现代控制理论基本内容

合集下载

现代控制理论基础知识资料

现代控制理论基础知识资料

最优估计理论的内容
参数估计法;(最小方差、最小二乘法) 状态估计法(卡尔曼滤波)
§ 1.3 现代控制理论与经典控制理论的差异
庞特里亚金 L.S.Pontryagin
4. 罗森布洛克(H.H.Rosenbrock)、欧文斯(D.H.Owens) 和麦克法仑(G.J.MacFarlane)研究了用于计算机辅助设计的 现代频域法理论,将经典控制理论传递函数的概念推广到多变 量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关 系,为进一步建立统一的线性系统理论奠定了基础。
赫尔维茨(Hurwitz)
3.由于两次世界大战中军事 工业需要控制系统具有准确 跟踪与补偿能力,1932年奈 奎斯特(H.Nyquist)提出 了复数域内研究系统的频率 响应法,为具有高质量动态 品质和静态准确度的军用控 制系统提供了急需的分析工 具。
奈奎斯特
4.1948年伊文思(W.R.Ewans)提出了用图解方式研 究系统的根轨迹法。
1.五十年代后期,贝尔曼(Bellman)等人提出了状态空间法; 在1957年提出了基于动态规划的最优控制理论。
2.1959年匈牙利数学家卡尔曼(Kalman) 和布西创建了卡尔曼滤波理论;1960年 在控制系统的研究中成功地应用了状态 空间法,并提出了可控性和可观测性的 新概念。
卡尔曼
3. 1961年庞特里亚金(俄国人)提出 了极小(大)值原理。
现代控制理论基础
Modern Control Theory
绪论
§ 1.1 现代控制理论的产生与发展 § 1.2 现代控制理论的内容 § 1.3 现代控制理论与经典控制理论的差异 § 1.4 现代控制理论的应用
§ 1.1 现代控制理论的产生与发展
同学们,我们都知道:控制理论作为一门科 学技术,已经广泛地运用于我们社会生活的方 方面面。

现代控制理论的概念、方法

现代控制理论的概念、方法
统安全监测等方面。
THANKS FOR WATCHING和优化控制,注重系统的全局性、 最优性和鲁棒性。
现代控制理论的重要性
工业自动化
现代控制理论为工业自动化提供了理论基础和技 术支持,提高了生产效率和产品质量。
航天与航空
在航天和航空领域,现代控制理论的应用对于飞 行器的稳定性和安全性至关重要。
能源与环境
在能源和环境领域,现代控制理论有助于实现能 源的高效利用和环境的可持续发展。
VS
详细描述
线性二次型最优控制基于最优控制理论, 通过最小化系统状态和控制输入的二次型 代价函数来寻找最优的控制策略。这种方 法能够有效地优化系统的性能,提高系统 的稳定性和动态响应能力。
预测控制
总结词
预测控制是一种基于模型预测和滚动优化的 控制方法。
详细描述
预测控制通过建立系统的预测模型,对未来 的系统行为进行预测,并滚动优化控制策略 以减小预测误差。这种方法具有较好的鲁棒 性和适应性,广泛应用于工业过程控制和智 能控制等领域。
现代控制理论的历史与发展
历史
现代控制理论起源于20世纪50年代,随着计算机技术和数学理论的不断发展而 逐步完善。
发展
现代控制理论的发展涉及多个学科领域,如线性系统理论、最优控制、鲁棒控 制、自适应控制等,为复杂系统的控制提供了更广泛和深入的理论基础。
02 现代控制理论的基本概念
系统建模
总结词
系统建模是现代控制理论的基础,它通过数学模型描述系统的动态行为。
详细描述
性能指标是用来评估控制系统性能的关键因素,包括稳定性、准确性、快速性和鲁棒性 等。稳定性表示系统在受到扰动后恢复平衡的能力;准确性表示系统输出与理想输出之 间的误差大小;快速性表示系统达到稳定状态所需的时间;鲁棒性表示系统在存在不确

