热电偶热电阻资料

合集下载

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。

然而,它们的工作原理和特点有很大的区别。

本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。

一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。

当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。

通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。

热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。

2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。

一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。

热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。

二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。

2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。

3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。

4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。

5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。

6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。

热电阻热电偶基础知识资料资料

热电阻热电偶基础知识资料资料

热电偶热电阻测温应用原理1热电偶测温的应用原理1.1热电偶测温基本原理1.2热电偶的种类及结构形成1.2.1热电偶的种类1.2.2热电偶的结构形式1.3热电偶冷端的温度补偿1.4温度测量仪表的分类2热电阻的应用原理2.1热电阻测温原理及材料2.2.1精通型热电阻2.2.2铠装热电阻2.2.3端面热电阻2.2.4隔爆型热电阻2.3热电阻测温系统的组成热电偶热电阻测温应用原理1热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.1热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个接触点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

1.2热电偶的种类及结构形成1.2.1热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

1.2.2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

热电偶和热电阻的知识

热电偶和热电阻的知识

热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。

它被广泛用于测量-200~1300℃范围内的温度。

在特殊情况下,可测至2800℃的高温或4K 的低温。

热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。

1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。

热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。

热电势由温差电势与接触电势组成。

温差电势:是指一根导体上因两端温度不同而产生的热电动势。

同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。

该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。

温差电势的方向:由低温端指向高温端。

温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。

可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。

热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。

A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。

热电偶和热电阻区别

热电偶和热电阻区别

热电偶和热电阻区别1、虽然都是接触式测温仪表,但它们的测温范围不同。

热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小,当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。

热电阻使用在中低温的环境,一般使用热电阻测温范围为20(Γ500°C,甚至还可测更低的温度(如用碳电阻可测到IK左右的低温).现在正常使用钳热电阻Ptl00。

(也有Pt50,在工业上也有用铜电阻,但测温范围较小,在一50~150°C之间。

在一些特殊场合还有钢阻,镐电阻等)。

2、测温原理热电偶测量温度的基本原理是热电效应,二次表是一个检伏计或为了提高精度时使用电子电位差计。

热电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥。

3、工作中的现场故障判断热电偶:热电偶有正负极,补偿导线也有正负之分。

首先保证连接和配置正确,在运行中,常见的故障现象有短路、断路、接触不良(有万用表可判断)和变质(根据表面颜色来鉴别)。

检查时,要使热电偶与二次表分开。

热电阻:不外乎短路和断路。

用万用表可判断,在运行中怀疑短路只要将电阻端拆下一个线头,显示仪表如到最大则热电阻短路;显示仪表如回零导线短路。

保证正常连接和配置时,表值显示低或不稳,保护管可能性进水了。

热电偶和电阻信号进入PLC系统,如果仪表开路,PLC数据回零;如果仪表短路,PLC 数据溢出;如果仪表信号受电磁干扰,PLC数据不稳定或一直溢出。

4、热电偶和热电阻的选择热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。

其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。

T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。

热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点热电偶工作原理将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。

如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。

这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。

热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无关。

热电偶工作原理图热电阻工作原理工业用热电阻分铂热电阻和铜热电阻两大类。

热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。

热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。

当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。

热电偶、热电阻特点热电偶热电阻热电偶同其它种温度计相比具有如下特点:a、优点·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便,·结构简单,制造容易,·价格便宜,·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点·准确度高。

在所有常用温度计中,准确度最高,可达1mk。

·输出信号大,灵敏度高。

如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。

在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有热电偶热电阻热电偶同其它种温度计相比具有如下特点:a、优点·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便,·结构简单,制造容易,·价格便宜,·惰性小,·准确度高,·测温范围广,·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电偶和热电阻

热电偶和热电阻

度梯度导致金属在一定方向上被磁化,而 用铂和铂合金制作的热电偶温度计,甚至
非形成了电流。科学学会认为,这种现象 可以测量高达+2800℃的温度!
是因为温度梯度导致了电流,继而在导线
第一部分 热电偶
热电偶 简单介绍
热电现象 热电偶 热电偶的优缺点
目录
热电偶 的基本定律
均质导体定律 中间导体定律 中间温度定律
贝壳的实验仪器,加热其中一端时,指针 来测量温度。只要选用适当的金属作热电
转动,说明导线产生了磁场。塞贝克确实 偶材料,就可轻易测量到从-180℃到+
已经发现了热电效应,但他却做出了错误 2000℃的温度,如此宽泛测量范围,令酒
的解释:导线周围产生磁场的原因,是温 精或水银温度计望尘莫及。现在,通过采
结论:
(1)热电偶必须由两种不同性质的材料构成。 (2)若热电极本身的材质不均匀,由于温度差的存在,将会产生 附加热电势,造成测量误差。 (3)由一种材料组成的闭合回路存在温差时,回路如产生热电势, 便说明该材料是不均匀的。据此可检查热电极材料的均匀性,衡量热 电偶质量的优劣。
第一部分 热电偶
热电偶基本定律
(2)如果两种导体A和B对另一种参考导体C热电势已知,则这两种导 体组成的热电偶的热电势是它们对参考导体热电势的代数和,即
EAB(t,to)=EAC(t,to)+ECB(t, to) 参考导体亦称标准电极,一般选用铂制成,若已知各种电极与标准电 极配成热电偶的热电特性,便可按此结论计算出任意两电极A、B配成热电 偶后的热电特性,这样大大简化了热电偶的选配工作。
第一部分 热电偶
热电偶补偿导线
冷端补偿方法
2、仪表机械零点调整法 仪表的机械零点为仪表输入电势为零时,指针停留的刻度点,也就

