析式;(2)判断并证明f (x )在(﹣1,1)上的单调性.【考点】利用导数研究函数的单调性;函数解析式的求解及常用方法;函数单调性的判断与证明.【分析】(1)根据奇函数的特性,可得f (0)=0,结合f (1)=1,构造方程组,解得函数f (x )的解析式;(2)利用导数法,可证得f (x )在(﹣1,1)上单调递增.【解答】解:(1)∵函数f (x )=是定义在(﹣1,1)上的奇函数,∴f (0)=0,又∵f (1)=1.∴,解得:,∴函数f (x )=, (2)f (x )在(﹣1,1)上单调递增,理由如下:∵f ′(x )=,当x ∈(﹣1,1)时,f ′(x )≥0恒成立,故f (x )在(﹣1,1)上单调递增.20.某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.【考点】分段函数的应用.【分析】(1)利用带待定系数法即可求出函数的解析式,再根据销售量Q(百件)与销售价格P(元)满足的函数关系式,即可月销量Q(百件)与销售价格P(元)的函数关系,(2)设该店月利润为L元,则由题设得L=Q(P﹣14)×100﹣100,得到函数的解析式,分段求出函数的最值,比较即可.【解答】解:(1)∵点(14,22),(20,10),(26,1)在函数的图象上,∴,解得.同理可得,∴Q=,(2)设该店月利润为L元,则由题设得L=Q(P﹣14)×100﹣100,由(1)得L=,=,当14≤p≤20时,Lmax=1650元,此时P=元,当20<p≤26时,Lmax=元,此时P=元,故当P=时,月利润最大,为1650元.21.已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a>0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.【考点】对数函数的图象与性质;函数奇偶性的判断.【分析】(1)求解定义域,利用定义进行判断即可.(2)函数f(x)﹣g(x)只有一个零点,即f(x)=g(x)只有一个零点,化简计算,转化成二次方程问题求解.【解答】解:(1)证明:f(x)的定义域是R,f(﹣x)=log2(4﹣x+1)+x=log2+x=log2(4x+1)﹣log222x+x=log2(4x+1)﹣2x+x=f(x),故f(x)在R是偶函数;(2)由题意:函数f(x)﹣g(x)只有一个零点,即f(x)=g(x)只有一个零点,可得:log2(4x+1)﹣x=log2a+log2(2x﹣)(a>0)整理得:.即:令2x=t∵x>1,∴t>2转化为f(t)=(t>2)与x轴的交点问题.当a﹣1=0,即a=1时,f(t)=∵t>2,∴f(t)恒小于0,与x轴没有交点.当a﹣1>0,即a>1时,f(t)与x轴有一个交点,需那么f(2)<0.解得:,所以:.当a﹣1<0,即0<a<1时,f(t)与x轴有一个交点,需那么f(2)>0,此时无解.综上所得:函数f(x)﹣g(x)只有一个零点,求实数a的取值范围是(1,).22.已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.【考点】函数恒成立问题;函数的最值及其几何意义.【分析】令t=()x,则y=f(x)=1+at+t2,(1)当a=﹣2,x∈[1,2]时,y=f(x)=1﹣2t+t2,t∈[,],结合二次函数的图象和性质,可得函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,y=1+at+t2,在(0,]上都有﹣2≤y≤3,结合二次函数的图象和性质,可得实数a的取值范围.【解答】解:令t=()x,则y=f(x)=1+at+t2,(1)当a=﹣2,x∈[1,2]时,y=f(x)=1﹣2t+t2,t∈[,],当t=,即x=2时,函数f(x)的最大值为,当t=,即x=1时,函数f(x)的最小值为,(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,则y=1+at+t2,在(0,]上都有﹣2≤y≤3,由函数y=1+at+t2的图象是开口朝上,且以直线t=为对称轴的直线,故当≤0,即a≥0时,1+a+≤3,解得:a∈[0,]当0<<,即<a<0时,,解得:a∈(,0),当≥,即a≤时,1+a+≥﹣2,解得:a∈[﹣,]综相可得a∈[﹣,].2016年12月3日。
河南省洛阳市2017-2018学年高一上学期期末考试数学试卷及答案

2017-2018 洛阳市高一第一学期期末考试数学试卷1、【答案】 C【分析】会合 N 表示的全部的奇数集,且是从 1 开始的。
因此 P M N {1,3} ,其子集个数 为 22 4 个,即 {1},{3},{ 1,3},2、【答案】 B【分析】圆心为( 1,2),半径为 1 的圆的标准方程为 ( x 1)2 ( y 2) 2 1 ,化为一般方程为 x 2 y 2 2x 4 y 4 0 ,对照所给的一般方程,能够得出a 2,b 4,c 4 。
应选 B 。
3、【答案】 D2 3 1 1【分析】 a 0 a 1 b 2 1 c l o g 1 e 08 2因此 b a c4、【答案】 A【分析】∵ 圆锥的轴截面为边长为 2 的正三角形∴ 圆锥的母线长为 2,且底面圆的直径为 2,即半径为 1。
∴ 圆锥的侧面积为 S 侧 1 Cl1 2 2 2 ,圆锥的底面积为 S 底 12 圆锥的表面积为 3 22 ∴ 。
5、【答案】 C【分析】 A 选项: , 可能是平行或许订交B 选项: n 与 订交或平行或 nC 选项:面面平行的判判定理推论:垂直于同向来线的两个平面平行。
D 选项:也可能是 n6、【答案】 A【分析】∵ 点 (x 0 , y 0 ) 在 x 2y 2 r 2 上, ∴ x 02 y 02 r 2 圆心 (0,0) 到直线 x 0 x y 0 yr 2 的距离为 d r 2 y 02 r 2 rx 02 r ∴ 直线与圆相切。