1.2 现代控制理论的主要内容

1.2 现代控制理论的主要内容

自适应控制
非线性系统理论 鲁棒性分析与鲁棒控制
分布参数控制
离散事件控制 智能控制
线性系统理论(1/2)
1.2.1 线性系统理论
线性系统是一类最为常见系统,也是控制理论中讨论得最为深 刻的系统。 该分支着重于研究线性系统状态的运动规律和改变这种 运动规律的可能性和方法,以建立和揭示系统结构、参数、 行为和性能间的确定的和定量的关系。 通常,研究系统运动规律的问题称为分析问题,研究改变运 动规律的可能性和方法的问题则为综合问题。
粗略地说,系统的鲁棒性是指所关注的系统性能指标对系 统的不确定性(如系统的未建模动态、系统的内部和外部 扰动等)的不敏感性。 目前该领域主要讨论稳定性的鲁棒性问题,涉及其他 性能指标的鲁棒性的不多。
鲁棒性分析与鲁棒控制(2/4)
鲁棒性分析讨论控制系统对所讨论的性能指标的鲁棒性, 给出系统能保持该性能指标的最大容许建模误差和内外 部扰动的上确界。 目前该问题中较受重视的问题是多项式簇的稳定性 问题。 在多项式簇问题中,2003年当选为中国科学院院 士的北京大学黄琳教授给出了著名的棱边定理。
非线性系统理论(4/4)
微分几何方法目前主要研究非线性系统的结构性理论,主 要成果: 能控能观性; 基于非线性变换(同胚变换)的线性化; 状态反馈线性化;
解耦;
结构性分解; 反馈镇定等。
鲁棒性分析与鲁棒控制(1/4)
1.2.7 鲁棒性分析与鲁棒控制
系统的数学模型与实际系统存在着参数或结构等方面的差异, 而我们设计的控制律大多都是基于系统的数学模型,为了保证 实际系统对外界干扰、系统的不确定性等有尽可能小的敏感 性,导致了研究系统鲁棒控制问题。
鲁棒性分析与鲁棒控制(3/4)

现代控制理论完整版

现代控制理论完整版

现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。

答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。

互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。

2、什么是状态观测器?简述构造状态观测器的原则。

答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。

原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。

3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。

答:基本思想:从能量观点分析平衡状态的稳定性。

(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。

方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。

局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。

4、举例说明系统状态稳定和输出稳定的关系。

答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。

举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。

5、什么是实现问题什么是最小实现说明实现存在的条件。

(完整版)现代控制理论

(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。

通常把采样系统,数字控制系统统称为离散系统。

一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。

当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。

加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。

连续信号转变为脉冲信号的过程,成为采样或采样过程。

实现采样的装置成为采样器。

To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。

实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。

作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。

(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。

现代控制理论基础

现代控制理论基础
一 概述1 控制理论的产生及其发展
已成功地运用到:工农业生产、科学技术、 军事、生物医学和人类生活等领域。
洗衣机 (中、强、弱), 电冰箱 , 水 箱 , 导弹
一 概述
1 控制理论的产生及其发展
b 三个阶段: 经典控制理论 现代控制理论 智能控制理论
一 概述
1 控制理论的产生及其发展
◆ 经典控制理论(古典)阶段 形成于上世纪(20)30~50年代,主要解决
一 概述
1 控制理论的产生及其发展
◆ 智能控制理论(高级阶段) 概念:能够模仿人类智能(学习、推理、
判断),能适应不断变化的环境,能处理多种 信息以减少不确定性,能以安全可靠的方式进 行规划、产生和执行控制作用,获得全局最优 的性能指标的非传统的控制方法。
采用的理论方法特点是多学科性,即交叉 性很强。
up

yq
二 状态空间描述
1 基本概念
状态:控制系统的状态是指系统过去、现在和 将来的状况,即能完全描述系统时域行为的一 个最小变量组。
状态变量:是指能完全表征系统运动状态的最 小变量组中的每个变量
二 状态空间描述
1 基本概念 状态向量是指若一个系统有N个彼此独立
的状态变量x1(t),x2(t),…,xn(t),用它们作 为分量所构成的向量x(t),这就构成了状 态向量。 状态空间以状态变量x1(t),x2(t),…,xn(t)为 坐标轴构成的n维空间。
一 概述
1 控制理论的产生及其发展 ◆ 现代控制理论 罗森布罗可(1975)、沃罗维奇、麦克法轮 研究了使用于计算机辅助控制系统设计的现代 频域法理论,将经典控制理论的传递函数矩阵 的概念引入到多变量系统,并探讨了传递函数 矩阵于状态方程之间的等价转换关系,为进一 步建立统一的线性系统的理论奠定了基础