热电偶和热电阻

热电偶和热电阻

热电偶和热电阻有相同的地方是:都是测量温度的传感器,也叫一次仪表。

它们不同的是:1热电偶作为温度传感器它输出的是和温度对应的电势,多为毫伏级的伩号。

用不同的金属材料制成的热电偶,在同样温度下,输出的电势是不同的。

比如用铂铑-铂丝制成的热电偶,我们称s分度,它在0度时输出0mv,1000度时输出9.585mv,1600度时输出16.771mv (环境温度为0度时)。

如果用镍铬-镍硅丝制成的热电偶,我们称k分度。

它在0度时输出0mv,1000度时输出39.816mv,1300度时输出50.950mv(环境温度为0度)。

热电偶一般用来测量“点”的温度。

根据要测量不同高低的温度等和其它要求选用不同材质的热点偶。

热电阻故名思意,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝;铜丝作的电阻。

比如用铜丝作的,分度号Cu50。

它在0度时,阻值是50欧姆,100度时是71.400欧姆。

如用铂丝做成的,其分度号称Pt100。

它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。

环境温度对热电偶的影响较大,所以在使用热电偶时要对环境温度进行补偿。

而使用,要注意连接到和仪表之间连线的阻值要一样。

(一般用三线制)同样也要根据要测量的温度,来选用铜电阻还是铂电阻。

过去,因为PLC发展较仪表慢一些,输如到PLC的伩号一般是0-10ma或0-10v,4-20ma所以要把的电阻值变成上说的伩号,以使PLC能接受;所以要用变送器。

一用变送器,就有2线制和4线制之分。

2线制是电源和信号就用2根线传送;比如4-20ma的仪表,就用2线制传送。

4线制,是电源和信号各用2根线来传送,互相隔离,比如0-10ma;0-10v都用4线制。

随着PLC的飞速发展PLC已有输入模块和热电偶的输入模块,只要把直接连到模块就行了。

热电偶就更方便,温度补偿以及线性校正都可以在模块里完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度测量
热电偶温度计 热电阻温度计

一、热电偶的基本原理
热电偶测温主要利用热电效应 热电效应:两种不同的导体(或半导体)A和B组 成闭合回路,如下图所示。当A和B相接的两个 接点温度T和T0不同时,则在回路中就会产生一 个电势,这种现象叫做热电效应。由此效应所 产生的电势,通常称为热电势,用符号EAB(T, T0)表示。
标准化热电偶 1.铂—铂铑热电偶(S型)
测量温度:长期:1300℃、短期:1600℃。
2.镍铬—镍硅(镍铝)热电偶(K型)
测量温度:长期1000℃,短期1300℃。
3.镍铬—考铜热电偶(E型)
测量温度:长期600℃,短期800℃。
4.铂铑30—铂铑6热电偶(B型)
测量温度:长期可到1600℃,短期可达1800℃。
2.铜热电阻

特点:它的电阻值与温度的关系是线性的,电 阻温度系数也比较大,而且材料易提纯,价格 比较便宜,但它的电阻率低,易于氧化。
3.两线制测量线路
利用不平衡电桥测量。 缺点:即使被测温度没有变化,如果环境温度 发生变化,也会使测量值发生变化。 适用场合:环境温度恒定或变化不大的现场。
To