7、【答案】 D【分析】∵ f (x) 是定义在 R 上的偶函数。
∴ f ( x) f (x) 当 x 0时, x 0 , f ( x) ( x)2 2( x) x 2 2x ,即 f (x) x 2 2x 。
∴f ( x) 的分析式为 f (x) x 2 2x x 0 0 x 22x x 。
且 f (0) 0 ∵ x 0 ① 或 x 0 ② x f ( x) 0 ∴2 2x 0 x 2 2x 0x 解不等式组①得: x 2解不等式组②得: 2 x 0 ∴ x 的取值范围是 x 2 或 2 x 0 。
洛阳市2016-2017年高一数学上学期期中考试含答案

A •关c •关6•设 a= ^\b =B ・关于原点对称-0.9,则⑦处的大小关系为(<2>C ・(—,4D ・(-S ,40]U[160,T4•已知函数/W=<x + 2,x<\ D •丄22工+15.函数/(尤)=的图象一定( 洛阳市2016—2017学年第一学期期中考试高一数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考生作答时,须将答案答答 题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
第I 卷(选择题,共60分)注意事项:1. 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2. 考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一 项是符合题目要求的.1.函数/(0=府5 + 亠 的定义域为( )A. {x\x> 一3,H A -H -2}B. {x\x> 一3,工 2}C. {x\x> -3}D. {x\x> -2,M% 3}2•已知集合 M = {1,2, m 2- 3加—1}, N = {-1,3}, M Cl N = {3},则 m 的值为( ) A. 4,-1B.-lC.1,-4D.43•已知函数/W = 4X 2-^Y -8在[5,20]上具有单调性,则实数k 的取值范围是( )A ・(-s,40]B ・[160, + s )A.a>b>c8.要得到函数,y = 8-2-¥的图象,只需将函数y = 的图象()A・向左平移3个单位 B.向左平移3个单位C・向左平移3个单位 D.向左平移3个单位9.函数y = x-y/3^2的值域为()10.若函数尸2 + 111岂,"的最大值与最小值分别为M,加,则M+m=()A. 2B.-4C.OD.411•已知定义在R上的函数/⑴满足/(1) = 0 ,当心1时,/M =卜卜T||,设函数A = /⑴-加(m 为常数)的零点个数为〃,则”的所有可能的取值构成的集合为()A・{0,4} B.{3,4}C・{0,3,4} D.{0,l,3,4}12.已知函数F(Q=g(Q+心)=以,且g(x)丿心)分别是R上的偶函数和奇函数,若对任意的xw(0,*o),不等式g(2x)"心)恒成立,则实数。
河南省洛阳市20172018学年高一数学上学期期中试题(含解析)

洛阳市2017-2018学年第一学期期中考试高一数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】D【解析】由题意得。
选D。
2. 已知,则()A. B. C. D.【答案】B【解析】方法一:令,解得。
∴。
选B。
方法二:∵,∴。
∴。
选B。
3. 下列函数,既有偶函数,又是上的减函数的是()A. B. C. D.【答案】C【解析】选项A中,函数为奇函数,不合题意,故A不正确;选项B中,函数没有奇偶性,故B不正确;选项C中,函数为偶函数,且在上单调递减,符合题意;选项D中,函数为偶函数,但在上单调递增,不合题意,故D不正确。
选C。
4. 已知集合,若中只有一个元素,则的值是()A. B. C. 或 D. 或【答案】C【解析】当时,,满足题意。
当时,要使集合中只有一个元素,即方程有两个相等的实数根,则,解得。
综上可得或。
选C。
5. 函数的定义域是()A. B. C. D.【答案】A【解析】由,解得。
∴函数的定义域为。
选A。
6. 方程的解为,若,则()A. B. C. D.【答案】C【解析】令,∵,.∴函数在区间上有零点。
∴。
选C。
7. 若函数在区间上单调递增,则的取值范围是()A. B. C. D.【答案】D【解析】由题意得,函数图象的对称轴为,∵函数在区间上单调递增,∴,解得。
∴实数的取值范围是。
选D。
8. 已知,则的值为()A. B. C. D.【答案】B【解析】由题意得。
选B。
9. 函数的图象大致为()A. B. C. D.【答案】B【解析】函数的定义域为。
当时,;当时,。
∴,其图象如选项B所示。
选B。
10. 已知,则,则值为()A. B. C. D.【答案】D【解析】∵,∴,∴,∴,解得。
又,∴。
选D。
点睛:(1)对于形如的连等式,一般选择用表示x,y的方法求解,以减少变量的个数,给运算带来方便;(2)注意对数式和指数式的转化,即;另外在对数的运算中,还应注意这一结论的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳市2017—2018学年第一学期期中考试
高一数学试卷
第Ⅰ卷(选择题)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.已知集合{}{}|31,1,0,1A x x B =-<<=-,则A B =I
A. {}2,1,0,1--
B. {}2,1,0--
C. {}1,0,1-
D. {}1,0-
2.已知()2
214f x x +=,则()3f -= A. B. C. D.