现代控制理论ppt

现代控制理论ppt

求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。

现代控制理论及其在工程中的应用

现代控制理论及其在工程中的应用

现代控制理论及其在工程中的应用现代控制理论是指以数学和理论为基础的系统控制方法和技术,它通过对系统的建模、分析和设计,使得工程系统能够以最佳方式运行。

现代控制理论的应用广泛,可以涵盖从自动化工程到航空航天工程等各个领域。

本文将探讨现代控制理论的基本原理以及它在工程中的实际应用。

一、现代控制理论基本原理现代控制理论的基本原理包括控制系统原理、线性控制理论、非线性控制理论、自适应和鲁棒控制等。

在控制系统原理中,主要研究控制系统的基本概念和结构,包括反馈控制、前馈控制等。

线性控制理论主要用于研究线性控制系统的建模和设计方法,其中包括经典控制理论和现代控制理论。

非线性控制理论则是用于研究非线性系统的建模和分析方法,它考虑了系统中的非线性因素。

自适应和鲁棒控制则是用于处理控制系统中的不确定性和变化环境的方法。

二、现代控制理论在工程中的应用1. 自动化工程现代控制理论在自动化工程中得到了广泛的应用。

例如,在工业生产中,通过引入现代控制理论,可以提高生产效率和质量。

自适应和鲁棒控制方法可以应对系统参数变化和外部干扰,使得系统能够更加稳定地运行。

另外,在自动化系统中,控制器的设计对系统性能至关重要,通过利用现代控制理论的方法,可以设计出更优秀的控制器,提高系统的响应速度和稳定性。

2. 电力工程在电力工程中,现代控制理论被广泛应用于电力系统的运行和控制中。

例如,在电力系统的稳定性分析中,线性控制理论可以用于建立电力系统的传输方程,从而评估系统的稳定性。

另外,在电力系统的控制中,现代控制理论的方法可以用于设计和优化发电机、变压器等设备的控制系统,提高电力系统的响应能力和稳定性。

3. 交通工程现代控制理论在交通工程中的应用也非常广泛。

例如,在交通信号控制中,现代控制理论可以用于对交通流进行建模和预测,从而在不同的交通状况下,自动调整交通信号的控制策略,使得交通流能够更加顺畅地运行。

另外,在交通系统中,现代控制理论的方法也可以用于设计和优化交通系统的控制器,提高交通系统的效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b. 自校正自适应控制 (Self-Turning Adaptive Control)
(4)系统辨识 建立系统动态模型的方法: 根据系统的输入输出的试验数据,从一类给定的模型 中确定一个被研究系统本质特征等价的模型,并确定 其模型的结构和参数。
(5)最佳滤波理论(最佳估计器) 当系统中存在随机干扰和环境噪声时,其综合必须应 用概率和统计方法进行。即:已知系统数学模型,通 过输入输出数据的测量,利用统计方法对系统状态估 计。
1945年,美国Bode在《网络分析和反馈放大 器设计》中提出频率响应分析法-Bode图。
1948年,美国Wiener在《控制论-关于在动 物和机器中控制和通信的科学》中系统地论 述了控制理论的一般原理和方法。 ---标志控制学科的诞生
控制论:研究动物(包括人类)和机器内部 控制和通信的一般规律的学科。
(2)如何克服系统结构的不确定性及干扰带来 的影响?
(3)如何实现满足要求的控制策略?
(1)线性系统理论 研究线性系统在输入作用下状态运动过程 规律,揭示系统的结构性质、动态行为之 间的关系。
主要内容: 状态空间描述、能控性、能观性和稳定性、 状态反馈、状态观测器设计等。
(2)最优控制 在给定约束条件和性能指标下,寻找使系统性 能指标最佳的控制规律。
Kalman滤波器
1954年,钱学森的《工程控制论》在美国出 版。 ---奠定了工程控制论的基础