A
eA(T,To)
T
eA (T , T0 ) eA (T ) eA (T0 )
结论:
1.热电偶回路热电势的大小只与组成热 电偶的 材料 和材料两端连接点所处 的 温度 有关,与热电偶丝的直径、 长度及沿程温度分布无关。 2. 只有用 两种不同性质 的材料才能组 成热电偶,相同材料组成的闭合回路 不会产生热电势。
二、常用热电阻元件
1.铂热电阻 铂是一种贵金属。它的特点是精度高,稳定性好, 性能可靠,尤其是耐氧化性能很强。 铂在很宽的温度范围内约1200C以下都能保证上述 特性。铂很容易提纯,复现性好,有良好的工艺性, 可制成很细的铂丝(0.02mm或更细)或极薄的铂箔。 与其它材料相比,铂有较高的电阻率,因此普遍认 为是一种较好的热电阻材料。 缺点:铂电阻的电阻温度系数比较小; 价格贵
普通型热电偶的结构
2. 分类
(1)廉价金属热电偶
1)T型(铜-康铜)热电偶,测温范围-200-350℃
2)K型(镍铬-镍铝或镍硅)热电偶,范围-2001100℃
3)E型(镍铬-康铜)热电偶,上限1000 ℃
4)J型(铁-康铜)热电偶 5)镍铬-考铜热电偶
(2)贵金属热电偶
1)S型(铂铑10-铂)热电偶 2)R型(铂铑13-铂)热电偶 3)B型(铂铑30-铂铑6)热电偶 4)铱铑热电偶
2.中间导体定律
在热电偶回路中接入第三种导体,只要第 三种导体两端温度相同,该导体的引入对热电 偶回路的总电势没有影响。 引出结论:热电偶回路中接入多种导体后,只 要保证接入的每种导体的两端温度相同,则对 热电偶的热电势没有影响。 (a)
A T2 a 2 T0 E AB T0 C 2 3 T0 C B A B 3 T0 A
热端
冷端
什么是热电偶?
图中的闭合回路称为热电偶,导体A和B称为 热电偶的热电极。热电偶的两个接点中,置 于被测介质(温度为T)中的接点称为工作端 或热端,温度为参考温度T0的一端称为参考 端或冷端。

热电现象中产生的热电势是由接触电势和温差电 势两种电势的综合效果。
1.接触电势
接触电势:是指两热电极由于材料不同而 具有不同的自由电子密度,而热电极接点 接触面处就产生自由电子的扩散现象,当 达到动态平衡时,在热电极接点处便产生 一个稳定电势差。
热电阻温度计
WZP2-240/A级3线300/150mmE(0-300℃)隔爆热电阻
WZC-111/Φ12*1000mm Cu50铜热电阻
WZPK2-103/B级Φ6*515mm(0-300℃)铂热电阻
热电阻温度计的测量范围为300℃以下. 优点:无冷端温度补偿问题,特别适宜于低温 测量, 在中低温下测温, 它的输出信号比热 电偶的要大得多,故灵敏度高;电阻温度计的 输出是电信号,因此便于信号的远传和实现多 点切换测量。 缺点:不能测太高的温度,需外部电源供电, 连接导线的电阻易受环境温度影响而产生测量 误差。
第三种材料 接入热电偶 回路图
T1 T1
(b)
T2
EAB
应用:
该定律表明热电偶回路中可接入各种 仪表或连接导线。只要仪表或导线处于 稳定的环境温度,原热电偶回路的热电
势将不受接入仪表或T1
T
T
3.中间温度定律
热电偶回路中,两接点温度分别为T、T0时 的热电势,等于接点温度为T、TN和TN、T0的 两支同性质热电偶的热电势的代数和。
A + B
接触电势 原理图
T eAB(T)
结论: 1.接触电势的大小和方向主要取决于两种 材料的性质(电子密度)和接触面温度 的高低。
2.温度越高,接触电势越大;两种导体电 子密度比值越大,接触电势也越大。
2.温差电势

温差电势:同一热 电极两端因温度不 同而产生的电势。
为了分析方便,温差 电势可由下面函数差 来表示:

一、电阻温度计的测温原理
导体或半导体的电阻率与温度有关,利 用此特性制成热电阻温度感温件,它与测量 电阻阻值的仪表配套组成热电阻温度计。

电阻温度计就是利用导体(或半导体)的电阻 值随着温度变化这一特性来进行温度测量的, 即把温度变化所引起导体电阻变化,通过测量 桥路转换成电压(毫伏级)信号,然后送入显示 仪表以指示或记录被测温度。
EAB(T,T0)=EAB(T,TN)+EAB(TN,T0)
A
T
B
Tn
A
B
A
B
T0
作用:该定律为制定和使用热电偶的热电势-温 度关系即分度表奠定了理论基础。
三、常用热电偶的材料及特点
1. 热电偶结构
普通型、铠装 型和薄膜型 普通型: (1)热电极 (2)绝缘套管 (3)保护套管 (4)接线盒
普通型热电偶的结构
二、热电偶的基本定律
1.均质导体定律 由一种均质导体组成的闭合回路中,不论其截面和长 度如何以及沿长度方向上各处的温度分布如何,都不能产 生热电势。反之,如果回路中有热电势存在则材料必为非 均质的.
结论: (1)热电偶必须由两种不同性质的材料构成。 (2)由一种材料组成的闭合回路存在温差时,回路如 产生热电势,便说明该材料是不均匀的。据此,可检查热 电极材料的均匀性。
相关文档
最新文档