3.下列函数中,既是偶函数,又是上()0,+∞的减函数的是 A. 1y x
= B. x y e -= C. 21y x =-+ D.lg y x = 4.已知集合{}
2|210M x R ax x =∈+-=,若M 中只有一个元素,则a 的值是
A. 0
B. -1
C. 0或-1
D.0或1 5.函数()()2
2log 32f x x x
=++-的定义域是 A. ()3,2- B. [)3,2- C. (]3,2- D.[]3,2-
6.方程3log 3x x +=的解是0x ,若()0,1,x n n n N ∈+∈,则n =
A. 0
B. 1
C. 2
D. 3
7.若函数()2
25f x x ax =-+在区间[)1,+∞上单调递增,则a 的取值范围是 A.(],2-∞ B. [)2,+∞ C. [)4,+∞ D. (],4-∞
8.已知()()211log 2,12,1
x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()()22f f -+=的值为 A. 6 B. 5 C. 4 D. 3
9.函数()2x
x f x x
⋅=的图象大致为
10.已知23x y a ==,且112x y
+=,则a 的值为 A. 36 B. 6 C. 66
11.已知421333
2,4,25a b c ===,则,,a b c 的大小关系是
A. b a c <<
B. a b c <<
C. b c a <<
D.c a b <<
12.若对任意(],1x ∈-∞-,都有()3121x m -<成立,则m 的范围是 A. 1,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎤-∞ ⎥⎝⎦
C.(),1-∞
D.(],1-∞
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知幂函数()f x 的图象过点()4,2,则18f ⎛⎫= ⎪⎝⎭ .
14.已知函数()()1log 23a f x x =+-(0a >且1a ≠)恒过定点(),m n ,则m n += .
15.计算:711log 221lg lg 2510074-+⎛⎫-÷+= ⎪⎝⎭ . 16.已知()f x 是R 上的奇函数,当0x >时,()2
4f x x x =-,若()f x 在区间[]4,t -上的值域为[]4,4-,则实数t 的取值范围为 .
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.
17.(本题满分10分)
设全集U R =,集合{}25371|24,|22x x A x x B x --⎧⎫⎪⎪⎛⎫=≤<=≥⎨⎬ ⎪⎝⎭⎪⎪⎩
⎭, (1)求(),U A B C A B U I ;
(2)若集合{}|20C x x a =+>,且B C C =U ,求a 的取值范围.
18.(本题满分12分)
如图所示,定义域为(],2-∞上的函数()y f x =是由一条射线及抛物线的一部分组成,利用该图提供的信息解决下面几个问题.
(1)求()f x 的解析式;
(2)若关于x 的方程()f x a =有三个不同解,求a 的取值范围;
(3)若()98f x =
,求x 的取值集合.
19.(本题满分12分)设函数()223,.f x x x a x R =--+∈ (1)王鹏同学认为,无论a 为何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明理由;
(2)若()f x 是偶函数,求a 的值;
(3)在(2)的条件下,画出()y f x =的图象并指出其单调递增区间.
20.(本题满分12分)
某工厂今年前三个月生产某种产品的数量统计表如下:
为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟产品的月产量y 与月份x 的关系,模拟函数可选择二次函数2
y px qx r =++(,,p q r 为常数且0p ≠),或函数x y a b c =⋅+(,,a b c 为常数).已知4月份的产量为1.37万件,请问用以上那个函数作为模拟函数较好,请说明理由.
21.(本题满分12分)
已知函数()21ax b f x x +=+是()1,1-上的奇函数,且12.25
f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;
(2)判断()f x 的单调性,并加以证明;
(3)若实数t 满足()()10f t f t ++>,求t 的取值范围.
22.(本题满分12分)
对于函数()f x ,若存在一个实数a 使得()()f a x f a x +=-,我们就称()y f x =关于直线x a =对称,已知()()
2112.x x f x x x m e e --=-++
(1)证明()f x 关于1x =对称,并据此求()1291112191101010101010f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
L L 的值; (2)若()f x 只有一个零点,求m 的值.。