(1)经典控制理论 a.特点
研究对象:单输入、单输出线性定常系统。 解决方法:频率法、根轨迹法、传递函数。 非线性系统:相平面法和描述函数分析。 数学工具:拉氏变换、常微分方程。
b.局限性 难以应用于时变系统、多变量系统。 难以揭示系统更为深刻的特性。
第八章 现代控制理论初步
一、 控制理论发展概况 二、 现代控制理论的主要特点 三、 现代控制理论基本内容
一、 控制理论发展概况
控制论:1948年 美国数学家维纳《控制论》 1940——1950 经典控制理论 单机自动化 1960——1970 现代控制理论 机组自动化 1970——1980 大系统理论 控制管理综 合 1980——1990 智能控制理论 智能自动化 1990——21c 集成控制理论 网络控制自 动化
主要方法: 变分法、极大值原理、动态规划等
极大值原理
现代控制理论的核心
即:使系统的性能指标达到最优(最小或最大)
某一性能指标最优:
如时间最短或燃料消耗最小等。
(3)自适应控制 在控制系统中,控制器能自动适应内外部参数、 外部环境变化,自动调整控制作用,使系统达 到一定意义下的最优。
a. 模型参考自适应控制 (Model Reference Adaptive Control)
二、 现代控制理论的主要特点
研究对象:线性系统、非线性系统、时变系统、 多变量系统、连续与离散系统
数学上:状态空间法
方法上:研究系统输入/输出特性和内部性能
内容上:线性系统理论、系统辨识、最优控制、 自适应控制等
三、 现代控制理论基本内容 控制理论必须回答的三个问题:
(1)系统能否被控制?可控性有多大?
主要内容: 模糊控制 神经网络控制 专家控制、遗传算法
(5) 控制理论发展趋势 企业:资源共享、因特网、信息集成 信息技术+控制技术 集成控制技术
网络控制 技术
计算机集成制造CIMS:(工厂自动化) Computer Integrated Manufacturing System
应用:生物控制、经济控制、社会控制等
1788年,英国Wate利用反馈原理发明蒸汽机 用的离心调速机。
1875年,1895年,英国Routh和德国Hurwitz 先后提出判别系统稳定性的代数方法。
1892年,俄国李雅普诺夫在《论运动稳定性 的一般问题》中建立了动力学系统的一般稳 定性理论。
1932年,Nyquist提出了据频率响应判断系 统稳定性的准则。
大系统结构分为三类: 多级(递阶)控制 多层控制(按任务) 多段控制(如导弹轨迹控制)
决策、协调、 计划、组织、 管理
公司
协调控制级
计算机实现生产 调度,过程控制 的最优化
调节装置
工厂 车间
递阶控制级 局部控制级
(4)智能控制 是具有某些仿人智能的工程控制与信息处理 系统,如智能机器人。
利用知识进行学习、推理与联想,对环境干 扰与不确定因素具有鲁棒性。
(2)现代控制理论 随着计算机技术、航空航天技术的迅速发展而发展 起来的。
a.特点 研究对象:多输入、多输出系统,线性、定常或时 变、离散系统。 解决方法:状态空间法(时域方法)。 数学工具:线性代数、微分方程。
b.主要标志 1965年,R.Bellman提出了寻求最优控制的动态规 划方法。
1958年,R.E.Kalman采用状态空间法分析系 统,提出能控性、能观性、Kalman滤波概念 1961年,庞特里亚金证明了最优控制中的极 大值原理。
(3)大系统理论 是指规模庞大、结构复杂、变量众多的信息 与控制系统,如生产过程、交通运输、生物 工程、社会经济和空间技术等复杂系统。
复杂系统的特点:
(1)动力学模型的不确定性 (2)测量信息的粗糙性和不完整性 (3)动态行为或扰动的随机性 (4)离散层次和连续层次的混杂性 (5) 系统动力学的高度复杂性 (6)状态变量的高维性和分布性 (7)各系统间的强耦合性
相关文档
最新文档